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Abstract

When using machine learning to model environmental systems, it is often a model’s ability to predict extreme
behaviors that yields the highest practical value to policy makers. However, most existing error metrics used to
evaluate the performance of environmental machine learning models weigh error equally across test data. Thus,
routine performance is prioritized over a model’s ability to robustly quantify extreme behaviors. In this work, we
present a new error metric, termed Reflective Error, which quantifies the degree at which our model error is
distributed around our extremes, in contrast to existingmodel evaluation methods that aggregate error over all events.
The suitability of our proposed metric is demonstrated on a real-world hydrological modeling problem, where
extreme values are of particular concern.

Impact Statement

This paper addresses the lack of suitable metrics for assessing model performance at extreme events. We aim to
develop a method that can identify whether the source of error is being driven by poor performance around
extremes or performance on routine data. The authors propose a weighting function, derived from the observed
data, to create a metric that enables practitioners to quantify this; the metric’s utility is demonstrated in a standard
hydrology problem. The authors hope that this metric can facilitate the design and identification of machine
learning models better at predicting extreme events, such as flooding, storms, or heatwaves.

1. Introduction

1.1. Background

Often in real world problems, the main body of data is less interesting than the outliers, whilst those
extremes are of far more concern; meteorological phenomena, such as heatwaves, storms, or floods, can
result in loss of human life, displacement of local populations, destruction of built environment
infrastructure, and considerable economic disruption (Barriopedro et al., 2011; Changnon et al., 2000;

©TheAuthor(s), 2025. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

This research article was awarded OpenMaterials badge for transparent practices. See the Data Availability Statement for details.

Environmental Data Science (2025), 4: e26, 1–13
doi:10.1017/eds.2025.16

https://doi.org/10.1017/eds.2025.16 Published online by Cambridge University Press

https://orcid.org/0009-0000-4601-0210
mailto:rer44@cam.ac.uk
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eds.2025.16
https://doi.org/10.1017/eds.2025.16


Easterling, 2000; Fouillet et al., 2006; Jonkman et al., 2009). In the field of hydrology, for example,
extensive flooding throughout the UK in 2012 and 2014, arising from successive extreme weather
systems and subsequent rainfall, caused significant damage to infrastructure, with total economic
damages estimated at approximately £0.6 billion and £1.3 billion, respectively (Parry et al., 2013; The
Environment Agency, 2013; Muchan et al., 2015; Chatterton et al., 2016). In 2012 alone, approximately
20% of the days of the year were classed as flood days. Being able to predict the hydrological behavior in
such events is critical for developing adaptation and mitigation strategies. To be able to develop
hydrological models capable of predicting these singularities with a high degree of accuracy, we require
robust tools to quantitatively assess their performance with regard to said singularities or extremes.
However, many of the metrics used to assess and train machine learning models do not reflect the relative
importance of these extremes.

For regression tasks, we commonly see metrics such as the root mean squared error (RMSE) or R2

(Hastie et al., 2009). However, these metrics, whilst sensitive to the magnitude of discrepancy, are
insensitive to the location of errors within the target domain (Dawson et al., 2006). Of course, one could
choose to ignore certain subsets of the data and instead build metrics that are more sensitive to subsets of
the target domain, for example, by applying a relevance mapping based on statistical thresholds (Torgo
and Ribeiro, 2007; Ribeiro and Moniz, 2020), though the selection of statistical thresholds might be
considered somewhat arbitrary.

The field of extreme value theory, which is concerned with the asymptotic distribution of maxima
(Haan and Ferreira, 2006), has been used to develop modeling frameworks for predicting extreme
events (Ding et al., 2019; Siffer et al., 2017; Boulaguiem et al., 2022). This research includes the
development of an extreme loss function based on the Fisher–Tippett–Gnedenko theorem for neural
models (Ding et al., 2019) and outlier detection using automatically setting thresholds (Siffer et al.,
2017). Although these methods allow for evaluating model performance on extreme values, our
objective is to develop a framework that does not require event separation and that can be applied
across the target domain more generally, covering local minima and maxima as well, such as those for
Gaussian mixture distributions.

In thiswork,we develop a dimensionlessmetric for assessing the distributionof errors in the target domain
more generally. This metric being dimensionless enables comparison between different instances in the same
field. If we again use the hydrological context as a motivating example, we might wish to apply the same
modeling approach to different rivers. However, their average discharge values will likely be different and,
thus, the unnormalized mean error arising from model predictions will be of different scales. Our metric
enables quantification of relative performance around extremes compared with what we term routine data,
being the data that are considered close to the peaks of probability density, with respect to the probability
distribution that best fits the observed data. Our hope is that doing so can supplement analysis and enable the
evaluation of model performance according to the distribution of the observations with a view to more
targeted model optimization. We begin by reintroducing a commonly used error metric and from it derive a
new error metric.We then provide synthetic, illustrative data to which we apply this metric alongwith a real-
world application, one where extremes are of considerable importance.

2. Methodology

2.1. Root mean squared error

Our proposed metric is derived from the ubiquitous RMSE. RMSE is expressed as the sum of the error
calculated between all pairwise observations, yi, and predictions, y0

́i
, as in Equation 2.1; in a machine

learning context, it is typically evaluated both during training, giving performance for the fit over the
training set, and when testing a model to evaluate its ability to generalize (Hastie et al., 2009).

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi� y0

́i

� �2

n

vuut
(2.1)
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The RMSE lies within the interval 0,∞½ Þ, where 0 is a perfect score, and higher scores indicate lower
model performance. Whilst this metric provides an overall assessment of the accuracy of a model, it has
two flaws: (1) RMSE’s lack of variance to data rescaling means that it does not allow for comparison of a
single model archetype across application domains where the observations are of different scales; and
(2) RMSE does not provide sensitivity to the distribution of errors. The implication of the latter issue,
which is common to other error metrics such asR2, is that these metrics cannot be used to identify whether
or not extremes are the main contributor to the error. For the real-world problems identified in Section 1,
being able to assess predictive power around extremes is essential.

2.2. Reflective error

We define our reflective error (RE) metric as the ratio between a weighted form of RMSE, such as that
proposed by (Ribeiro and Moniz, 2020), and the standard RMSE. It alleviates both of the issues facing
RMSEbecause (1) dividing theweighted form ofRMSEby the standard form of RMSE is a normalization
process that places all applications of RE onto the same scale and (2) the weighting function we utilize is
derived by fitting an empirical distribution to the target outputs and, thus, provides local sensitivity by
minimizing routine error relative to extreme error. For machine learning applications, this would be fitted
to the training data targets. Throughout this paper, we refer to this process as fitting the underlying
probability distribution, U yð Þ. From this fitted probability distribution, U yð Þ, we define the reflective
weighting function, Ψ yð Þ, in Equation 2.2, with scaling factor κ¼ max

y
U yð Þð Þ.

Ψ yð Þ¼�α �U yð Þ
κ

þβ (2.2)

Where α¼ 1 and β¼ 1, such that the weighting function is applied to the error at any given y and is a
mapping Ψ yð Þ : Y ! 0,1½ �∀ y∈Y . Consequently, Ψ yð Þ! 1 for extremes and Ψ yð Þ! 0 for routine data.
Thus, we formulate our metric in terms of Ψ yð Þ and the squared error in Equation 2.3:

RE¼
Pn

i¼1 yi� y0
́i

� �2
�Ψ yið Þ

Pn
i¼1 yi� y0

́i

� �2

0
B@

1
CA

1
2

(2.3)

For most applications, RE lies within the interval 0,1½ �, though for instances where the total error is 0 or∞
RE is undefined. Where RE is defined, 0 would indicate that all error comes from the point of highest
probability density and 1 would indicate that all error comes from the most extreme data point; whilst
these scores are unlikely to occur in real problems, we still intuit that high RE indicates the error is
primarily extreme driven and low RE that the error is routine driven. This stationary expression of RE is
applied to a fictitious dataset in Section 2.3.

Should the practitioner be dealing with a distribution with multiple tails, but where only one is of
interest or they need separate treatment, then the weighting could be split piecewise about the global
maximumprobability density or other localmaxima. For example, if considering a two-tailed distribution,
such as a Gaussian, and the higher extremes were of more concern, then the following weighting in
Equation 2.4 could be applied.

ΨSþ yið Þ�
0 if yi ≤ argmax

y
U yð Þð Þ

Ψ yið Þ if yi > argmax
y

U yð Þð Þ

8<
: (2.4)

Where Ψ yð Þ is the base form of our metric, as in Equation 2.3, and ΨSþ is the piecewise form.

2.3. Stationary synthetic data

In order to demonstrate how the sensitivity of RE to extreme versus routine errors, we present a one-
dimensional problem, using a normal distribution, to which we fit a model with some error. We then
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proceed tomagnify that error at routine datapoints and extremes to show howRE varies whilst RMSE and
R2 are relatively unaffected.

We create an artificial, normally distributed dataset X�N 3:5,0:752
� �

of 500 data points, which is of
similar size to datasets commonly used to demonstrate statistical methods, such as the Iris petal or
Ionosphere datasets Sigillito et al. (1989); Bezdek et al. (1999). This dataset will form our observations,
and our predictive “model” is the same data with the addition of some Gaussian noise term
ϵ1 �N 0,0:12

� �
. This model fits the data with RMSE¼ 0:203, R2 ¼ 0:924, and RE¼ 0:542.

For both of the error scenarios, we add some randomly generated error, ϵ2 �N 0,1:02
� �

. For our
routine error scenario, we add this error to the 100 data points closest to the mean, whilst for the extreme
error scenario, we add this to the 100 data points furthest from the mean, in either direction. The
predictions against observations for both of these scenarios, along with a histogram of the original dataset
and accompanying relative weighting function, Ψ yð Þ, is shown in Figure 1.

For the routine error scenario, the RMSE¼ 0:48, R2 ¼ 0:60, and RE¼ 0:31; for the extreme error
scenario, the RMSE¼ 0:49, R2 ¼ 0:59, and RE¼ 0:80. The values of the standard error metrics we used,
the RMSE and R2, for both of the scenarios are roughly equivalent. However, there is a significant
discrepancy between the RE values; a high value of RE for the extreme scenario indicates the error is
skewed towards extremes, and the opposite is true for the routine error scenario. Therefore, our REmetric
is sensitive to the location of error and is identifying the corresponding relative contribution of error as
intended.

3. Nonstationary methodology

3.1. Nonstationary RE

Our initial definition of RE holds assuming that the U yð Þ is stationary and does not change over time;
however, for some practical problems, the stationary assumption is not appropriate and the above,
stationary form of RE does not immediately apply. For example, if we consider the trend in mean global
surface temperature over the past 150 years, then what was extreme in 1850 would not be considered
extreme today (V. Masson-Delmotte et al., 2021); thus, our definition of extreme must change over time
and so too the weighting we apply. We therefore extend our metric to enable application to nonstationary
problems, where the probability distribution of the target domain data and the associated parameters
change over time, and we require local sensitivity.

Figure 1. Normally distributed dataset of synthetic observations with fitted probability density and
reflective weighting functions (left) with the predictions versus observations for the two perturbation
scenarios (center and right).
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If we take some subdomain, ϕ, of the whole target domain, Y , such that the subdomain could be a series
of points between two limits or at a single point in time, then we can determine a subdomain-specific
weighting function,Ψϕ yð Þ. For a range of points between two limits, such as for a step change, we would
empirically fit a probability distribution,Uϕ yð Þ, to the data between those limits; if, however, there were a
trend in the probability distribution, then we could empirically derive parameters of the probability
distribution at a given point according to some binning strategy. This weighting function, Ψϕ yð Þ, is then
expressed in terms of the subdomain’s probability distribution, Uϕ yð Þ, as in Equation 2.2, with a scaling
factor κ¼ max

y
Uϕ yð Þ� �

.

RE¼
Pn

i¼1 yi� y0
́i

� �2
�Ψϕ yið Þ

Pn
i¼1 yi� y0

́i

� �2

0
B@

1
CA

1
2

(3.1)

WhereΨϕ yið Þ is theweighting to be applied to the error at any given y based on the underlying, probability
distribution corresponding to values y within the local subdomain, ϕ, of the target domain, Y . More
concretely, for any ϕ⊆Y , we can define a weighting functionΨϕ yð Þ : ϕ 0,1½ �. Note that for stationary cases,
where the subdomain ϕ¼ Y , this simplifies to the form of RE, expressed in Equation 2.3.

For the set of subdomains, Φ, defining the temporal limits ∀ϕ∈Φ impacts the resulting probability
distributions, Ψϕ yð Þ, and care must therefore be taken on the identification of the evolution of nonsta-
tionary trends over time. Methods for establishing nonstationary trends (Bell, 1984; Box and Tiao, 1965;
Wu et al., 2007) can be used to establish the nonstationarity of statistical parameters and guide the
construction of Φ. We also note that characteristic information or extrema may be missing from under-
sampled or poorly aliased data (Proakis andManolakis, 2007), for example, those not complying with the
Nyquist rate; in such cases, the probabilistic distribution to be fitted to any subdomain, ϕ, would likely not
be representative of the true signal and the application of nonstationary RE difficult.

3.2. Nonstationary fictitious data

To illustrate the need for local sensitivity, for cases where ϕn ⊂Y , we present a fictitious, nonstationary
signal with step changes, requiring the empirical derivation of the probability distribution before and after
each step change. These observations are generated according to the piece-wise function, in Equation 3.2.

U yð Þ�
N 0,0:22
� �

if t0 ≤ t < t1

N 1,0:22
� �

if t1 ≤ t < t2

N �1,0:22
� �

if t2 ≤ t < t3

8><
>:

(3.2)

The probability distribution over the entire domain temporal domain is, therefore, given by a Gaussian
mixture distribution. Similar to the process for the simple stationary experiment, we create our model by
adding someGaussian error to the observations, ϵ�N 0,0:12

� �
.We then take a single prediction from the

second subdomain, where t1 ≤ t < t2 and μ2 ¼ 1, and add significant error to it such that it lies close to the
mean, μ3 ¼�1, of the third subdomain, t2 ≤ t < t3, as shown in Figure 2.Wewill term this anomalous data
point yδ. If we were to use the stationary form of RE, then given that this error lies close to the maximum,
Ψ yδð Þ! 0; however, the nonstationary form of RE is such that Ψ yδð Þ! 1 and the effect of yδ is
maximized. The resulting RE¼ 0:45 if we assumed stationarity but, by accounting for temporal variation
in the fitted probability distributions, RE¼ 0:83, with the metric showing more skew towards errors
around the extremes. Obviously, this dataset is fictitious but it does demonstrate a potentially desirable
change in behavior in the face of nonstationarity.

4. Application

As a real-world example, we present a hydrological modeling problem, usingmachine learning, where the
extremes are of particular concern, given that these extremes have the potential to give rise to significant
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flooding Faulkner (2008); Kendon and McCarthy (2015); Muchan et al. (2015). The use and potential of
machine learning in hydrology has been covered in literature Abrahart et al. (2012); Besaw et al. (2010);
Govindaraju et al. (2000), so we assume its application is likewise suitable here. In addition to RMSE, we
will also use Nash-Sutcliffe efficiency (NSE) Nash and Sutcliffe (1970); mathematically similar to R2,
NSE is a normalization that enables comparison across catchments.Whilst NSE and other relatedmetrics,
such as Kling-Gupta Efficiency Gupta et al. (2009), are often used in conjunction with RMSE Ritter and
Muñoz-Carpena (2013), our metric will supplement this further through the attribution of error to
extremes, as mentioned at the beginning of Section 2.

Using (Rouse et al., 2025) as the experimental basis, we take mean gauged daily streamflow
observations for a pair of river catchments, the River Avon at Bathford and the River Exe at Pixton,
from the United Kingdom’s National River Flow Archive (NRFA) provided by the UK Centre for
Ecology & Hydrology UK Centre for Ecology & Hydrology (2022). These two rivers have been selected
from the database due to the relatively different modeling challenges they present, in that the Exe at Pixton
is a much smaller, flashier catchment, with an area of 159.7 km2 compared to 1552 km2 for the Avon at
Bathford, and will thus likely make the prediction of extremes harder. This is exacerbated by the very low
permeability of the catchment, which is shown amongst other characteristics in Figure 3.

Input meteorological data has been taken from ERA5, the fifth generation of global climate reanalysis
modeling and data assimilation output produced by The European Centre for Medium-Range Weather
Forecast’s (ECMWF), which we assume to be congruent with observations Hersbach et al. (2023, 2020);
Tarek et al. (2020); in spite of this, we note that the resolution of ERA5 data, at a grid-scale of 31 km, may
not fully capture the spatial dynamics driving flow in a small catchment like the Exe at Pixton but that
downscaling the precipitation is out of scope for this work.We use 14 days’worth of surface precipitation
and daily average temperature, relative humidity, and resultant wind speed at a pressure level of 1000 hPa
within the catchment along with antecedent proxies for soil moisture, as per (Rouse et al., 2025).
Similarly, we adopt the model setup and training procedure for a simple artificial neural network
Rumelhart et al. (1986), with layer nodes of 56! 16! 4! 1, Sigmoid Linear Unit activation function
Ramachandran et al. (2017), and the Adam optimization algorithm Kingma and Ba (2017). The data,
running from 1979 to 2019, is split into the same test, validation, and training subsets, with the training set
containing the years 1979–2008 and the test set containing the years 2011–2019.

We have assumed that the streamflow, Y , is simulated by a lognormal distribution with parameters, μ
and σ, such that Y �LN μ,σ2ð Þ. Usingmaximum likelihood estimation (MLE) fitted to a 365-day rolling
window of streamflow, we determined that μ and σ did not exhibit any significant temporal trend over the

Figure 2. Synthetic temporally variant dataset with predictions and observations shown about the mean
function and within 2 standard deviations with anomalous observation highlighted (left); and the overall
probability distribution fitted to the data with normalized histogram of the observations (right).
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study period, as shown in Figure 4. Therefore, although climate is nonstationary, we believe the stationary
assumption to be valid, and so we use stationary RE. For problems with clear nonstationarity, we would
use the nonstationary formulation of Equation 3.1 and, given that we would expect a gradual rather than
step change in statistical distribution, would apply a rolling window of appropriate timescale such that the
weighting function, Ψϕ yið Þ, is likewise continuous. The 365-day rolling window as used above window
would likely capture seasonality but could be set longer to capture longer-term climatic oscillations, such
as the El Niño–Southern Oscillation, if pertinent.

Figure 3.Maps of elevation, land use, and geology for the Avon at Bathford and Exe at Pixton (note that
the catchments are shown at different scales for visibility). Keys corresponding to each map represent the
proportion of each within respective subcategories. Adapted from the National River Flow Archive UK
Centre for Ecology & Hydrology (2022).

Figure 4. Parameters for a log-normal probability density function fitted to a 365-day rolling window of
streamflow observations for the River Avon and the River Exe.
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Test set performance metrics are: RMSE¼ 9:35m3s�1,NSE¼ 0:87, and RE¼ 0:92 for the River Avon
at Bathford; and RMSE¼ 2:68m3s�1,NSE¼ 0:75, and RE¼ 0:95 for the River Exe at Pixton. A subset of
the observed and predicted streamflow, specifically for the year 2012 when significant streamflow events
occurred, is shown in Figure 5. This example demonstrates the RMSE’s scaling issues, given that it is
greater for the Avon at Bathford than for the Exe at Pixton due to the former’s higher capacity and average
streamflow, yet the overall fit for the Avon at Bathford is better, as evidenced by the better NSE score. Our
metric, RE, indicates that the driver of this error for both rivers is weaker model performance around the
extremes, with this being more problematic for the River Exe, quantifying that relative inability to predict
the Spring and Winter extremes in the year 2012.

We have demonstrated in this paper the ability of RE to provide quantification of the shape ofmodel error,
bothwith unrealistic synthetic and real-world data. In the real-world context, by utilizingREconjunctionwith
existing error metrics, RE provides important quantification of the distribution of error relative to the
observed dataset. This has the potential to enable more targeted model optimization. Furthermore, at the
end of Section 2.2, we described the adaptability of RE to focus on one tail; in practice, hydrology is one area
where this approach could be more suitable if investigating floods and droughts separately.

Although we did not test RE on discrete probability distributions, the extension to such situations is
such that the weight function, Ψ yð Þ, generates a series of discrete weights, rather than a continuous one.
However, for uniformly distributed data, the value of Ψ yð Þ is trivially either 1 or 0 and is, consequently,
only sensitive to errors outside of the bounds of the distribution.

5. Reflective loss function

We further extend this framework to the loss function in a neural network. The mean squared error (MSE)
is a commonly used loss function in neural networks (Hastie et al., 2009; Bishop, 2016) to which our
modification is easily applied, specifically the unnormalized form of RE. This loss function, LRE, we
propose for training parametric machine learning models, in place of the often used MSE, it increases the
relative penalty applied to extremes and is expressed in Equation 5.1.

LRE ¼ 1
n

Xn
i¼1

yi�y0́i
� �2 �Ψ yið Þ (5.1)

Whereas for the error metric, we let α¼ 1 and β¼ 1, we now consider α and β as tunable hyperparameters.
Thus, we can adjust the penalty applied to routine and extreme data. In order to minimize the routine loss
and maximize the extreme loss, the condition α≤ β must be true.

Ψ yð Þ¼�α �U yð Þ
κ

þβ (5.2)

Figure 5. Predicted and observed streamflow time series in the year 2012 for the River Avon and River
Exe, with predictions generated using a basic artificial neural network model.
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To test the loss function, we utilize the same hydrological problem as described in the previous section,
modifying the values for α and β using a grid search method whilst keeping all other aspects of network
architecture and training the same, such as the training and test set compositions. The results different α
and β pairs are shown in Figure 6, in terms of the difference between β and α.

Our objective is to identify values that improve NSE whilst also reducing RE. From the investigated
pairs of α and β, low values of α resulted in poor performance due to their adverse impact on the back
propagation algorithm. At suitably large α, where α≥ 1

2, and for the parameter values where the loss
function would minimize the error for routine data to 0, that is where α¼ β, the network achieves an
improvement in RE for a minor reduction in the standard error metrics. However, for the cases where

Figure 6. Performance in terms of NSE and RE for different α and β pairs in the Reflective Loss Function
used for training a neural network on streamflowdata from the Rivers Avon ((a) and (b))&Exe ((c) and (d)).
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α < β, we achieve an improvement in RE without sacrificing overall performance. In other words, we
achieve better extreme predictive capability over that for routine data. For most values of α, the
improvement between different pair values of α and β, for α < β, is more marginal but these combinations
achieve better performance than where α¼ β. The best results are obtained for 0:5≤ α≤ 5 and at
0:5≤ β�αð Þ≤ 1. Therefore, when optimizing neural models using RE as a Loss function, values such
as α¼ 1 and β¼ 2 provide improved results. Using a hyperparameter optimization framework, such as
Bayesian optimization (Snoek et al., 2012), might be a more expedient route to identifying optimal values
for α and β pairs than the grid search implemented here.

We further demonstrate this by showing improved predictive performance for some of the peaks in the
2012–2013 and 2013–2014 winter periods from the RE Loss model, with parameters α¼ 1 β¼ 2,
compared to theMSE Loss model in Figure 7. Although the improved extreme performance is noticeable
at extremes, we remain cognizant of the fact that this method cannot address deficiencies in the
representation of extremes within the training data. For example, instances such as the peaks in the
2012 period for the River Exe at Pixton are not represented within the training data at all and addressing
issues with both the spatial resolution of and bias in the precipitation data could further correct extreme
performance; further analysis on the cause of these extremes is not presented within this study but it does
highlight the need for domain expertise in the construction of modeling frameworks.

6. Conclusion

TheREmetric we have presented here is not intended to supplant the existing errormetrics; indeed, it does
not directly provide quantification of themagnitude of error. Instead, our metric enables the quantification
of how a model’s performance is distributed, such as around the extremes of a dataset, and supplements
quantification of the magnitude of error. Therefore, we recommend that RE is used alongside existing
error metrics to provide a more comprehensive view of model performance.

RE can help to provide a method of quantifying relative extreme performance through a single robust
and coherent number in real-world data problems, such as the hydrological problem we presented. This
could extend to allmanner of fieldswhere predicting the response of systems is of significantlymore value
around extremes, such as the treatment of the impacts frommeteorological phenomena in a nonstationary
climate, where the probability distributions are subject to change; for example, there is Bhatia et al.
(2019); Murakami et al. (2020); Yoshida et al. (2017).

We also presented a framework for tailoring the optimization of machine learning models, specifically
neural models, to enable better prediction of extremes. Again, this provides an improvement that should
not come at the expense of other facets of machine learning model training, such as ensuring represen-
tation of extremes within the data, but this is an adaptation that can be included to help drive performance
toward extremes at minimal increase in complexity as far as the practitioner might be concerned.

Figure 7.Focused time series for winter periods for the River Avon showing observations and predictions
generated from the Neural Network model using both the MSE Loss and RE Loss functions.
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