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Abstract
1.	 Protected Areas (PAs) are central to addressing the world's biodiversity crisis, 

but their effectiveness for conservation varies. Therefore, high-resolution habi-
tat condition monitoring is needed to evaluate their individual impacts. Critically, 
monitoring must efficiently scale to cover large areas and be conducted at regular 
intervals.

2.	 Remote sensing (RS) data and citizen-science (CS) species data are two sources of 
global data available for habitat condition monitoring, and integrating these could 
provide high-resolution, scalable biodiversity data required for the detailed moni-
toring of PAs. However, integrating these presents four data analysis challenges: 
RS data are large and complex, large-scale CS data are biased, integrating RS and 
CS data is non-trivial, and fine-tuning to local priorities is required.

3.	 Machine Learning (ML) methods can address these challenges: geospatial foun-
dation models for RS data can compress large data volumes, ML de-biasing tech-
niques can improve CS data quality, deep learning and multimodal ML can help 
to integrate RS and CS data, and transfer learning can fine-tune models to local 
priorities. Here, we review these techniques and discuss how they can be applied 
to habitat condition monitoring.

4.	 Practical implication. Together, these advances in ML can deliver high-resolution 
biodiversity data that can be tailored to local priorities, enabling the effi-
cient monitoring of PAs at scale, with the potential to support spatial land use 
decision-making.
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1  |  INTRODUC TION

Countries worldwide have made commitments to reverse the on-
going decline in species diversity and abundance (CBD, 2022; Díaz 
et al., 2019). One important pathway for restoring biodiversity is 
through Protected Areas (PAs) (Langhammer et al., 2024), and the 
Convention on Biological Diversity (CBD) has set a target of pro-
tecting 30% of land and sea by 2030 (30 × 30) (CBD, 2022). Yet, 
the effectiveness of PAs depends on their “adequate implementa-
tion, enforcement, monitoring, and long-term protection” (Bailey 
et al., 2022). Taking the UK as one example, over 50% of PAs are 
assessed as ‘unfavourable condition’ (Starnes et al., 2021), and PA 
biodiversity is generally in decline (Brighton et  al.,  2024; Cooke 
et al., 2023). To address this, PA condition and the effectiveness of 
PA management must be assessed with monitoring at sufficiently 
high spatial, temporal and taxonomic resolution, yet, the major-
ity of UK PAs are not regularly monitored (Bailey et  al.,  2022; 
Dudley et  al.,  2016; Robinson et  al.,  2024; Starnes et  al.,  2021). 
Additionally, such high-resolution data, particularly on biodiver-
sity, are needed by local planning authorities to integrate con-
servation into spatial planning decisions, and to monitor ‘other 
effective area-based conservation measures’ (OECMs) (Baker 
et  al.,  2021; Dalton et  al.,  2023; Kremen & Merenlender, 2018; 
Perino et al., 2022).

Data from biodiversity surveys are important in describing PA 
condition, but field-based biodiversity monitoring data is limited. As 
demands for near real-time, high-resolution information grow, it be-
comes infeasible to scale field-based monitoring to the ideal scenario 
where condition monitoring has high spatial resolution (for informa-
tive spatial planning), spans large areas (to incorporate the effects 
of surrounding landscapes), encompasses a wide set of biodiversity 
indicators (to plan for and evaluate secondary effects), is repeated 
regularly over time (to monitor progress) and aligns with local biodi-
versity priorities (to be applicable locally; Galbraith & Stroud, 2023). 
Biodiversity policymakers have highlighted the demand for scalable 
methods to measure habitat condition (or quality), and the need to 
integrate different remote and in  situ data sources (Moersberger 
et al., 2024).

In this perspective, we argue that Machine Learning (ML) meth-
ods can enable the monitoring of PA habitat condition from remote 
sensing (RS) data, calibrated using citizen-science (CS) species re-
cords (Figure 1). Both RS and CS data sources are readily available 
and can be combined to map habitat condition (specifically, species 
data as an indicator of condition) at high resolution and tailored to 
local priorities (Anderson,  2018; Dalton et  al.,  2023; Galbraith & 
Stroud,  2023; Nagendra et  al.,  2013; Perino et  al.,  2022). RS data 
provide comprehensive, high-resolution and regularly sampled data 
on land cover and land use (Skidmore et al., 2021; Timmermans & 
Kissling, 2023), but lack direct measurements of species (diversity) 
that can indicate habitat quality. CS data provide direct assessment 
of habitat condition (as indicated via species data) via irregularly sam-
pled species records (Chandler et al., 2017; Mandeville et al., 2023). 
While RS and CS data are often used for bespoke species distribu-
tion modelling, we argue they can also facilitate high-resolution hab-
itat condition monitoring of PAs if four data analysis challenges are 
overcome.

In the following, we will review these challenges and the poten-
tial of ML methods to address these. Previous studies have demon-
strated that ML models can extrapolate ecologist expert knowledge 
to scale up analyses (Antonelli et al., 2023; Greenhill et al., 2024; Van 
der Plas et al., 2023; Virkkala et al., 2022), which will be crucial for 
monitoring habitat condition in high resolution at a landscape scale. 
While previous work has reviewed such applications as well as fu-
ture trends of ML for ecology and conservation science (Pettorelli 
et al., 2024; Pichler & Hartig, 2023; Tuia et al., 2022, 2023), here we 
focus specifically on how ML could facilitate high-resolution moni-
toring of PAs.

2  |  AVAIL ABLE DATA AND METHODS

Large-scale, high-resolution data are required for efficient condition 
monitoring in PAs. Two relevant data sources with global coverage 
are RS and CS data, which would benefit from a joint analysis: CS 
species records are valuable to specify the relevant ‘features’ in RS 
data, while RS data can interpolate between sparsely distributed CS 

F I G U R E  1 Sketch outlining that remote sensing (RS) and citizen science (CS) provide large-scale biodiversity data for Protected Areas 
(PAs), which can be integrated using Machine Learning (ML) to generate high-resolution, scalable biodiversity indicators such as habitat 
condition. Satellite image from ESA Sentinel-2.
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records (Anderson, 2018; Antonelli et al., 2023). Together, they form 
the basis of a comprehensive and updatable data product at high 
spatial resolution, which can inform spatial biodiversity planning in 
PAs and beyond (Figure 1).

2.1  |  Remote sensing (RS)

RS data is an umbrella term for all data of the Earth's surface obtained 
with remote sensors, for example mounted on satellites, aeroplanes 
and drones, and often also referring to other (remote sensor-derived) 
geospatial products such as maps and meteorological data (Campbell 
et al., 2023). RS data, especially those from satellites, are well suited 
for large-scale condition monitoring, with extensive coverage 
and repeated measurements obtained evenly across their area of 
interest (Pettorelli et al., 2024; Skidmore et al., 2021; Timmermans 
& Kissling, 2023).

Given the high volumes of these data sets and the complexity 
of detailed downstream analysis, RS data is often used by end-users 
in a processed form, such as vegetation indices or land cover maps 
(García-Álvarez et  al.,  2022). Derived RS products are sometimes 
used as a proxy for ecological habitats (Koma et al., 2022; Weber 
et al., 2018), but this application is not always possible, for instance, 
when species-specific information is not captured by the land cover 
schema because of changing conditions (e.g. vegetation health, 
water levels), habitat structure (e.g. fragmentation, edge effect) 
and complex habitats (e.g. mosaics, artificial habitats such as plan-
tations and urban green space) (Lumbierres et al., 2022; Tomaselli 
et  al.,  2013). Instead, directly analysing RS data, rather than rely-
ing on derived classifications, can better account for such complex 
habitat information (Pettorelli et al., 2024; Skidmore et al., 2021) for 
predicting species presence (Teng et al., 2023) and protection desig-
nation (Greenhill et al., 2024).

2.2  |  Citizen science (CS)

Here, we refer to CS biodiversity data as species records obtained 
by volunteers, readily available on CS data platforms, varying from 
unstructured (opportunistic) records (e.g. by photo identifications 
from mobile applications) to standardised surveys (Johnston 
et  al.,  2022; Pocock et  al.,  2017, 2018). The rapid increase in CS 
data and its increasing spatial coverage, from local to international 
scales, makes it an essential source of information for biodiversity 
monitoring (Callaghan et  al.,  2021; Mandeville et  al.,  2023): the 
iNaturalist project alone has nearly a quarter of a billion species 
records (as of December 2024). CS data is often available in 
standardised formats on biodiversity data platforms such as GBIF 
(Global Biodiversity Information Facility, www.​gbif.​org), which 
facilitates the large-scale data analysis of species records. CS data 
now accounts for the vast majority of all biodiversity data available 
on GBIF, and is the only biodiversity data source available (on GBIF) 
for 25% of PAs globally (Mandeville et al., 2023).

2.3  |  Machine learning (ML)

ML models differ from conventional statistical analyses by their 
ability to learn to infer the most relevant data features to solve 
a task, rather than being confined to a set of pre-defined fea-
tures. This creates flexibility, and makes ML especially useful for 
analysing large data sets, where the predictive data features are 
either unknown or difficult to extract (but also creates some chal-
lenges, e.g. around interpretability and handling data bias; Pichler 
& Hartig,  2023). One of the hallmark techniques of ML is deep 
learning, where multi-layered models learn to extract abstract data 
representations to solve complex tasks (see Borowiec et al., 2022 
for a review). For example, to detect individual trees in a RS image, 
a model has to learn to recognise tree crowns despite their vari-
ety in appearance; once it has done this, it can be applied at scale 
(Weinstein et al., 2020). To achieve this, models require ‘annotated’ 
example data (i.e. data accompanied by labels that describe the ob-
jects of interest), and as a rule of thumb, more annotated data is 
required as the complexity of either the data or task grows. For ex-
ample, as we seek models to assess PA condition, ML models could 
be trained on RS data annotated with CS species data.

3  |  OPEN CHALLENGES FOR 
INTEGR ATING RS AND C S USING ML

We identify four data analysis challenges in combining RS and 
CS data that ML can help address (Figure  2). In the following, we 
review each of these, including the ML techniques that provide ways 
forward.

3.1  |  Compressing large RS data

RS data is collected at an enormous, petabyte scale, far outweighing 
the data volumes used to train modern-day large language models 
(Rolf et  al.,  2024): it has wide spatial coverage at high resolution, 
stacking of different data (of different sensors, spectral bands and 
auxiliary geospatial data layers) and repeated measurements over 
time. The richness of RS data presents both an opportunity and a 
challenge, especially for rarer species which can, by definition, be 
good indicators of habitat quality. In principle, increasingly complex 
RS data can distinguish between a greater variety of habitats and 
habitat conditions, which benefits the monitoring of habitat-specific 
rarer species (Crisfield et al., 2024). Simultaneously, CS observations 
of rarer species may be scarce, which presents a challenge for train-
ing ML models where, traditionally, large annotated data sets are 
required. This distinguishes RS data analysis from other computer 
vision applications, such as categorising photographs, where the di-
mensionality of input images is typically lower (e.g. non-repeated, 
3-band images) and labels are easier to acquire (images can be an-
notated directly, whereas remote sensing annotations often require 
ground surveys; Rolf et al., 2024).
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To address this challenge, ML research has focused on the devel-
opment of pre-trained ‘geospatial foundation models’ that transform 
high-volume, raw RS data into abstract representations (called ‘embed-
dings’) that capture multi-resolution features of the input data more 
efficiently (Cong et al., 2022; Klemmer et al., 2023; Rolf et al., 2021; 
Rußwurm et al., 2024; Tseng et al., 2023), and can integrate RS data 
with different spatial resolutions via scale-aware positional encoding 
(Reed et  al.,  2023). Embeddings can greatly reduce the amount of 
annotated training data required, because their more efficient rep-
resentation makes it easier for models to identify the relevant data 
features (Tuia et al., 2023). To learn effective embeddings, geospatial 
foundation models use a learning paradigm called self-supervised 
learning, whereby models are trained using inherent properties of the 
data, alleviating the need for annotation, which would be resource-
intensive. For example, with self-supervised learning, a ML model 
can be tasked to identify the same location across different seasons 
(Manas et al., 2021) or to reconstruct artificially partly-obscured satel-
lite images (Cong et al., 2022; Tseng et al., 2023). Although these tasks 
are not directly relevant to the desired application (such as predicting 

biodiversity), the data features that the model learns to recognise—
captured in the embeddings—are. A task-specific model is then trained 
on these embeddings using annotated data samples, greatly reduc-
ing the volume of annotated data needed to solve the task at hand 
(Pettorelli et al., 2024).

In conclusion, geospatial foundation models ‘compress’ RS data 
which particularly improves prediction accuracy when few anno-
tated data are available (so-called ‘few-shot learning’) (Rußwurm 
et al., 2024). This not only reduces the resources needed for data 
annotation, but also creates new possibilities for when the annota-
tions via CS data are scarce but modelled information is particularly 
valuable, such as in low-data, high-biodiversity regions in the global 
South, or distribution modelling for rare species.

3.2  |  De-biasing CS data

CS data provide a crucial data source for monitoring biodiversity at 
scale (Burns et al., 2023; Middlebrook et al., 2023), providing both 

F I G U R E  2 Four challenges need to be overcome to deliver high-resolution biodiversity information, which can be addressed by advances 
in Machine Learning (ML).

(1) Compressing RS data (2) De-biasing CS data

Challenge: High-dimensional RS data  
requires too many annotated data points.
ML solution: foundation models 
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a high number of data points and broad spatial coverage. Presence-
absence data (strictly, presence/non-detection data) is particularly 
informative for analyses and can be obtained from more struc-
tured CS reporting, logging the presence (or number) of all species 
(within a taxonomic group of interest). However, there is vastly 
more ‘opportunistic’ CS data, available as single species observa-
tions (i.e. presence-only data) reported from as and when the ob-
server chooses. The analysis of presence-only CS data will be crucial 
for large-scale, high-resolution biodiversity monitoring of PAs and 
OECMs, and so addressing the biases of these data remains a core 
challenge (Johnston et al., 2022).

All CS data is uneven in coverage in space, time and taxon, but 
presence-only CS data can be especially biased, by location (locally, 
e.g. proximity to paths or nature reserves, and nationally, e.g. varia-
tion between countries), time (e.g. changes in the observer pool and 
expertise over time) and species (depending on, e.g. detectability, 
rarity and appearance) (Johnston et  al.,  2022). These data biases 
pose a challenge for training ML models, because, if unaccounted 
for, they can be reflected in model predictions; e.g. an ML model may 
learn that species ‘presence’ is related to presence of paths, even 
though this is a detection bias (Mehrabi et al., 2021). When training 
ML models, it is important to account for these biases.

The first approach is to de-bias the CS data, by either subsam-
pling overrepresented data or generating and augmenting under-
represented data. Subsampling is not ideal because available data 
is discarded; this is especially problematic for rare species (Steen 
et  al.,  2021). In ML, ‘data augmentation’ (generating variations of 
existing data points) and ‘synthetic data generation’ (generating 
new data points) are common techniques to deal with biased or 
low-volume data sets (Mumuni & Mumuni, 2022). The latter tech-
nique is already commonly applied in ecology, through the genera-
tion of pseudo-absences to supplement presence-only data (Beery 
et  al.,  2021), and ML can do this efficiently (Cole et  al.,  2021). 
Alternatively, data can effectively be de-biased by adjusting a ML 
model objective (‘loss function’) to counteract biases in the data (for 
example, by weighting species with few observations more heavily; 
Zbinden et al., 2024). Although these techniques can improve pre-
dictions based on biased data, the resulting uncertainty can be high, 
so it is critical to incorporate uncertainty quantification methods to 
provide meaningful predictions (see Gawlikowski et al., 2023 for a 
comprehensive review; Lehmann et al., 2024 for a ML uncertainty 
quantification toolbox). Examples based on CS data include ‘double 
machine learning’ to estimate the uncertainty of spatial abundance 
trends of bird species (Fink et al., 2023), and conformal prediction 
for insect species image classification, where the model predicts a 
larger set of possible species when uncertainty is high (Chiranjeevi 
et al., 2025).

The second approach is to develop models that integrate 
structured and opportunistic CS data (Isaac et al., 2020; Johnston 
et al., 2022). Ideally, this draws on the best of both worlds: models 
learn to make unbiased predictions from the structured data, but 
can increase their spatial resolution by leveraging opportunistic data 
points. Developments in this area are encouraged by GeoLifeCLEF, 

an annual competition to train ML models on a benchmark data 
set that mixes presence-absence with presence-only data (Botella 
et  al.,  2023). The 2023 winning team, Ung et  al.  (2023), demon-
strated that the best strategy is to use both presence-absence and 
presence-only data, introduced at different stages during training.

3.3  |  Integrating RS and CS data to assess PA 
condition

There are two main ways to integrate RS and CS data, which can be 
enhanced by ML. First, by predicting CS species records from RS 
data, commonly referred to as species distribution models (SDMs), 
and then using the multi-species output from the SDMs as indicators 
of habitat condition, as informed by local expert knowledge. Second, 
RS and CS data can simultaneously serve as input data to directly 
indicate some metric of biodiversity value or PA/habitat condition, 
although this requires sufficient independent data on condition.

SDMs are a well-established ecological tool that offer several ad-
vantages for predicting habitat condition: first, species data can be 
used as data annotations for ML, and these are more readily available 
via CS than more comprehensive metrics of biodiversity (e.g. species 
richness) or independent measures of habitat condition. Second, 
predictions of species presence are straightforward to interpret, 
and relatively easy to verify in the field. For example, to measure 
the condition of woodlands, SDMs could first predict the presence 
of indicator species from RS data, and these (verifiable) predictions 
are then used as indicators for woodland habitat condition (Vallecillo 
et al., 2016). This verifiability also improves model interpretability, 
which is an important trait for ML models to be trusted and applied 
in practice (Beery et al., 2021). Deep learning in ML has improved 
SDMs by their ability to predict the joint occurrence of multiple spe-
cies, making use of shared predictive features in the data, which im-
proves overall accuracy (Cole et al., 2023; Teng et al., 2023). Further, 
ML computer vision methods analyse RS images in ‘full’, which 
enables SDMs to use richer feature data, including from the wider 
surroundings which helps to account for potential spatial inaccura-
cies of species records (Teng et al., 2023). Other ML techniques can 
further improve predictive performance based on presence-only 
data, such as gradually bootstrapping species imbalance or resam-
pling records from nearby locations (Kellenberger et  al.,  2022), or 
directly compensating for the incompleteness of presence-only data 
(Cole et al., 2023). The downside of SDMs is that they confine the 
researcher to using species biodiversity as indicators, even when ex-
pert assessments of habitat condition are available.

Alternatively, RS and CS data can both be used as input data 
to predict a direct measure of habitat condition or biodiversity 
(Andermann et al., 2022). This requires (resource-intensive) habitat 
condition assessments to train and validate models, but can draw 
on the combined information of RS and CS records to make predic-
tions. Integrating RS and CS data is not straightforward, as RS data 
is usually ubiquitously available as raster data (where each pixel cor-
responds to an area of the same size), while CS data is usually stored 
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as irregularly distributed point data. Multimodal ML techniques for 
integrating raster and point data are required, such as estimating 
densities or rasterised distributions from point data (Andersson 
et al., 2023; Fink et al., 2023).

3.4  |  Fine-tuning to local priorities using expert 
validation

In the ‘pre-train/fine-tune’ framework, ML models are first pre-
trained on large data sets (at the national/global scale), and subse-
quently, only a fraction of model parameters are updated during 
a fine-tuning stage were the model is trained on local data (Chu 
et  al.,  2016; Han et  al.,  2024). Generally, this strategy works well 
when some data features (e.g. tree crowns) reoccur across different 
domains (e.g. different ecosystems) with varying appearance or im-
portance. This enables end-users to fine-tune pre-trained ML models 
to their local PA priority habitats and species, while benefiting from 
ML capabilities derived from the large amount of data available more 
widely (Anderson, 2018; Dalton et al., 2023; Pettorelli et al., 2024). 
This strategy is more efficient than training models from scratch for 
each application separately in remote sensing (Rußwurm et al., 2024). 
Crucially, this allows advanced ML models to be deployed in PAs 
where little or no CS data is available, by first pre-training them on 
areas where CS data is abundant and then fine-tuning them with a 
much smaller number of data points (Teng et al., 2023).

Expert knowledge and validation are crucial to fine-tune mod-
els to local needs (Anderson, 2018; Pettorelli et  al., 2024). Expert 
knowledge is needed to identify the target biodiversity indicators, 
annotate a small amount of new data for fine-tuning, conduct field 
surveys to validate model predictions in new areas, and to interpret 
model predictions in conjunction with other local constraints and 
goals (Dalton et al., 2023). Some fine-tuning could be applied by ex-
perts within accessible user interfaces (e.g. GIS-based) without the 
need for ML knowledge; this has successfully been applied in other 
scientific disciplines (Mathis et al., 2018).

4  |  CONCLUSION

The evaluation and monitoring of policies aimed at reversing 
nature's decline requires detailed and locally relevant biodiversity 
data delivered rapidly and at scale. Already, where available, 
these data have transformed applications for identifying areas 
suitable for protection or rewilding (Greenhill et al., 2024; Zoderer 
et  al.,  2024), the large-scale evaluation of agri-environmental 
subsidies and ecological restoration (Lake et  al.,  2022; Ma 
et  al.,  2022), and the detection of invasive species (Kaasiku 
et al., 2021).

In sum, environmental data is available at unprecedented scales 
in near real-time from satellites via RS, while the abundance of CS 
recording from hundreds of thousands of volunteers globally could 
be a source of knowledge to interpret the RS data, i.e. to be used 

as annotations for training ML models on RS data. We argue that 
the ambitious data requirements for nature conservation and res-
toration can be supported by leveraging the potential of ML mod-
els to transform monitoring of PAs and our wider environment, by 
providing CS-derived biodiversity insights at the resolution of RS 
data. Geospatial foundation models for RS, via ML, open up new op-
portunities to analyse, in a data-efficient way, the richness of large-
scale RS data despite limited annotated data, while de-biasing and 
data integration can be used to robustly combine RS and CS data. 
Finally, expert interpretation, validation and fine-tuning can take 
these large, data-hungry models and efficiently adapt them to local 
monitoring priorities where CS data are sparser. We have a wealth of 
environmental data; ML is a tool to help us gain insights.
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