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A B S T R A C T

Mantle-hosted granitoids (MHG) from the supra-subduction Samail ophiolite in Oman and the United Arab 
Emirates exhibit diverse compositions, highlighting variations in petrogenesis and source contributions. Previous 
isotopic data indicate these MHG originated through the interaction of sediment-derived with basaltic melts from 
an underthrust oceanic plate within the mantle wedge. The sedimentary contribution was attributed to the 
partial melting of pelitic to siliceous (bio-siliceous) material atop the subducted plate based on elevated zircon 
δ18O values (~14–28 ‰). To further evaluate this hypothesis on Samail MHG petrogenesis and source contri
bution, we present new and compiled radiogenic (Sr-Nd-Hf-Pb) and stable (O-Li-H) isotopes, along with zircon 
trace element analyses. The variable Sr and Pb isotopic signature support a mixed origin involving altered mafic 
and sedimentary sources in the formation of the MHG. Negative whole-rock εNd, coupled with elevated δ7Li in 
muscovite suggest the involvement of sedimentary sources and particularly those resembling deep-sea ferro
manganese-rich sediments. We propose a new model identifying ferromanganese sediments as a potential source 
given their widespread distribution across the ocean floor, broad range of δ18O (up to 29.5 ‰), slightly positive 
Hf values, seawater-like δ7Li signatures (median of ~27 ‰), and zircon trace element compositions lacking a 
signature of monazite co-precipitation, which match the signatures required for the genesis of the Samail MHG. 
Preservation of oceanic lithosphere in the geological record is limited, and MHG in ophiolites are uncommon. 
Therefore, the Samail MHG are key examples of crustal materials transported to the mantle, with implications for 
mantle heterogeneity and arc mantle redox budget.

1. Introduction

Investigating granitoids formed in subduction zone environments is 
vital for unravelling the origins of continental crust and the composi
tional evolution of the mantle. Emerging subduction systems are often 
well-preserved within supra-subduction zone (SSZ) ophiolites, where 
the rapid onset of subduction and extension of the upper plate generate 
oceanic crustal rocks with distinctive compositional characteristics 
specific to this setting (Hawkins, 2003; Metcalf and Shervais, 2008). 

Various types of granitoid intrusions with evolved chemical signatures 
are common in SSZ ophiolites. For example, diorite to tonalite, 
trondhjemite and granite intrusions in ophiolite systems are well-known 
and have been mapped along the length of ophiolite settings in the 
crustal section (Bailey, 1981; Freund et al., 2014; Haase et al., 2016; 
Koepke et al., 2007; Lippard et al., 1986), as well as scarce felsic sills, 
dykes, and plugs mostly in the uppermost mantle section and rare in
trusions in the lower crust (Adachi and Miyashita, 2003; Al Humadi 
et al., 2021; Amri et al., 2007, 1996; Haase et al., 2015; Rioux et al., 
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2021a; Rollinson, 2014; Rollinson and Adetunji, 2015; Styles et al., 
2006; Whitehead et al., 2000).

The Samail ophiolite in Oman and the United Arab Emirates (UAE) is 
one of the best-exposed and least-deformed subaerial sections of oceanic 
crust, providing an excellent example to study subduction-related 
granitoids. It consists of a ~ 5 km crustal section (Nicolas et al., 1996) 
with pillow basalt, sheeted dikes, and gabbro underlain by a mantle 
section composed of peridotite (harzburgite). During the Late Creta
ceous, this oceanic crust and mantle were obducted onto the Upper 
Paleozoic-Mesozoic passive margin of the Arabian plate. The Samail 
ophiolite is interpreted as a classic SSZ system (Dilek and Furnes, 2009; 
Pearce et al., 1981; Searle and Cox, 1999; Searle and Malpas, 1980; 
Warren et al., 2005), where granitoids intruding the crustal section 
formed at the spreading ridge (Amri et al., 1996; France et al., 2009; 
Koepke et al., 2004; Rollinson, 2009) while granitoids hosted in the 
uppermost mantle section and rare intrusions in the lower crust formed 
by hydrous partial melting of the descending slab with its sediment 
cover (Haase et al., 2015; Rollinson, 2015).

Despite their prevalence, the variable composition of the granitoids 
hosted in the mantle section of the Samail ophiolite has made their 
formation and source(s) difficult to be fully understood. These granit
oids exhibit characteristics aligning with S-type classification parame
ters (Chappell and White, 1974). These Samail granitoids are relatively 
potassic, have peraluminous characteristics [Al2O3/(CaO + Na2O +
K2O) > 1] (Angelo et al., 2023) and occasionally contain aluminous 
phases such as garnet, andalusite, cordierite, and muscovite. They also 
display high δ18O values (Kim et al., 2020; Spencer et al., 2017), and 
crustal Nd and Hf signatures (Haase et al., 2015; Rioux et al., 2021a). 
Furthermore, comparisons of their elemental geochemistry with S-types 
from classic localities (e.g., Lachlan Fold Belt, Himalayan orogen, and 
Variscan orogen) reveal some similarities (Angelo et al., 2023; Bonin 
et al., 2020). The MHG are thought to be formed by melting of meta
sediment and amphibolite from an underthrust sheet of oceanic litho
sphere (Boudier et al., 1988; Briqueu et al., 1991; Haase et al., 2015; 
Rioux et al., 2013; Rollinson, 2015, 2014, 2009; Spencer et al., 2017). 
Three-component model invokes mixing between melts of metasedi
mentary and metabasaltic rocks generated near the top of a subduction 
plate, along with a mantle component (Amri et al., 2007; Boudier et al., 
1988; Briqueu et al., 1991; Haase et al., 2015; Peters and Kamber, 1994; 
Rioux et al., 2021a). In this model, the identity of the metasedimentary 
protolith remains unclear, although previous studies restrict the melt 
source to high δ18O pelagic and/or siliceous mud (Spencer et al., 2017). 
The compositional diversity in terms of elemental geochemistry and 
stable (oxygen) and radiogenic isotope (Nd and Hf) signatures pointed 
out by previous authors (Angelo et al., 2023; Rioux et al., 2021a) justify 
the re-evaluation of the available isotopic and trace element data 
regarding these mantle-hosted granitoids (MHG; as we refer to them 
here in this study) from the Samail ophiolite. Recent studies have sug
gested that stable isotopic compositions may be useful tracers of magma 
sources (e.g., Tomascak, 2004; Kemp et al., 2007; Spencer et al., 2017) 
to be complemented by traditional radiogenic isotopic tracers of 
petrogenesis.

In this paper, we present new and published radiogenic (Sr-Nd-Hf- 
Pb) and stable (O-H-Li) isotopes coupled with new zircon trace element 
data for the compositionally diverse MHG suite from the Samail 
ophiolite. We discuss possible source(s) and petrogenesis of these in
trusions in the context of their unique tectonic setting and emplacement. 
Whereas previous work has postulated the involvement of a sedimentary 
protolith of a deep-sea pelagic and/or siliceous nature (Haase et al., 
2015; Spencer et al., 2017), we argue that our new data suggest ferro
manganese (Fe-Mn) crusts and precipitates (Fe-Mn sediments) – chem
ical precipitates that are widespread in the global ocean – as a potential 
source. Our integrated data provides new perspectives on the source of 
the MHG and valuable petrogenetic insights in the realm of S-type 
granitoids, and our findings show that combining radiogenic and stable 
isotopes with zircon trace element data offers valuable petrogenetic 

insights into the formation of sediment-derived granitoids.

2. Geologic setting

2.1. The Samail ophiolite in Oman and the United Arab Emirates

The Samail ophiolite extends for almost 500 km along the Gulf of 
Oman (Fig. 1) and covers >20,000 km2 (Lippard et al., 1986). It pre
serves a complete section of relatively undeformed Cretaceous oceanic 
lithosphere, from mantle peridotite below the petrologic Moho to crustal 
layered gabbro, isotropic gabbro, sheeted dykes, and basalt pillow lavas, 
with intercalated pelagic sediments, all lying on top of a fault-bound 
metamorphic-sole (Nicolas et al., 2000). The oceanic crust of the 
Samail ophiolite (Glennie et al., 1973) formed at ca. 96 Ma 
(Goodenough et al., 2010; Rioux et al., 2021b, 2012) and was later 
obducted onto a middle Permian to middle Cretaceous shelf carbonate 
sequence on the Arabian passive continental margin at ca. 84 Ma (Dilek 
and Furnes, 2009; Glennie et al., 1973; Goodenough et al., 2014; Searle 
and Cox, 1999, 2002). Goodenough et al. (2010) recognize two distinct 
phases of magmatism in the UAE part of the ophiolite. Phase 1 consists of 
the classic ophiolite section as described above. The younger Phase 2 
magmatism consists of voluminous isotropic gabbro, wehrlite, and 
granitoids. Phase 2 crosscut Phase 1 peridotite and crustal ophiolite 
sequence. The same phases of magmatism have been described in Oman 
(Adachi and Miyashita, 2003; Tsuchiya et al., 2013).

Two distinct suites of granitoids have been recognized in the Samail 
ophiolite, based on their composition and occurrence within the mantle 
and the crustal sequence. Granitoid dykes ranging from 1 to 10 m in 
width, sheets, and small plutons up to 1 km in size have been mapped in 
both the basalt-gabbro-dominated ocean crust as well as within 
peridotite-dominated mantle sections (Amri et al., 1996; Briqueu et al., 
1991; Browning and Smewing, 1981; Cox et al., 1999; Haase et al., 2015; 
Lippard et al., 1986; Rioux et al., 2021a; Rollinson, 2015; Spencer et al., 
2017; Stakes and Taylor, 2003; Styles et al., 2006). These intrusions are 
referred here as the crust-hosted granitoids (CHG) and the mantle- 
hosted granitoids (MHG), respectively, the latter of which is the focus 

Fig. 1. Simplified geologic map of the Oman-United Arab Emirates (UAE) 
ophiolite (after Glennie et al., 1974) with sample locations employed in 
this study.
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of this study.
The CHG have been previously referred to as the ‘crustal plagiog

ranite’ suite (Rollinson, 2009). The predominant petrographic type 
consists of medium- to coarse-grained tonalite- trondhjemite- 
granodiorite. They contain plagioclase and quartz, minor alkali feld
spar, interstitial amphibole and clinopyroxene (highly altered to chlorite 
and/or epidote). Textures are mostly defined by quartz and feldspar and 
range from subhedral granular to granophyric (de Graaff et al., 2019; 
Lippard et al., 1986; Rollinson, 2009). The CHG are metaluminous, with 
SiO2 ranging from 54 to 72 wt%, and low K2O (<1 wt%). Trace elements 
are slightly LREE-depleted compared to mantle-hosted granitoids 
(Rollinson, 2014, 2009). The CHG with zircon δ18O of 4–5 ‰, whole 
rock δ18O of 5–13 ‰ and positive εNd of around +7 (similar to modern 
mid-ocean ridges), likely formed by fractionation of basalt/gabbro or 
anatexis of oceanic crust (Alberts, 2016; Amri et al., 1996; Grimes et al., 
2013; Koepke et al., 2004; Rollinson, 2015, 2009; Spencer et al., 2017; 
Stakes and Taylor, 2003, Stakes and Taylor, 1992). Tonalite and 
trondhjemite samples of the CHG yield zircon U-Pb ages between 95.4 
and 95.7 Ma (Goodenough et al., 2010; Grantham et al., 2003; Rioux 
et al., 2021b, Rioux et al., 2013; Rioux et al., 2012; Styles et al., 2006; 
Tilton et al., 1981).

The MHG intrude the uppermost mantle, where they are recognized 
as sub-Moho granitoids, and rarely extend into the lower crust. These 
granitoids are highly unexpected due to their isotopic composition and 
occurrence within the mantle section. While plagiogranites are common 
in ophiolites and at modern mid-ocean ridges, MHG represent an un
usual suite that requires further investigation. While both granitoid 
suites are significant, the distinction between them is crucial. The 
following section provides a detailed examination of the characteristics 
and petrogenesis of the MHG.

2.1.1. Samail ophiolite mantle-hosted granitoids (MHG)
The representative petrologic type of the MHG is medium to coarse- 

grained, with subhedral to anhedral primary granular textures, and 
ranges from granite to tonalite in composition. Primary minerals include 
plagioclase, quartz, alkali feldspar, hornblende, biotite, muscovite, cli
nopyroxene, and Fe-Ti oxides (Joun et al., 2019; Rollinson, 2015; 
Rollinson et al., 2014). Certain intrusions in the northern UAE are 
identified as leucogranites containing garnet, andalusite, cordierite, and 
tourmaline (Rollinson, 2015). Plagioclase in these rocks often exhibits 
zoning, with sericitized cores being a common feature (Lippard et al., 
1986; Rollinson, 2014; Spencer et al., 2017). The MHG display SiO2 
concentrations between 65 and 78 wt% and range from metaluminous to 
peraluminous compositions (Briqueu et al., 1991; Cox et al., 1999; Pe
ters and Kamber, 1994; Rioux et al., 2021a; Rollinson, 2015, 2014; 
Searle et al., 2015). U-Pb zircon dating with high precision indicates that 
most MHG intrusions occurred between 95.2 and 95.0 Ma during the 
late stages of crustal growth, with one slightly earlier event at 95.5 Ma 
(Rioux et al., 2021b). Some intrusions within the UAE are considerably 
younger, dated between 94.1 and 91.0 Ma (Rioux et al., 2021b; Styles 
et al., 2006).

The petrogenesis of the MHG from the Samail ophiolite remains 
controversial, as well as the uncertain nature of the sedimentary pro
tolith that contributed to its formation. Previous studies in the eighties 
(Browning and Smewing, 1981; Lippard et al., 1986), suggested that 
biotite granite intrusions in the upper mantle in the UAE reflect melting 
of continental material during the obduction of the ophiolite over the 
Arabian passive margin. Later in the nineties (Briqueu et al., 1991; Cox 
et al., 1999), isotopes and whole-rock data showed that the felsic mantle 
dykes in the UAE have an intermediate composition between a mantle 
source and continental values. The formation of these dykes was 
attributed to melting of amphibolite and metasediments in the meta
morphic sole of the ophiolite, during the initial thrusting of the ophiolite 
over the adjacent continental crust. In the Oman section of the ophiolite, 
mixing between a depleted mantle source, a hydrothermal component, 
and potentially a component of terrigenous sediment was suggested 

based on whole-rock and Nd-Sr isotopic compositions (Amri et al., 
2007). A more recent study using Hf isotopes in Oman MHG argues for 
two-component mixing between sediment melts derived from the top of 
a subducting slab and basalts formed by partial melting of the overlying 
mantle wedge (Haase et al., 2015). Three-component mixing between 
partial melts derived from amphibolite- to granulite-facies meta-basalts 
in a subducted slab, partial melts of subducted sediment from the top of 
the slab, and assimilation of orthopyroxene and amphibole from harz
burgites during accent of the slab melts through the mantle wedge was 
suggested in more detailed studies for MHG samples (Rollinson, 2015, 
2014). Quantification by geochemical modeling of the protolith using 
least MHG fractionated samples indicate 10–30 % of mixing of a meta
sedimentary melt into the melt of a mafic source in the measured 
granitoid compositions.

Spencer et al. (2017) show that the oxygen isotopic composition of 
MHG from Oman and the UAE record extremely elevated zircon δ18O 
values ranging from ~14–28 ‰, which have been attributed to melting 
of pelitic or siliceous sediment. The zircon data are further supported by 
whole-rock and quartz δ18O values, which are 7–19 ‰ and 7–22 ‰, 
respectively (Alberts, 2016; Spencer et al., 2017). Terrigenous sediment 
input is suggested by variable εNd values in the MHG, ranging from − 7.8 
to 8.3 with a mean of − 3.2 (Amri et al., 2007; Cox et al., 1999; Haase 
et al., 2015; Rioux et al., 2021a). In summary, the MHG were generated 
from an underthrust sheet of oceanic lithosphere by three distinct mix
ing and fractionation trends: (i) three-component mixing between 
sediment melt, amphibolite melt and a mantle component; (ii) two- 
component mixing between amphibolite and sediment melts, with lit
tle mantle contribution; and (iii) fractional crystallization of depleted, 
mantle-derived magmas (Amri et al., 2007; Boudier et al., 1988; Briqueu 
et al., 1991; Haase et al., 2015; Peters and Kamber, 1994; Rioux et al., 
2021a). Low MgO (<1 wt%) associated with low Ni, high SiO2, and εNd 
ranging from − 6 to +4; (Rioux et al., 2021a) were suggested to represent 
two-component mixing between partial melts of amphibolite- to 
granulite-facies metasedimentary and metabasaltic sources. MHG with 
higher MgO (>1 wt%) and Ni, together withs lower SiO2 and εNd 
ranging from − 6 to − 4 (Rioux et al., 2021a) reflect mixing between 
metabasaltic/metasedimentary melts and a mantle component. Com
bined geochemical and pseudosection modeling (Rioux et al., 2021a) 
suggests the MHG were generated by partial melting of underthrust 
material at P ≤ 1.4 GPa and T ≥ 700–750◦. The extremely high δ18O 
values, synchronous MHG intrusion with ocean crust formation pre- 
dating obduction and uncertainty of the magmatic sources, prompted 
us to reevaluate their protoliths through additional isotopic and 
compositional (zircon trace elements) data.

3. Sampling and analytical methods

We present new whole-rock Sr-Nd-Pb-Hf isotopes, zircon O, Hf iso
topes and trace elements, quartz O isotopes, and muscovite Li and H 
isotopes data for the Samail MHG. Samples can be classified as tonalite, 
trondhjemite, granodiorite and granite (sensu strictu) based on norma
tive An-Ab-Or (Angelo et al., 2023; Rollinson, 2015). The new MHG data 
(total of 65 new samples analyses) expand the number of localities 
analyzed for these isotopes in the ophiolite. Tables and figures referred 
to in the text with an SM- prefix are available in the Supplementary 
Material. Supplementary Material A contain supplementary figures cited 
in the text and complementary analytical methods information. Sup
plementary Materials B and C are Excel files containing new (Tables 
SM1) and compiled (Tables SM2) data necessary to this study, respec
tively. Analyzed petrologic types vary from medium to coarse-grained, 
with subhedral to anhedral primary granular textures marked by 
plagioclase, alkali feldspar, quartz, biotite, muscovite, garnet, lepidolite, 
tourmaline and zircon (Figure SM1 and SM2). Plagioclase in many 
samples exhibits optically dark and inclusion-rich cores with euhedral 
rims. For our methods, besides whole-rock fractions, we used quartz, 
muscovite and zircon. Quartz is most readily distinguished by its lack of 
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color, cleavage and visible twinning. It is typically fresh and unaltered 
and presents a vitreous luster. Muscovite is characterized by thin, platy 
sheets with perfect cleavage. Generally, it has a silvery luster and ranges 
in color from colorless to pale grey; some varieties show pinkish hues, 
mostly in the coarse-grained petrologic types (Figure SM1). Zircon 
crystals exhibit magmatic zoning patterns (Figure SM3).

In addition, we complement our work with zircon trace element 
analyses from ten Himalayan S-type granitoid samples from Bhutan, 
collected and described by Hopkinson (2016) and Hopkinson et al. 
(2017). These samples are described as leucogranites and are interpreted 
to represent pure sediment-derived melts based on O-Hf isotopic sig
natures. They do not record any mantle contribution and provide an 
‘end-member’ of S-type granitoid composition.

3.1. Whole-rock Sr-Nd-Pb-Hf isotopes using MC-ICP-MS

A total of 17 samples of the Samail MHG were analyzed for whole- 
rock Sr-Nd-Pb-Hf isotopes (Table SM1a). All samples went through 
sample digestion (except for Nd isotopes) and column chemistry pro
cedures before analyses performed on a Neptune Plus Multi Collector 
Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS; Thermo 
Fisher Scientific, Dreieich, Germany) at the Wuhan Sample Solution 
Analytical Technology Co., Ltd., Hubei, China.

Analyses of the NIST 987 standard solution yield 87Sr/86Sr ratio of 
0.710242 ± 14 (2SD, n = 345), which is identical within error to their 
published values 0.710248 ± 12 (Zhang and Hu, 2020). In addition, the 
USGS reference materials BCR-2 (basalt) and RGM-2 (rhyolite) yielded 
results of 0.705012 ± 22 (2SD, n = 63) and 0.704173 ± 20 (2SD, n = 20) 
for 87Sr/86Sr, respectively, which is identical within error to their pub
lished values (Li et al., 2012; Zhang and Hu, 2020).

Analyses of the GSB 04–3258-2015 standard yield 143Nd /144Nd ratio 
of 0.512440 ± 6 (2SD, n = 31), which is identical within error to their 
published values (0.512438 ± 6 (2SD) (Li et al., 2017)). In addition, the 
USGS reference materials BCR-2 (basalt) and RGM-2 (rhyolite) yielded 
results of 0.512641 ± 11 (2SD, n = 82) and 0.512804 ± 12 (2SD, n = 80) 
for 143Nd/144Nd, respectively, which is identical within error to pub
lished values (Li et al., 2012).

Because of the difference in the mass bias behaviors between Pb and 
Tl, all measured 20xPb/204Pb ratios of unknown samples were normal
ized to the well-accepted NIST 981 values of 208Pb/204Pb = 36.7262 ±
31, 207Pb/204Pb = 15.5000 ± 13, 206Pb/204Pb = 16.9416 ± 13 (n = 119 
(Baker et al., 2004)). One NIST 981 standard was measured every ten 
samples analyzed. Analyses of NIST 981 standard yielded external pre
cisions of 0.03 % (2RSD) for 20xPb/204Pb ratios. In addition, the USGS 
reference materials BCR-2 (basalt) yielded results of 208Pb/204Pb =
38.736 ± 17, 207Pb/204Pb = 15.628 ± 3, 206Pb/204Pb = 18.756 ± 10 
(2SD, n = 22), respectively, which match their published values within 
error of 0.03 % (Zhang and Hu, 2020).

Analyses of the JMC 475 standard yielded 176Hf /177Hf ratio of 
0.282154 ± 5 (2SD, n = 67), which is identical within error to their 
published values (0.282157 ± 16 (Zhang and Hu, 2020)). In addition, 
the USGS reference materials BCR-2 (basalt) yield results of 0.282864 ±
14 (2SD, n = 19) for 176Hf /177Hf, respectively, which is identical within 
error to their published values (Zhang and Hu, 2020).

Lu-Hf and Sm-Nd TDM ages for whole-rock samples were calculated 
based on two-stage model using a 176Lu/177Hf value of 0.012 (Rudnick 
and Gao, 2003) and 147Sm/144Nd of 0.12 (Liew and Hofmann, 1988) for 
the average continental crust, respectively.

3.2. Hafnium isotopes in zircon using LA-ICPMS

A total of 12 samples of the Samail MHG were analyzed for zircon Hf 
isotopes (Table SM1b) at the John de Laeter Research Centre, Curtin 
University. Individual zircon grains (mounted and polished in 1-in. 
epoxy rounds) were ablated using a Resonetics RESOlution M-50 A- 
LR, incorporating a Compex 102 excimer laser. Isotopic intensities were 

measured using an Agilent 7700 s quadrupole ICP-MS and a Nu In
struments Plasma II MC-ICP-MS. Reference zircon Mudtank was used to 
monitor the accuracy and precision of internally corrected (using 
179Hf/177Hf = 0.7325) Hf isotope ratios. 91500 and Plešovice were used 
as secondary standards. The weighted average ratios of 176Hf/177Hf are 
0.282299 ± 0.000021 (MSWD = 1.1, n = 8; self-normalized) for 91500, 
0.282507 ± 0.000028 (MSWD = 0.22, n = 8) for Mudtank, and 
0.282474 ± 0.000011 (MSWD = 1.3, n = 12) for Plešovice. These results 
agree with accepted values (Fisher et al., 2014). The stable 178Hf/177Hf 
and 180Hf/177Hf ratios for the reference materials yielded values of 
1.46709 ± 0.00006 and 1.88682 ± 0.00010, respectively. Lu-Hf TDM 
zircon ages were calculated based on two-stage model using a 
176Lu/177Hf value of 0.012 (Rudnick and Gao, 2003).

3.3. Oxygen isotopes in zircon using SIMS

The oxygen isotope analyses of zircon concentrate from seven Samail 
MHG (55 individual spot analyses) are reported in Table SM1c. Zircon 
was separated using standard techniques (i.e., disaggregating, heavy 
liquids (NaPT and MI), Franz magnetic separation), mounted in epoxy 
resin and polished to expose a cross section through the center of the 
grains. Zircons were imaged using cathodoluminescence (CL) and sec
ondary electron (SE) imaging at Curtin University (Fig. SM3) using a 
MIRA3 field emission scanning electron microscope. Zircon oxygen 
isotopes were measured via secondary ion mass spectrometry (SIMS). 
We used a CAMECA 1270 ion microprobe at the Edinburgh Ion Micro
probe Facility (EIMF), University of Edinburgh and a CAMECA 1280 
microprobe at the Centre for Microscopy, Characterization and Analysis 
at the University of Western Australia (CMCA).

For zircon SIMS analysis, δ18O was measured using a 15 μm spot 
(EIMF and CMCA) and reference materials were analyzed repetitively to 
bracket sample analyses. At EIMF, zircon references used were Laura, an 
in-house material with δ18O by laser fluorination = 5.3 ‰ and 91500 
with δ18O = 9.9 ‰ (Wiedenbeck et al., 2004). At CMCA, zircon refer
ences used were Laura (δ18O = 5.3 ± 0.1 ‰, in-house at EIMF), Temora 
2 [δ18O = 8.2 ± 0.3 ‰ (2 s)], Penglai [δ18O = 5.2 ± 0.3 ‰ (2 s)], BR266 
[δ18O = 13.1 ± 0.5 (2 s) ‰] and GJ1 [δ18O = 6.2 ± 0.5 ‰ (2 s)]. Our 
results agree with accepted values (Li et al., 2010; Liebmann et al., 2023; 
Stern, 2001; Valley, 2003; Wiedenbeck et al., 2004; Xia et al., 2019).

3.4. Oxygen isotopes in quartz using IRMS

The oxygen isotope analyses of quartz concentrate from five Samail 
MHG (Table SM1d) were conducted in the Queen’s Facility for Isotope 
Research (QFIR) at Queen’s University, Kingston, Ontario, Canada. 
Measurements were done using a Thermo-Finnigan DeltaPlusXP isotope 
ratio mass spectrometer (IRMS) after oxygen extraction using BrF5. 
Quality assurance and control were maintained by ensuring at least 20 % 
of analyses were of reference material NBS-28, and by generating 
duplicate measurements of unknown samples. Reference materials and 
duplicates were arbitrarily loaded among the reaction vessels of the 
extraction line to avoid bias in our precision. We report an accuracy (one 
standard deviation) of 0.1 ‰ based on measurements of NBS-28.

3.5. Zircon trace element measurements and U-Pb dating by LAICPMS

The U-Pb age and trace element data for zircon reference materials 
and zircons from the Himalayan and Samail samples are provided in 
Table SM1e. The table comprises zircon from three harzburgite-hosted 
biotite granite from the Samail ophiolite and ten Himalaya S-type leu
cogranite and pegmatite. Samples from the Himalayan granitoids com
plementing this study were collected and described in Hopkinson (2016)
and Hopkinson et al. (2017). New zircon trace element measurements 
from Himalaya granitoids in Bhutan and Samail MHG were mounted in 
epoxy and imaged by cathodoluminescence (CL) to investigate their 
internal structure. Representative zircon CL and backscattered electron 
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(BSE) images from the Samail MHG are shown in figure SM3. Repre
sentative CL images of the Himalayan granitoids were published by 
Hopkinson (2016). The zircon U-Pb and trace element compositions 
were measured by an Agilent 7500a quadrupole ICPMS (inductively 
coupled plasma mass spectrometry) coupled to a HelEx ArF excimer 
laser ablation system, at the Research School of Earth Sciences, the 
Australian National University.

The primary reference materials for U-Pb isotopic dating and trace 
element measurements were zircon R33, which has a published age of 
419.26 ± 0.39 Ma according to Black et al. (2004), and NIST610 glass 
(Jochum et al., 2011), respectively (Table SM1e). Temora2, with a 
published age of 416.78 ± 0.33 Ma (Black et al., 2004), and 91500, with 
a published age of 1065 ± 0.6 Ma (Wiedenbeck et al., 1995), were 
analyzed as secondary standards. The 91500 reference material was 
used as the calibration standard to obtain 207Pb/206Pb ratios. 
207Pb/206Pb ages were generated using the IsoplotR software online 
(Vermeesch, 2018). For all the reference data collected in this study, R33 
yielded an average 206Pb/238U age of 418.01 ± 12.34 Ma (2SD, n = 55), 
Temora2 yielded an average 206Pb/238U age of 416.17 ± 17.33 Ma (2SD, 
n = 30), and 91500 yielded an average 207Pb/206Pb age of 1066 ± 165 
Ma (2SD, n = 59). The results agree with published results (Black et al., 
2004; Wiedenbeck et al., 1995).

3.6. Lithium isotopes in muscovite using MC-ICPMS

The lithium isotope analyses of muscovite concentrate from five 
Samail MHG (Table SM1f) were conducted at QFIR values using a 
Thermo Finnigan Neptune MC-ICPMS. Li-bearing mica (lepidolite) is 
known to be present in the samples based on previous characterization 
and petrographic analysis (Figure SM2 and SM3). Two reference mate
rials were also analyzed to evaluate the precision and accuracy of 
measurements. An in-house Li standard (SPEC Certiprep Lot #19 11- 
120LI) yielded δ7Li of 81.6 ± 0.3 ‰ (SD, n = 5) and the NASS7 yiel
ded a value of δ7Li of 30.9 ± 0.7 ‰ (SD, n = 3). Both are consistent with 
previously published values (Li et al., 2019; Nadeau et al., 2021).

3.7. Elemental composition in muscovite using EPMA

Muscovite major and minor elements of two MHG samples (HD and 
19UAE08C) were determined using electron-probe micro analyzer 
(EPMA) housed at QFIR. First, muscovite crystals were identified and 
imaged (Figure SM5) using the backscattered electron (BSE) detector of 
a JEOL (Japan Electron Optics Laboratory) JXA-8230 electron micro
probe. A total of 44 EPMA spots (Table SM1g) were analyzed by means 
of wavelength dispersive spectroscopy (WDS) for elemental composi
tions. Accelerating potential of 15 kV, beam current of 15 nA, and beam 
diameter of 7 μm were used for quantitative analyses. Standards used in 
the analysis were: muscovite (Si), anorthite (Al), rutile (Ti), synthetic 
Cr2O3 (Cr), synthetic V2O3 (V), synthetic fayalite (Fe), rhodonite (Mn), 
forsterite (Mg), sanbornite (Ba), albite (Na), adularia (K), synthetic 
RbTiOPO4 (Rb), synthetic fluorophlogopite (F), and tugtupite (Cl). The 
dead-time corrected X-ray data were processed using the PAP atomic 
number and absorption corrections (Pouchou and Pichoir, 1991), 
characteristic (Reed, 1990) and continuum (Springer, 1971; Springer, 
1967) fluorescence corrections, and mass absorption coefficients 
(Heinrich, 1987) were performed prior to analysis. Additionally, 
counting statistics and detection limits were determined in accordance 
with Williams (1987), but with matrix corrections applied.

3.8. Hydrogen isotopes in muscovite using IRMS

Selected muscovite crystals from seven samples were weighed into 
silver capsules, degassed for 1 h at 100◦C, then crushed and loaded into a 
zero-blank autosampler. The hydrogen isotopic composition (Table 
SM1h) was measured using a MAT 253 Stable Isotope Ratio Mass 
Spectrometer (IRMS) coupled to a Thermo Scientific TC/EA High 

Temperature Conversion Elemental Analyzer, housed at QFIR. δ2H 
values are reported using delta (δ) notation in permille (‰), relative to 
Vienna Standard Mean Ocean Water (VSMOW). Standard reference 
materials USGS57 biotite (− 91.5 ‰) and USGS58 muscovite (− 28.4 ‰) 
were used to calibrate and normalize the observed data (Qi et al., 2017). 
Replicate analyses of USGS57 and USGS58 yielded a mean value of − 91 
‰ ± 0.9 (SD, n = 6) and  − 27.8 ‰ ± 0.9 (SD, n = 6), respectively.

4. Results

4.1. Whole-rock Sr-Nd-Pb-Hf isotopes and zircon Hf isotopes

The Samail MHG have variable whole-rock εNd(96Ma) ranging from 
− 7.77 to +7.35 with a median of − 4.21 (Fig. 2A and 3B), in contrast 
with the positive median values calculated for whole-rock and zircon 
εHf(96Ma) (Fig. 2B and 3A), which have medians of +5.13 (ranging from 
10.27 to 2.64) and + 2.3 (ranging from − 1.78 to +8.43), respectively. 
Whole-rock εSr(96Ma) have a median of 38.3 (Fig. 2C), with highly var
iable ratios of 87Sr/86Sr from 0.7056 to 0.7169 (Fig. 4B). 206Pb/204Pb 
versus 208Pb/204Pb reveals a cluster showing average ratios of ~18.79 
and ~ 39, respectively (Fig. 4A). Most of the Samail MHG have whole- 
rock Sm-Nd TDM ages between 220 Ma and 1376 Ma, with a median of 
1040 Ma, and whole-rock Lu-Hf TDM ages from 457 to 890 Ma with a 
median of 734 Ma. Zircon Lu-Hf TDM ages range from 561 to 1140 Ma 
with a median of 906 Ma (Fig. 2D).

4.2. Zircon, quartz and whole-rock oxygen isotopes

New oxygen isotope analyses conducted in zircon and quartz are 
presented in Fig. 2E together with other compiled zircon, quartz and 
whole-rock δ18O values from previous studies of the Samail MHG. Fre
quency diagrams in Fig. 2E show a bimodal distribution with overall 
lower δ18O values ranging from 3 to 11 ‰ contrasted by higher values 
between 12 and 28 ‰, highlighting the diverse oxygen compositions 
within the Samail MHG suite (also Fig. 5). δ18Oqtz range from 7.03 ‰ to 
21.9 ‰, with a median of 17.6 ‰ (n = 15). δ18Owhole-rock values range 
from 6.6 ‰ to 19.3 ‰, with median of 17.1 ‰. Compiled new and 
published individual spot analyses of δ18Ozrn range from 2.48 ‰ to 27.1 
‰, with a median of 15.44 ‰ (n = 266 individual grains).

4.3. Zircon trace elements

Analyzed zircon trace element geochemistry in grains from the 
Samail MHG (3 samples; 60 individual analyses) and Himalayan S-type 
granitoids (10 samples, 43 individual analyses) show enrichment in 
HREE and depletion of LREE, and prominent Ce anomalies. Ce anoma
lies in the Himalayan samples are less prominent when compared to the 
MHG. The Eu anomalies for the Himalayan samples are notably more 
negative than the MHG. Spider plots normalized to the chondrite are 
provided in the Supplementary material (Figure SM4).

Following discrimination plots for S-type granitoids using zircon 
trace element compositions by Roberts et al. (2024), we present plots of 
log(Th/U) versus log(Ce/U) and U/Ce ratio versus Th concentration 
(ppm) to distinguish between zircon from the Himalayan S-types and 
Samail MHG (Fig. 6A). The MHG zircon data forms a distinct cluster 
around − 1.5 in log(Ce/U) and − 0.5 in log(Th/U), exhibiting no overlap 
with data from Himalayan S-type granitoids, which generally exhibit 
lower values for both log ratios (Fig. 6A). This differentiation is partic
ularly evident in Fig. 6B, where zircon from the Samail MHG consis
tently display lower U/Ce ratios of two orders of magnitude than zircon 
from Himalayan S-types.

4.4. Muscovite elemental composition and Li and H isotopes

Muscovite crystals from the five MHG samples have δ7Li ranging 
from 13.9 ‰ to 34.1 ‰ with a mean of 25 ‰. Muscovite geochemical 
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data measured in two samples have SiO2 ranging from 44.6 wt% to 46.3 
wt% and Al2O3 from 35.9 wt% to 38.8 wt%. These two samples have 
variable TiO2 contents, ranging from <0.001 wt% to 0.53 wt%. MgO 
contents also vary between the two samples significantly, with weight 
percent mean from 0.08 wt% to 0.22 wt%. δ2H values of muscovite from 
six MHG samples range from − 47 ‰ to − 14 ‰ with a median of − 37 ‰.

5. Discussion

5.1. Source diversity within the Samail mantle-hosted granitoids

To better constrain the Samail MHG sources, we combined and 
compared radiogenic and stable isotopes of the Samail MHG with a 

range of potential downgoing plate constituents, including fresh and 
altered ocean crust basalts, marine and hydrothermal sediments, and 
ocean crust nodules (Table SM2).

Whole-rock, trace elements and isotopic data of the mantle-hosted 
granitoids indicate a mixed origin between mafic and sedimentary 
protoliths in a supra-subduction zone setting as proposed previously (e. 
g., Briqueu et al., 1991; Rollinson, 2014, 2015; Rioux et al., 2021a; 
Angelo et al., 2023). Evidence of such mixing can be identified by pre
dominantly negative whole-rock εNd(96Ma) (Fig. 2A) and positive 
εHf(96Ma) (Fig. 2B), which show affinity to sources related to shelf sed
iments, while the remaining samples with positive εNd(96Ma) values 
might represent an increasing affinity with an amphibolite component 
from underthrust sheet of oceanic lithosphere (e.g., Rioux et al., 2021a; 

Fig. 2. Histogram plots of initial εNd (A), εHf (B) and εSr (C) for samples from the Samail mantle-hosted granitoids (MHG). They are based on new data from this 
study and published data from (Alberts, 2016; Kim et al., 2020; Rioux et al., 2021a, 2013). Depleted mantle and unaltered ophiolite fields shown in (A) are from 
(Kimura et al., 2017) and (McCulloch et al., 1980), respectively. Depleted mantle, arc mantle (Dhuime et al., 2011) plotted for comparison in (B). Depleted mantle 
field in (C) is from (Kimura et al., 2017; Wilson, 1989). Shelf sediment fields are from (White, 2015). Depleted mantle model ages [TDM(96Ma)] ages are shown in panel 
D. From A to C, kernel density estimation curves are shown for both new and all (compiled) data. Oxygen isotope signatures of quartz, whole-rock and zircon of the 
Samail MHG are shown in panel E highlighting the variability of oxygen values between samples. Samples obtained from this study are shown as white circles in E. 
See Table SM1 for data. ind = individual measurements; avg. = average.
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Angelo et al., 2023). The MHG show predominantly elevated whole-rock 
εSr(96Ma) values (ranging from 0 and + 74; Fig. 2C), 208Pb/204Pb (~39) 
and 206Pb/204Pb (~18.5) when compared to negative depleted mantle 
values and mafic-ultramafic lithologies (Fig. 2C, 4A and B). The MHG Pb 
isotopic data (Fig. 4A) overlaps with quartzite samples from the meta
morphic sole, indicating a significant component of older, crustal lead. A 
wide range of values of 87Sr/86Sr in the MHG samples between 0.705 
and 0.711 together with narrow range of 206Pb/204Pb averaging around 
~18.8 (Fig. 4B) overlaps with the compositions of the Pacific pelagic 
sediments and altered oceanic crust rocks, further indicating mixing 
between mafic and sedimentary protoliths.

The derivation from mafic protoliths and mantle components for the 
MHG is observed in whole-rock, trace elements and isotopic signatures 
(Angelo et al., 2023; Rioux et al., 2021a; Rollinson, 2015). Here, the 
lower δ18O population (<13 ‰) in the MHG (Fig. 5B) overlaps with 
fields defined by mafic protoliths, including gabbro, sheeted dykes, 
pillow basalts and mantle-like zircon (Fig. 5A). It also overlaps with 
zircon composition from the Samail crust-hosted granitoids, which have 
been interpreted as a result of fractionation of basalt/gabbro or anatexis 

of oceanic crust (Alberts, 2016; Amri et al., 1996; Grimes et al., 2013; 
Koepke et al., 2004; Rollinson, 2015, 2009; Spencer et al., 2017; Stakes 
and Taylor, 2003, 1992).

The contribution of sedimentary protoliths in the Samail MHG 
sources is supported by the overlapping feature between the MHG and 
sediments in almost all isotopic systems examined in this study (Sr-Nd- 
Hf-Pb-O). Predominantly higher εSr, 87Sr/86Sr, 208Pb/204Pb, (Figs. 2, 3 
and 4) and δ18O (Fig. 5) and lower εNd and εHf values (Fig. 2) are 
observed in the MHG when compared to corresponding isotopic signa
tures from mafic-ultramafic protoliths and lithologies, including the 
mantle. Oxygen data from the MHG overlap with global shale sediments 
(Fig. 5), with MHG samples recording the highest δ18O in zircon values 
in the igneous record (Spencer et al., 2017). Elevated δ18O for zircon, 
quartz and whole-rock ranging from ~12 to ~28 ‰ indicate marine 
sediments composed of pelite and/or siliceous mud were incorporated 
during partial melting of metasedimentary rocks on top of the subducted 
ocean crust during supra-subduction.

Fig. 3. A) Plot of εHf vs. Rb/Y showing that the Samail MHG fall in the field of the hydrogenetic sediments (Fe-Mn oxyhydroxides bearing source), potentially related 
to Nd and Hf decoupling of the Samail MHG isotopic signatures. Fields are from Pang et al. (2021) who used data from hydrogenetic sediments (Vervoort et al., 2011) 
and Mariana Arc and Caroline Ridge volcanic rocks (Pearce et al., 2005; Straub et al., 2015; Woodhead et al., 2001; Zhang et al., 2020). Hydrothermal sediments 
plotted as red circles are from Pang et al. (2021). B) Whole-rock εHf versus εNd values for the Samail MHG. The Seawater Array (Albarède et al., 1998), the Clay 
Array (Bayon et al., 2016), and the present-day Terrestrial Array (Vervoort et al., 2011) are shown for comparison. The data from the MHG is from this study and 
Haase et al. (2015). See table SM2e for compiled Nd-Hf data. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 4. A) Uranogenic versus thorogenic lead isotope signature of samples from the mantle section of the ophiolite [harzburgite and dunite (Chen and Pallister, 
1981)], metamorphic sole [quartzite and metabasite (Briqueu et al., 1991)], and Samail MHG (this study). Stacey and Kramers (1975) model curve was plotted for 
comparison. The MHG data are consistent with a derivation from older, crustal lead (higher Th/U), similar to the metamorphic sole samples. B) 206Pb/204Pb versus 
87Sr/86Sr for the MHG samples. Pacific altered oceanic crust (Hauff et al., 2003), Pacific MORB (Class and Lehnert, 2012), and Pacific pelagic sediments (Hauff et al., 
2003; Plank, 2014) are included for comparisons. See Table SM2f for compiled Sr-Pb data. All data points shown for the MHG are new data generated for this study.
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5.2. Deep sea biogenic and Fe-Mn sediments within the Samail ophiolite

Here, we alternatively propose that in addition to biogenic sediments 

represented by pelagic mud (siliceous and/or pelitic) (Spencer et al., 
2017), the melting of marine Fe-Mn precipitates could also explain the 
isotopic signatures in the MHG.

Fig. 5. A) Published ranges of δ18O values from various sources: zircon from the Samail crust-hosted granitoids (Grimes et al., 2013); whole-rock δ18O for Phan
erozoic global shale (Payne et al., 2015); mantle-like zircon (Valley, 2003); Mid-ocean ridge basalt (MORB)-like quartz (Gregory et al., 1981); pillow basalts, sheeted 
dykes and gabbro (Gregory et al., 1981; Grimes et al., 2013; Stakes and Taylor, 2003, 1992), and siliceous oozes, carbonaceous oozes and pelagic clays (Valley et al., 
2005). Range published by Spencer et al. (2017) for Samail mantle-hosted granitoids is also shown for comparison. B) Combined new and previously published δ18O 
for zircon, whole-rock, and quartz from Samail MHG. Two sample populations emerge, one with relatively higher δ18O ranging from 14 to 23 ‰ and another with 
lower δ18O values from 4 to 12 ‰, suggesting a bimodal feature across both mineral phases (zircon and quartz) and whole-rock samples. C) Published δ18O values for 
ferromanganese sediments, categorized into hydrogenetic, hydrothermal, and hydrothermal‑hydrogenetic showing values up to 30 ‰ (see Table SM2b).

Fig. 6. Scatter plots of A) log(Ce/U) versus log(Th/U) and B) Th (ppm) versus U/Ce for zircon from the Samail mantle-hosted granitoids and Himalayan S-type 
granitoids compared with contour plots of mantle-derived zircon suites from Iceland/Mid-Ocean Ridges (MOR) and metapelite-derived zircon. Whole-rock trace 
elements determined in Fe-Mn precipitates of hydrogenetic, hydrothermal and mixed origins are plotted for comparison. See Table SM2c for compiled ferroman
ganese whole-rock trace element data and Table SM2d for compiled zircon trace element data.
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Zircon grown from or recrystallized via metamorphic reactions 
exhibit depleted LREE and lower Th/U contents when compared to 
magmatic/igneous zircon (Martin et al., 2008; Rubatto, 2017; Yakym
chuk et al., 2018). The log(Th/U) versus log(Ce/U) discrimination tool 
(Roberts et al., 2024) makes use of the Th and Ce (LREE) depletion 
common to anatectic melt and associated zircon in compositions where 
monazite is stable. As such, these ratios distinguish pure metapelite- 
derived melts (where monazite is typically stable), which can be 
considered an end-member of S-type ‘sediment-derived’ granites (e.g., 
Himalayan leucogranites), from I-type ‘mantle-derived’ melts (e.g., 
MOR and Iceland) with greater log(Th/U) and log(Ce/U) values. Zircon 
trace element data from the Himalayan samples (Fig. 6A and B) are S- 
types that completely overlap the metapelite field, indicating they can 
be considered as pure S-type melts, as previously discussed in Roberts 
et al. (2024) and Hopkinson et al. (2017). S-types granitoids from other 
localities have greater overlap with I-type fields (‘Hybrid S-types’ of 
Roberts et al., 2024), but the Samail MHG data fall within the fields 
defined by I-type and other mantle-derived granitoids. As pointed out by 
Roberts et al. (2024), the Samail MHG do not have zircon compositions 
equivalent to ‘typical’ Himalayan-type S-type granitoids. Although a 
pelitic source has been proposed (Rollinson, 2015; Spencer et al., 2017), 
no record of monazite as an accessory phase has been identified. In 
pelitic (metasedimentary) sources, monazite often forms as an accessory 
mineral because it is a common carrier of REE, especially in aluminum- 
rich, silica-saturated environments like during partial melting of pelites.

To further understand the MHG compositions, and in turn, the 
magmatic sources, we compare the zircon compositions with whole-rock 
compositions of potential sources (see Fig. 6). We note that the Samail 
MHG zircons have log(Th/U) and log(Ce/U) falling between the Hima
layan pure metapelite-derived zircon and the whole-rock composition of 
the Fe-Mn sediments. We argue that Fe-Mn sediments could have 
contributed to the formation of the MHG, together with metapelite and 
metamafic components (Fig. 6A and B). The Samail MHG data in the 

discrimination plots based in Ce, U and Th support the hybrid nature of 
the Samail MHG suite, which may have formed through the interaction 
between metasediment-derived melts with or on top of the mantle- 
derived ocean crust as previously discussed.

Based on the compilation of zircon trace elements and the given 
array presented by metapelite and Fe-Mn sediment (Fig. 6A), we hy
pothesize the presence of a Fe-Mn sediment with a maximum δ18O of 
~28 ‰ that is consistent with the upper endmember of extant Fe-Mn 
sediment (Fig. 7). The zircon, whole rock and quartz from the MHG 
generally plot as two different arrays of data, both controlled by δ18O 
values paired with mostly positive εHf values. One array demonstrates a 
less negative correlation with relatively higher δ18O and greater vari
ability (Fig. 7), with values from ~11 ‰ to 26 ‰. On the other hand, a 
strongly negative correlation defines the other array, characterized by 
lower δ18O values from ~5 ‰ to 10 ‰ (Fig. 7).

Samples of the MHG with lower δ18O values range from ~4 to 10 ‰ 
and fall within the fields defined by the 10th percentile of the S-type 
granitoids from classic localities including the Himalayas, Tasmanides 
and the Andes (Fig. 7). More than 1400 zircon analyses of coupled δ18O 
and εHf from samples of S-types granitoids from these classic localities 
plot in between and along mixing trends of old lower crust towards, 
depleted mantle and metasediments. This array suggests some MHG 
formed through complex processes involving partial melting of sub
ducted MOR-type composition oceanic slab with significant contami
nation with oceanic sediments that subsequently interacted with 
hydrothermally altered sub-arc mantle. This is well demonstrated using 
whole-rock and trace elements (Angelo et al., 2023; Rollinson, 2015), Hf 
isotopes (Haase et al., 2015) and Nd isotopes (Rioux et al., 2021a). In 
contrast, the MHG samples with higher δ18O values do not align with 
fields defined by zircon from sedimentary-derived granitoids from 
classic localities. The plot of O and Hf isotopes in fig. 7 clearly shows that 
most of the MHG was derived from a metasediment protolith that differs 
compositionally from the sources of classic S-type granitoids.

Fig. 7. εHf versus δ18O for detrital and igneous zircon from classic localities of S-type granitoid formation, including the Himalayas (n = 259) (Hopkinson et al., 
2017), Tasmanides (n = 589) (Dhuime et al., 2012; Jeon and Williams, 2018; Jones et al., 2022; Kemp et al., 2006) and Andes (n = 566) (Hervé et al., 2014, Hervé 
et al., 2013; Pankhurst et al., 2016; Rapela et al., 2021) with 10th percentile contours shown. They are compared to zircon and whole-rock εHf versus δ18O for whole- 
rock, quartz, and zircon from the Samail MHG. Results of three end-member (basalt, Fe-Mn precipitates, metapelites) mixing calculations are also shown with ticks 
along the curves representing 10 % mixing increments. The mantle field is based on mantle-like zircon (Valley et al., 2005) and depleted mantle evolution line. 
Average metapelite is from Hopkinson et al. (2017). The O and Hf of Fe-Mn sediments are based on Knaack et al. (2023) and references therein. Average pelagic 
sediment and chert are shown for comparison (Chauvel et al., 2009; Valley et al., 2005; Vervoort et al., 2011). See Table SM2a for compiled data.
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Spencer et al. (2017) constrained the sedimentary source of the MHG 
using zircon δ18O data suggesting the contribution of high-δ18O sedi
ments such as shale and chert. However, while previous models sug
gested that chert might undergo total fusion within finely laminated 
shale layers (Spencer et al., 2017), the high melting point of silica pre
sents a thermodynamic challenge. Under typical subduction zone con
ditions, silica would require substantial heat to melt, making it less 
likely to contribute to melt formation compared to other sedimentary 
components. Fe-Mn sediments have significantly lower melting points 
when compared to silica (chert) and would begin to melt at much lower 
temperatures. The presence of volatile-rich fluids in subduction zones 
could further lower the melting points of these components (e.g., Bang 
et al., 2024; Hacker, 2008). This suggests that Fe-Mn sediments and 
associated clay minerals make them suitable compositions. Thus, given 
the widespread distribution of Fe-Mn sediments on the ocean floor, their 
wide range of δ18O (up to 29.5 ‰), and their Hf values (Fig. 5C and 7), 
Fe-Mn sediments could also be considered a source for the formation of 
the MHG. The δ18O values of the MHG could reflect the partial melting 
of an Fe-Mn sediment composition that sits along the mixing trend of the 
mantle field and the highest δ18O value of the Fe-Mn sediments in the 
plot of Hf and O (Fig. 7).

Furthermore, Nd-Hf decoupling observed in the Samail MHG sam
ples (Fig. 2D) is consistent with the contribution of the Fe-Mn sediments 
in the source. The negative εNd values reflect a ‘crustal signature’ from 
the melted metasediments on top of the subducted oceanic crust. 
However, the positive εHf values could reflect a zircon-rich metasedi
mentary protolith (“zircon effect”), where residual zircon survived 
during metasediment melting during oceanic crust subduction, retaining 
a significant amount of 176Hf at the source. Another possibility is that the 
pelagic clays in the marine sediments that contributed to the formation 
of the Samail MHG were dominated by Fe-Mn oxyhydroxides (or 
hydrogenetic sediments; see also work from [Pang et al. (2021)]. These 
sediments are precipitated from sea-water and hydrothermal fluids, also 
including authigenic clays and biogenic phosphates, all of which may 
scavenge, adsorb, or co-precipitate REE and Hf (Vervoort et al., 2011). 
These clays would have high radiogenic Hf and less radiogenic Nd, 
indicating that the Hf-Nd budget was controlled by Fe-Mn oxy
hydroxide-bearing clays with radiogenic Hf isotopes relative to Nd.

In summary, Fe-Mn precipitates exhibit isotopes and trace element 
data that align well with those required for the genesis of the MHG. This 
would require the paleo-continental shelf of the Samail ophiolite to host 
Fe-Mn precipitates and pelagic pelitic mud, suggesting a more complex 
depositional environment than previously suspected. The coexistence of 
these components could provide further insights into the geochemical 
processes and sources contributing to the formation of these unique 
granitoids, as well as other S-types.

Despite these insights, our dataset has limitations in capturing the 
full isotopic variability across the ophiolite. While this study provides 
new isotopic constraints on the petrogenesis of MHG, some of our 
coupled isotopic datasets, where multiple isotopic systems were 
analyzed on the same samples, are primarily derived from the northern 
portion of the ophiolite. As a result, our interpretations involving Hf and 
O isotopes are most applicable to granitoids from this region and may 
not fully capture the geographic and temporal variations observed 
across the entire ophiolite belt.

5.3. Fe-Mn sedimentary source and tectonic setting constrained by Li and 
H isotopes in muscovite

The δ7Li values from the Samail MHG, ranging from 13.9 to 34.1 ‰ 
are anomalously high when compared to other granitoid rocks of similar 
composition (Fig. 8), such as Li-rich pegmatites from the Jiajika prov
ince in China [− 3.5 to 11.6 ‰; (Liu et al., 2017; Zhang et al., 2021)] and 
Harney Peak granites and pegmatites in the United States [− 2.6 to 11.4 
‰; (Barnes et al., 2012; Teng et al., 2006)]. Ternary diagram in figure 
SM6 (Ballouard et al., 2016) shows muscovite from analyzed MHG 

samples plotted mostly within the zone of primary muscovite.
Chan et al. (2006) showed that Fe-Mn sediments (oxyhydroxides) 

from the Tonga Trench have δ7Li values ranging from 6 to 10 ‰ 
(metalliferous sediments from Fig. 8) and that they may adsorb Li from 
seawater or saline porewaters, which typically have high δ7Li ranging 
from 20 to 32 ‰ (Chan et al., 2006; James and Palmer, 2000; Lui-Heung 
and Edmond, 1988; Moriguti and Nakamura, 1998; Tang et al., 2007; 
Tomascak et al., 1999; You and Chan, 1996). Seawater-like composi
tions have been observed for ferromanganese crusts (Fig. SM6), with a 
δ7Li of ~31 ‰ [global sweater mean; (James and Palmer, 2000; Tang 
et al., 2007; Tomascak et al., 1999)]. The adsorption of Li onto the 
outsides of the clay minerals and slow incorporation into the structural 
sites of clays may be a possible mechanism of heavy Li enrichment of Fe- 
Mn sediments (Anderson et al., 1989). Thus, slowly accumulating sed
iments may acquire Li from seawater, resulting in relatively high δ7Li 
values.

During partial melting of sediments on top of the underthrusting slab 
during subduction, 6Li is selectively retained in minerals whereas 
coexisting fluids are relatively enriched in 7Li (Chan et al., 2002; Chan 
et al., 1993). Alpine eclogites with isotopically light Li signatures pro
vide evidence of this isotopic fractionation process (Zack et al., 2003). 
Haase et al. (2015) suggest metasedimentary melts that contribute to the 
genesis of the Samail MHG formed from the subducting plate beneath 
the Samail ophiolite intruded cold shallow part and hotter interior of the 

Fig. 8. Distribution of δ7Li of marine sediments, granitoids, and seawater based 
on data from this study and previous work (Chan et al., 2006; Hall et al., 2005; 
Steinhoefel et al., 2021; Teng et al., 2006; Teng et al., 2004; Zhang et al., 2021). 
Circles are outliers. See the compilation for lithium isotopes in Table SM2g.
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mantle wedge. They argue the MHG were emplaced in the shallow 
mantle and must have been relatively cold, because it did not react with 
the felsic melts and intrusive boundaries are sharp. Close to the trench, 
the mantle wedge consists of serpentinite with temperatures <800◦

(Hyndman and Peacock, 2003). Lower temperature subduction results 
in higher isotope fractionation due to the exsolution of high δ7Li fluids 
during partial melting of metasediments, in agreement with the pro
posed source and tectonic model. This model is also supported by the 
δ2H values obtained from muscovite, which indicate the source of fluids 
that contributed to tshe formation of the MHG was most likely meta
morphic waters (Fig. SM7) when compared to other water types. δ2H 
values of the analyzed muscovite from the MHG range from − 47 to − 14 
‰ with a median of − 37 ‰. Four out of the seven analyzed samples yield 
δ18O values of whole-rock, quartz or zircon >16 ‰, supporting the idea 
that the Samail MHG formed from the subducting plate beneath the 
ophiolite and associated hydrous metasedimentary melts, with no 
interaction with other water sources during petrogenesis. However, it is 
important to note that the Li and H isotope data presented in this study 
are derived from samples from the northern portion of the ophiolite belt. 
While these results offer valuable insights, they may not fully reflect the 
isotopic variability across the entire ophiolite belt.

6. Conclusions

Negative εNd and slightly positive εHf values suggest the involve
ment of ancient sedimentary sources in the formation of the Samail 
mantle-hosted granitoids. Oxygen isotopes from zircon, quartz and 
whole-rock are remarkably variable, implying a potential mixture of 
altered mafic and sedimentary sources, also demonstrated by Sr and Pb 
isotopic signatures. Using a recently proposed discrimination tool based 
on Ce-U-Th concentrations and Hf-O isotopes, we argue that Fe-Mn 
sediments (i.e., hydrothermal and hydrogenetic), together with pelagic 
mud, might have contributed to the formation of the Samail mantle- 
hosted granitoids. This model is supported by enriched δ7Li values in 
muscovite from the MHG, similar to those found in Fe-Mn sediments. 
These findings have broader implications for models of mantle hetero
geneity over time because the Samail mantle-hosted granitoids, derived 
from metasedimentary sources, may represent crustal components 
transported to the upper mantle from a complex deep-sea depositional 
environment.
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