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Abstract
1. Protected Areas (PAs) are central to addressing the world's biodiversity crisis, 

but their effectiveness for conservation varies. Therefore, high- resolution habi-
tat condition monitoring is needed to evaluate their individual impacts. Critically, 
monitoring must efficiently scale to cover large areas and be conducted at regular 
intervals.

2. Remote sensing (RS) data and citizen- science (CS) species data are two sources of 
global data available for habitat condition monitoring, and integrating these could 
provide high- resolution, scalable biodiversity data required for the detailed moni-
toring of PAs. However, integrating these presents four data analysis challenges: 
RS data are large and complex, large- scale CS data are biased, integrating RS and 
CS data is non- trivial, and fine- tuning to local priorities is required.

3.	 Machine	Learning	(ML)	methods	can	address	these	challenges:	geospatial	foun-
dation	models	for	RS	data	can	compress	large	data	volumes,	ML	de-	biasing	tech-
niques	can	improve	CS	data	quality,	deep	learning	and	multimodal	ML	can	help	
to integrate RS and CS data, and transfer learning can fine- tune models to local 
priorities. Here, we review these techniques and discuss how they can be applied 
to habitat condition monitoring.

4. Practical implication.	Together,	these	advances	in	ML	can	deliver	high-	resolution	
biodiversity data that can be tailored to local priorities, enabling the effi-
cient monitoring of PAs at scale, with the potential to support spatial land use 
decision- making.
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1  |  INTRODUC TION

Countries worldwide have made commitments to reverse the on-
going decline in species diversity and abundance (CBD, 2022; Díaz 
et al., 2019). One important pathway for restoring biodiversity is 
through Protected Areas (PAs) (Langhammer et al., 2024), and the 
Convention on Biological Diversity (CBD) has set a target of pro-
tecting	30%	of	 land	and	sea	by	2030	 (30 × 30)	 (CBD,	2022). Yet, 
the effectiveness of PAs depends on their “adequate implementa-
tion, enforcement, monitoring, and long- term protection” (Bailey 
et al., 2022). Taking the UK as one example, over 50% of PAs are 
assessed as ‘unfavourable condition’ (Starnes et al., 2021), and PA 
biodiversity is generally in decline (Brighton et al., 2024; Cooke 
et al., 2023). To address this, PA condition and the effectiveness of 
PA management must be assessed with monitoring at sufficiently 
high spatial, temporal and taxonomic resolution, yet, the major-
ity of UK PAs are not regularly monitored (Bailey et al., 2022; 
Dudley et al., 2016; Robinson et al., 2024; Starnes et al., 2021). 
Additionally, such high- resolution data, particularly on biodiver-
sity, are needed by local planning authorities to integrate con-
servation into spatial planning decisions, and to monitor ‘other 
effective	 area-	based	 conservation	 measures’	 (OECMs)	 (Baker	
et al., 2021; Dalton et al., 2023;	 Kremen	&	Merenlender,	2018; 
Perino et al., 2022).

Data from biodiversity surveys are important in describing PA 
condition, but field- based biodiversity monitoring data is limited. As 
demands for near real- time, high- resolution information grow, it be-
comes infeasible to scale field- based monitoring to the ideal scenario 
where condition monitoring has high spatial resolution (for informa-
tive spatial planning), spans large areas (to incorporate the effects 
of surrounding landscapes), encompasses a wide set of biodiversity 
indicators (to plan for and evaluate secondary effects), is repeated 
regularly over time (to monitor progress) and aligns with local biodi-
versity priorities (to be applicable locally; Galbraith & Stroud, 2023). 
Biodiversity policymakers have highlighted the demand for scalable 
methods to measure habitat condition (or quality), and the need to 
integrate	 different	 remote	 and	 in	 situ	 data	 sources	 (Moersberger	
et al., 2024).

In	this	perspective,	we	argue	that	Machine	Learning	(ML)	meth-
ods can enable the monitoring of PA habitat condition from remote 
sensing (RS) data, calibrated using citizen- science (CS) species re-
cords (Figure 1). Both RS and CS data sources are readily available 
and can be combined to map habitat condition (specifically, species 
data as an indicator of condition) at high resolution and tailored to 
local priorities (Anderson, 2018; Dalton et al., 2023; Galbraith & 
Stroud, 2023; Nagendra et al., 2013; Perino et al., 2022). RS data 
provide comprehensive, high- resolution and regularly sampled data 
on land cover and land use (Skidmore et al., 2021; Timmermans & 
Kissling, 2023), but lack direct measurements of species (diversity) 
that can indicate habitat quality. CS data provide direct assessment 
of habitat condition (as indicated via species data) via irregularly sam-
pled species records (Chandler et al., 2017;	Mandeville	et	al.,	2023). 
While RS and CS data are often used for bespoke species distribu-
tion modelling, we argue they can also facilitate high- resolution hab-
itat condition monitoring of PAs if four data analysis challenges are 
overcome.

In the following, we will review these challenges and the poten-
tial	of	ML	methods	to	address	these.	Previous	studies	have	demon-
strated	that	ML	models	can	extrapolate	ecologist	expert	knowledge	
to scale up analyses (Antonelli et al., 2023; Greenhill et al., 2024; Van 
der Plas et al., 2023; Virkkala et al., 2022), which will be crucial for 
monitoring habitat condition in high resolution at a landscape scale. 
While previous work has reviewed such applications as well as fu-
ture	trends	of	ML	for	ecology	and	conservation	science	 (Pettorelli	
et al., 2024; Pichler & Hartig, 2023; Tuia et al., 2022, 2023), here we 
focus	specifically	on	how	ML	could	facilitate	high-	resolution	moni-
toring of PAs.

2  |  AVAIL ABLE DATA AND METHODS

Large- scale, high- resolution data are required for efficient condition 
monitoring in PAs. Two relevant data sources with global coverage 
are RS and CS data, which would benefit from a joint analysis: CS 
species records are valuable to specify the relevant ‘features’ in RS 
data, while RS data can interpolate between sparsely distributed CS 

F I G U R E  1 Sketch	outlining	that	remote	sensing	(RS)	and	citizen	science	(CS)	provide	large-	scale	biodiversity	data	for	Protected	Areas	
(PAs),	which	can	be	integrated	using	Machine	Learning	(ML)	to	generate	high-	resolution,	scalable	biodiversity	indicators	such	as	habitat	
condition. Satellite image from ESA Sentinel- 2.
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records (Anderson, 2018; Antonelli et al., 2023). Together, they form 
the basis of a comprehensive and updatable data product at high 
spatial resolution, which can inform spatial biodiversity planning in 
PAs and beyond (Figure 1).

2.1  |  Remote sensing (RS)

RS data is an umbrella term for all data of the Earth's surface obtained 
with remote sensors, for example mounted on satellites, aeroplanes 
and drones, and often also referring to other (remote sensor- derived) 
geospatial products such as maps and meteorological data (Campbell 
et al., 2023). RS data, especially those from satellites, are well suited 
for large- scale condition monitoring, with extensive coverage 
and repeated measurements obtained evenly across their area of 
interest (Pettorelli et al., 2024; Skidmore et al., 2021; Timmermans 
& Kissling, 2023).

Given the high volumes of these data sets and the complexity 
of detailed downstream analysis, RS data is often used by end- users 
in a processed form, such as vegetation indices or land cover maps 
(García- Álvarez et al., 2022). Derived RS products are sometimes 
used as a proxy for ecological habitats (Koma et al., 2022; Weber 
et al., 2018), but this application is not always possible, for instance, 
when species- specific information is not captured by the land cover 
schema because of changing conditions (e.g. vegetation health, 
water levels), habitat structure (e.g. fragmentation, edge effect) 
and complex habitats (e.g. mosaics, artificial habitats such as plan-
tations and urban green space) (Lumbierres et al., 2022; Tomaselli 
et al., 2013). Instead, directly analysing RS data, rather than rely-
ing on derived classifications, can better account for such complex 
habitat information (Pettorelli et al., 2024; Skidmore et al., 2021) for 
predicting species presence (Teng et al., 2023) and protection desig-
nation (Greenhill et al., 2024).

2.2  |  Citizen science (CS)

Here, we refer to CS biodiversity data as species records obtained 
by volunteers, readily available on CS data platforms, varying from 
unstructured (opportunistic) records (e.g. by photo identifications 
from mobile applications) to standardised surveys (Johnston 
et al., 2022; Pocock et al., 2017, 2018). The rapid increase in CS 
data and its increasing spatial coverage, from local to international 
scales, makes it an essential source of information for biodiversity 
monitoring (Callaghan et al., 2021;	 Mandeville	 et	 al.,	 2023): the 
iNaturalist project alone has nearly a quarter of a billion species 
records (as of December 2024). CS data is often available in 
standardised formats on biodiversity data platforms such as GBIF 
(Global Biodiversity Information Facility, www. gbif. org), which 
facilitates the large- scale data analysis of species records. CS data 
now accounts for the vast majority of all biodiversity data available 
on GBIF, and is the only biodiversity data source available (on GBIF) 
for	25%	of	PAs	globally	(Mandeville	et	al.,	2023).

2.3  |  Machine learning (ML)

ML	models	 differ	 from	 conventional	 statistical	 analyses	 by	 their	
ability to learn to infer the most relevant data features to solve 
a task, rather than being confined to a set of pre- defined fea-
tures.	This	 creates	 flexibility,	 and	makes	ML	especially	useful	 for	
analysing large data sets, where the predictive data features are 
either unknown or difficult to extract (but also creates some chal-
lenges, e.g. around interpretability and handling data bias; Pichler 
& Hartig, 2023).	 One	 of	 the	 hallmark	 techniques	 of	 ML	 is	 deep	
learning, where multi- layered models learn to extract abstract data 
representations to solve complex tasks (see Borowiec et al., 2022 
for a review). For example, to detect individual trees in a RS image, 
a model has to learn to recognise tree crowns despite their vari-
ety in appearance; once it has done this, it can be applied at scale 
(Weinstein et al., 2020). To achieve this, models require ‘annotated’ 
example data (i.e. data accompanied by labels that describe the ob-
jects of interest), and as a rule of thumb, more annotated data is 
required as the complexity of either the data or task grows. For ex-
ample,	as	we	seek	models	to	assess	PA	condition,	ML	models	could	
be trained on RS data annotated with CS species data.

3  |  OPEN CHALLENGES FOR 
INTEGR ATING RS AND C S USING ML

We identify four data analysis challenges in combining RS and 
CS	data	 that	ML	can	help	 address	 (Figure 2). In the following, we 
review	each	of	these,	including	the	ML	techniques	that	provide	ways	
forward.

3.1  |  Compressing large RS data

RS data is collected at an enormous, petabyte scale, far outweighing 
the data volumes used to train modern- day large language models 
(Rolf et al., 2024): it has wide spatial coverage at high resolution, 
stacking of different data (of different sensors, spectral bands and 
auxiliary geospatial data layers) and repeated measurements over 
time. The richness of RS data presents both an opportunity and a 
challenge, especially for rarer species which can, by definition, be 
good indicators of habitat quality. In principle, increasingly complex 
RS data can distinguish between a greater variety of habitats and 
habitat conditions, which benefits the monitoring of habitat- specific 
rarer species (Crisfield et al., 2024). Simultaneously, CS observations 
of rarer species may be scarce, which presents a challenge for train-
ing	ML	models	where,	 traditionally,	 large	 annotated	 data	 sets	 are	
required. This distinguishes RS data analysis from other computer 
vision applications, such as categorising photographs, where the di-
mensionality of input images is typically lower (e.g. non- repeated, 
3- band images) and labels are easier to acquire (images can be an-
notated directly, whereas remote sensing annotations often require 
ground surveys; Rolf et al., 2024).
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To	address	this	challenge,	ML	research	has	focused	on	the	devel-
opment of pre- trained ‘geospatial foundation models’ that transform 
high- volume, raw RS data into abstract representations (called ‘embed-
dings’) that capture multi- resolution features of the input data more 
efficiently (Cong et al., 2022; Klemmer et al., 2023; Rolf et al., 2021; 
Rußwurm et al., 2024; Tseng et al., 2023), and can integrate RS data 
with different spatial resolutions via scale- aware positional encoding 
(Reed et al., 2023). Embeddings can greatly reduce the amount of 
annotated training data required, because their more efficient rep-
resentation makes it easier for models to identify the relevant data 
features (Tuia et al., 2023). To learn effective embeddings, geospatial 
foundation models use a learning paradigm called self- supervised 
learning, whereby models are trained using inherent properties of the 
data, alleviating the need for annotation, which would be resource- 
intensive.	 For	 example,	 with	 self-	supervised	 learning,	 a	 ML	 model	
can be tasked to identify the same location across different seasons 
(Manas	et	al.,	2021) or to reconstruct artificially partly- obscured satel-
lite images (Cong et al., 2022; Tseng et al., 2023). Although these tasks 
are not directly relevant to the desired application (such as predicting 

biodiversity), the data features that the model learns to recognise—
captured in the embeddings—are. A task- specific model is then trained 
on these embeddings using annotated data samples, greatly reduc-
ing the volume of annotated data needed to solve the task at hand 
(Pettorelli et al., 2024).

In conclusion, geospatial foundation models ‘compress’ RS data 
which particularly improves prediction accuracy when few anno-
tated data are available (so- called ‘few- shot learning’) (Rußwurm 
et al., 2024). This not only reduces the resources needed for data 
annotation, but also creates new possibilities for when the annota-
tions via CS data are scarce but modelled information is particularly 
valuable, such as in low- data, high- biodiversity regions in the global 
South, or distribution modelling for rare species.

3.2  |  De- biasing CS data

CS data provide a crucial data source for monitoring biodiversity at 
scale (Burns et al., 2023;	Middlebrook	et	al.,	2023), providing both 

F I G U R E  2 Four	challenges	need	to	be	overcome	to	deliver	high-	resolution	biodiversity	information,	which	can	be	addressed	by	advances	
in	Machine	Learning	(ML).

(1) Compressing RS data (2) De-biasing CS data

Challenge: High-dimensional RS data  
requires too many annotated data points.
ML solution: foundation models 
transform RS data into 'feature 
embeddings' for down-stream analysis.

Challenge: opportunistic, presence-only CS 
data contain (e.g., spatial) biases.
ML solution: data augmentation and 
generation to balance data sets, and 
efficiently learn from structured survey data.

(3) Integrating RS and CS data (4) Fine-tuning to local PA needs

Challenge: ML models require large 
amounts of data for training, but 
conservation applications are local.
ML solution: Model fine-tuning using 
local expert knowledge and validation.

Challenge: (processed) RS and CS data 
are different modalities (geospatial raster 
and point data, respectively).
ML solution: multimodal ML integrates 
different data modalities into one model.
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a high number of data points and broad spatial coverage. Presence- 
absence data (strictly, presence/non- detection data) is particularly 
informative for analyses and can be obtained from more struc-
tured CS reporting, logging the presence (or number) of all species 
(within a taxonomic group of interest). However, there is vastly 
more ‘opportunistic’ CS data, available as single species observa-
tions (i.e. presence- only data) reported from as and when the ob-
server chooses. The analysis of presence- only CS data will be crucial 
for large- scale, high- resolution biodiversity monitoring of PAs and 
OECMs,	and	so	addressing	the	biases	of	these	data	remains	a	core	
challenge (Johnston et al., 2022).

All CS data is uneven in coverage in space, time and taxon, but 
presence- only CS data can be especially biased, by location (locally, 
e.g. proximity to paths or nature reserves, and nationally, e.g. varia-
tion between countries), time (e.g. changes in the observer pool and 
expertise over time) and species (depending on, e.g. detectability, 
rarity and appearance) (Johnston et al., 2022). These data biases 
pose	a	 challenge	 for	 training	ML	models,	 because,	 if	 unaccounted	
for,	they	can	be	reflected	in	model	predictions;	e.g.	an	ML	model	may	
learn that species ‘presence’ is related to presence of paths, even 
though	this	is	a	detection	bias	(Mehrabi	et	al.,	2021). When training 
ML	models,	it	is	important	to	account	for	these	biases.

The first approach is to de- bias the CS data, by either subsam-
pling overrepresented data or generating and augmenting under-
represented data. Subsampling is not ideal because available data 
is discarded; this is especially problematic for rare species (Steen 
et al., 2021).	 In	ML,	 ‘data	 augmentation’	 (generating	 variations	 of	
existing data points) and ‘synthetic data generation’ (generating 
new data points) are common techniques to deal with biased or 
low-	volume	data	sets	 (Mumuni	&	Mumuni,	2022). The latter tech-
nique is already commonly applied in ecology, through the genera-
tion of pseudo- absences to supplement presence- only data (Beery 
et al., 2021),	 and	 ML	 can	 do	 this	 efficiently	 (Cole	 et	 al.,	 2021). 
Alternatively,	data	 can	effectively	be	de-	biased	by	adjusting	a	ML	
model objective (‘loss function’) to counteract biases in the data (for 
example, by weighting species with few observations more heavily; 
Zbinden et al., 2024). Although these techniques can improve pre-
dictions based on biased data, the resulting uncertainty can be high, 
so it is critical to incorporate uncertainty quantification methods to 
provide meaningful predictions (see Gawlikowski et al., 2023 for a 
comprehensive review; Lehmann et al., 2024	 for	a	ML	uncertainty	
quantification toolbox). Examples based on CS data include ‘double 
machine learning’ to estimate the uncertainty of spatial abundance 
trends of bird species (Fink et al., 2023), and conformal prediction 
for insect species image classification, where the model predicts a 
larger set of possible species when uncertainty is high (Chiranjeevi 
et al., 2025).

The second approach is to develop models that integrate 
structured and opportunistic CS data (Isaac et al., 2020; Johnston 
et al., 2022). Ideally, this draws on the best of both worlds: models 
learn to make unbiased predictions from the structured data, but 
can increase their spatial resolution by leveraging opportunistic data 
points. Developments in this area are encouraged by GeoLifeCLEF, 

an	 annual	 competition	 to	 train	 ML	 models	 on	 a	 benchmark	 data	
set that mixes presence- absence with presence- only data (Botella 
et al., 2023). The 2023 winning team, Ung et al. (2023), demon-
strated that the best strategy is to use both presence- absence and 
presence- only data, introduced at different stages during training.

3.3  |  Integrating RS and CS data to assess PA 
condition

There are two main ways to integrate RS and CS data, which can be 
enhanced	 by	ML.	 First,	 by	 predicting	CS	 species	 records	 from	RS	
data,	commonly	referred	to	as	species	distribution	models	(SDMs),	
and	then	using	the	multi-	species	output	from	the	SDMs	as	indicators	
of habitat condition, as informed by local expert knowledge. Second, 
RS and CS data can simultaneously serve as input data to directly 
indicate some metric of biodiversity value or PA/habitat condition, 
although this requires sufficient independent data on condition.

SDMs	are	a	well-	established	ecological	tool	that	offer	several	ad-
vantages for predicting habitat condition: first, species data can be 
used	as	data	annotations	for	ML,	and	these	are	more	readily	available	
via CS than more comprehensive metrics of biodiversity (e.g. species 
richness) or independent measures of habitat condition. Second, 
predictions of species presence are straightforward to interpret, 
and relatively easy to verify in the field. For example, to measure 
the	condition	of	woodlands,	SDMs	could	first	predict	the	presence	
of indicator species from RS data, and these (verifiable) predictions 
are then used as indicators for woodland habitat condition (Vallecillo 
et al., 2016). This verifiability also improves model interpretability, 
which	is	an	important	trait	for	ML	models	to	be	trusted	and	applied	
in practice (Beery et al., 2021).	Deep	 learning	 in	ML	has	 improved	
SDMs	by	their	ability	to	predict	the	joint	occurrence	of	multiple	spe-
cies, making use of shared predictive features in the data, which im-
proves overall accuracy (Cole et al., 2023; Teng et al., 2023). Further, 
ML	 computer	 vision	 methods	 analyse	 RS	 images	 in	 ‘full’,	 which	
enables	SDMs	to	use	richer	feature	data,	 including	from	the	wider	
surroundings which helps to account for potential spatial inaccura-
cies of species records (Teng et al., 2023).	Other	ML	techniques	can	
further improve predictive performance based on presence- only 
data, such as gradually bootstrapping species imbalance or resam-
pling records from nearby locations (Kellenberger et al., 2022), or 
directly compensating for the incompleteness of presence- only data 
(Cole et al., 2023).	The	downside	of	SDMs	is	that	they	confine	the	
researcher to using species biodiversity as indicators, even when ex-
pert assessments of habitat condition are available.

Alternatively, RS and CS data can both be used as input data 
to predict a direct measure of habitat condition or biodiversity 
(Andermann et al., 2022). This requires (resource- intensive) habitat 
condition assessments to train and validate models, but can draw 
on the combined information of RS and CS records to make predic-
tions. Integrating RS and CS data is not straightforward, as RS data 
is usually ubiquitously available as raster data (where each pixel cor-
responds to an area of the same size), while CS data is usually stored 
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as	irregularly	distributed	point	data.	Multimodal	ML	techniques	for	
integrating raster and point data are required, such as estimating 
densities or rasterised distributions from point data (Andersson 
et al., 2023; Fink et al., 2023).

3.4  |  Fine- tuning to local priorities using expert 
validation

In	 the	 ‘pre-	train/fine-	tune’	 framework,	 ML	 models	 are	 first	 pre-	
trained on large data sets (at the national/global scale), and subse-
quently, only a fraction of model parameters are updated during 
a fine- tuning stage were the model is trained on local data (Chu 
et al., 2016; Han et al., 2024). Generally, this strategy works well 
when some data features (e.g. tree crowns) reoccur across different 
domains (e.g. different ecosystems) with varying appearance or im-
portance.	This	enables	end-	users	to	fine-	tune	pre-	trained	ML	models	
to their local PA priority habitats and species, while benefiting from 
ML	capabilities	derived	from	the	large	amount	of	data	available	more	
widely (Anderson, 2018; Dalton et al., 2023; Pettorelli et al., 2024). 
This strategy is more efficient than training models from scratch for 
each application separately in remote sensing (Rußwurm et al., 2024). 
Crucially,	 this	 allows	 advanced	ML	 models	 to	 be	 deployed	 in	 PAs	
where little or no CS data is available, by first pre- training them on 
areas where CS data is abundant and then fine- tuning them with a 
much smaller number of data points (Teng et al., 2023).

Expert knowledge and validation are crucial to fine- tune mod-
els to local needs (Anderson, 2018; Pettorelli et al., 2024). Expert 
knowledge is needed to identify the target biodiversity indicators, 
annotate a small amount of new data for fine- tuning, conduct field 
surveys to validate model predictions in new areas, and to interpret 
model predictions in conjunction with other local constraints and 
goals (Dalton et al., 2023). Some fine- tuning could be applied by ex-
perts within accessible user interfaces (e.g. GIS- based) without the 
need	for	ML	knowledge;	this	has	successfully	been	applied	in	other	
scientific	disciplines	(Mathis	et	al.,	2018).

4  |  CONCLUSION

The evaluation and monitoring of policies aimed at reversing 
nature's decline requires detailed and locally relevant biodiversity 
data delivered rapidly and at scale. Already, where available, 
these data have transformed applications for identifying areas 
suitable for protection or rewilding (Greenhill et al., 2024; Zoderer 
et al., 2024), the large- scale evaluation of agri- environmental 
subsidies and ecological restoration (Lake et al., 2022;	 Ma	
et al., 2022), and the detection of invasive species (Kaasiku 
et al., 2021).

In sum, environmental data is available at unprecedented scales 
in near real- time from satellites via RS, while the abundance of CS 
recording from hundreds of thousands of volunteers globally could 
be a source of knowledge to interpret the RS data, i.e. to be used 

as	annotations	 for	 training	ML	models	on	RS	data.	We	argue	 that	
the ambitious data requirements for nature conservation and res-
toration	can	be	supported	by	 leveraging	the	potential	of	ML	mod-
els to transform monitoring of PAs and our wider environment, by 
providing CS- derived biodiversity insights at the resolution of RS 
data.	Geospatial	foundation	models	for	RS,	via	ML,	open	up	new	op-
portunities to analyse, in a data- efficient way, the richness of large- 
scale RS data despite limited annotated data, while de- biasing and 
data integration can be used to robustly combine RS and CS data. 
Finally, expert interpretation, validation and fine- tuning can take 
these large, data- hungry models and efficiently adapt them to local 
monitoring priorities where CS data are sparser. We have a wealth of 
environmental	data;	ML	is	a	tool	to	help	us	gain	insights.
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