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Abstract
1.	 Every	autumn	on	the	south	coast	of	Victoria	 Island	 (Nunavut,	Canada),	endan-
gered	Dolphin	and	Union	(DU)	caribou	(Rangifer tarandus groenlandicus x pearyi)	
wait for sea ice to form before continuing their southwards migration to the main-
land.	Delayed	freeze-	up,	less	stable	ice	conditions	and	ice-	breaking	by	vessels	are	
putting	migrating	caribou	at	 risk,	but	unpredictable	 freeze-	up	 times	pose	chal-
lenges for conservation planning. Having early warning of when the caribou sea 
ice	crossing	is	likely	to	take	place	could	guide	more	targeted	measures	(e.g.,	ice-	
breaking	vessel	management).

2.	 In	 this	 case	 study,	we	use	 a	multi-	stakeholder	 approach	 to	explore	 the	poten-
tial	of	using	observed	and	forecast	sea	 ice	concentration	(SIC)	to	predict	when	
DU	caribou	are	 likely	 to	 cross	 the	 sea	 ice.	We	examine	 links	between	caribou	
movement	records	and	coincident	satellite	observations	of	SIC	collected	between	
1996–2005 and 2015–2019. We establish probabilistic “percent- crossed” met-
rics	to	convert	SIC	freeze-	up	profiles	into	anticipated	sea	ice	crossing-	start	date	
ranges	and	maps.	Finally,	we	assess	 the	potential	of	using	 IceNet,	an	AI-	based	
25 km	 resolution	 SIC	 forecast	model,	 to	 predict	 these	 crossing-	start	 ranges	 in	
2020–2022.

3.	 We	identify	a	clear	link	between	SIC	freeze-	up	profiles	and	crossing-	start	times,	
with	median	SIC	 reaching	98.8%	 (IQR = 94.1%,	100%)	when	caribou	start	 their	
crossings.	Our	percent-	crossed	metrics	 are	effective	 in	 converting	SIC	 records	
into	 crossing-	start	 date	 maps	 which	 can	 guide	 human	 experts.	 IceNet	 results	
show	 promise,	 predicting	 crossing-	start	 ranges	 comparable	 to	 those	 observed	
in	2022	up	to	three	weeks	before	the	first	observed	sea	 ice	crossing.	 In	2021,	
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1  |  INTRODUC TION

Sea	 ice	 is	a	vital	habitat	 for	many	Arctic	species;	 from	polar	bears	
seeking	prey,	to	seals	rearing	pups	and	migrating	cetaceans	(Laidre	
et	al.,	2008;	Post	et	al.,	2013).	The	sea	 ice	and	 its	associated	eco-
system	are	also	fundamental	for	coastal	Indigenous	Peoples'	way	of	
life,	supporting	food	security	and	cultural	practices,	which	have	de-
veloped	over	millennia.	Yet	average	Arctic	temperatures	are	rising,	
at	a	rate	as	much	as	four	times	that	of	the	global	average	(Rantanen	
et	al.,	2022),	and	sea	ice	is	being	lost.	September	sea	ice	extent	has	
halved	in	the	last	40 years	(Serreze	&	Meier,	2019).	Climate	projec-
tions	indicate	the	Arctic	Ocean	could	be	virtually	sea	ice	free	in	the	
summer	as	early	as	the	2030s	(Kim	et	al.,	2023).	As	Arctic	species	
navigate their increasingly unpredictable and fast- diminishing sea 
ice	 habitat,	 they	 simultaneously	 face	 intensifying	 pressure	 from	
fishing,	 shipping,	 tourism,	 and	oil	 and	 gas	 industries	 drawn	 to	 the	
opening	ocean	(Bird	et	al.,	2008;	Dawson	et	al.,	2014,	2018;	Mudryk	
et	al.,	2021;	van	Luijk	et	al.,	2022).

It is imperative to safeguard wildlife and livelihoods in this fast- 
changing	 Arctic	 seascape.	 However,	 designing	 and	 implementing	
effective area- based conservation and management in the face 
of	 uncertain	 environmental	 conditions	 is	 challenging	 (Cashion	
et	 al.,	 2020).	 There	 are	 calls	 for	 dynamic	 management	 strategies	
that can integrate environmental forecasts and be responsive to 
resulting	 changes	 in	 ecosystems	 and	 their	 components	 (Abrahms	
et	al.,	2023;	Gissi	et	al.,	2019;	Tittensor	et	al.,	2019).	Sea	ice	forecasts	
could be informative in predicting seasonal wildlife distributions on a 
more	dynamic	basis	(Kovacs	et	al.,	2011),	as	the	movement	of	many	
Arctic	 species	 are	 intrinsically	 linked	 to	 sea	 ice	 conditions	 (Laidre	
et	al.,	2008).	However,	physics-	based	numerical	models	have	strug-
gled	 to	 capture	 the	 complex	 atmosphere-	ice-	ocean	 interactions	
necessary	for	accurate,	high	resolution	sea	ice	forecasts	(Blanchard-	
Wrigglesworth	et	al.,	2015;	Wayand	et	al.,	2019).	Recently,	AI	mod-
elling has emerged as a promising alternative for sea ice forecasting 
(Andersson,	 Hosking,	 Pérez-	Ortiz,	 et	 al.,	 2021),	 with	 AI	 systems	
now advancing more rapidly than their physics- based counterparts 

as	 part	 of	 the	 broader	 “AI	 weather	 forecasting	 revolution”	 (Bi	
et	al.,	2023;	Lam	et	al.,	2023;	Price	et	al.,	2024).	With	the	ability	of	
AI	models	to	learn	sea	ice	behaviour	from	diverse	data	sources,	this	
new	generation	of	forecasting	systems	could	provide	the	accuracy,	
resolution	and	speed	required	to	support	conservation	and	manage-
ment decisions in the future.

In	 this	 paper,	we	 explore	 the	 feasibility	 and	 potential	 of	 using	
AI	 sea	 ice	 forecasts	 to	 inform	 Arctic	 conservation	 through	 a	 tar-
geted	 case	 study.	We	 focus	 on	 the	Dolphin	 and	Union	 (DU)	 cari-
bou	 (Rangifer tarandus groenlandicus x pearyi),	a	genetically	distinct	
subspecies	of	caribou	endemic	to	the	Kitikmeot	Region	of	Nunavut,	
Canada	(Mcfarlane	et	al.,	2016).	As	well	as	forming	a	key	part	of	the	
local	 ecology,	DU	 caribou	play	 a	 critical	 role	 in	 the	 lives	 and	 live-
lihoods	of	the	 local	 Inuit	and	Inuvialuit	people	(Hanke	et	al.,	2021,	
2024;	Poole	et	al.,	2010).	However,	the	numbers	of	DU	caribou	have	
suffered	 sharp	 declines	 in	 recent	 years,	 falling	 from	 an	 estimated	
34,558	(95%	CI = 27,757	to	41,359)	individuals	in	1997	to	just	3815	
(95%	CI = 2930	 to	 4966)	 in	 the	most	 recent	 2020	 survey	 (Species	
at	Risk	Committee,	2023).	The	herd	 is	assessed	as	Endangered	by	
the	 Committee	 on	 the	 Status	 of	 Endangered	 Wildlife	 in	 Canada	
(COSEWIC,	2017).	Effective	avenues	for	conservation	must	be	ex-
plored to prevent their permanent demise.

One	of	the	distinct	characteristics	of	the	DU	herd	is	its	biannual	
migration	 across	 sea	 ice.	 In	 the	 spring,	 before	 the	 ice	melts,	 cari-
bou	cross	from	mainland	Canada	to	Victoria	 Island	to	access	sum-
mer	calving	grounds.	In	the	autumn,	after	calving,	they	congregate	
on	the	south	coast	of	Victoria	Island	waiting	for	sea	ice	to	re-	form	
(the	staging period)	before	crossing	back	to	overwinter	on	the	main-
land	(Poole	et	al.,	2010).	A	reduction	in	sea	ice	quality	in	the	region	
has	 caused	 increasing	 numbers	 of	 the	 caribou	 to	 perish,	 some-
times	in	their	hundreds,	during	ice	crossings	in	recent	years	(Hanke	
et	al.,	2021).	Sea	ice	crossings	can	also	be	disrupted	by	leads	(linear	
open	water	tracks)	in	the	ice	created	by	transiting	ice-	strengthened	
vessels	(Dumond	et	al.,	2013;	van	Luijk	et	al.,	2022).	This	is	of	con-
cern	 as	 the	 region	 (surrounding	 nearby	 community	 Cambridge	
Bay)	has	experienced	the	third	highest	 increase	 in	vessel	 traffic	 in	

IceNet's	predicted	ranges	are	systematically	early,	but	improve	between	three-		to	
one-	week	lead	times.

4. Practical implication:	 AI	 sea	 ice	 forecasts	 could	 provide	 early	 warning	 of	 DU	
caribou	sea	 ice	crossing	times,	 informing	mitigation	of	 ice-	breaking	vessels	and	
providing a blueprint applicable to other ice- dependent species. Our case study 
contributes	practical	considerations,	limitations	and	areas	for	future	research	to	
drive	 innovation	 in	 this	 emerging	 field	 forward.	Ultimately,	 forecasts	 could	 be	
integrated	 into	 human-	expert	 centred	 decision-	support	 tools,	 guiding	 dynamic	
conservation	and	management	for	Arctic	species.

K E Y W O R D S
Arctic	Northwest	Passage,	Artificial	Intelligence	(AI),	Dolphin	and	Union	caribou,	dynamic	
conservation,	GPS	tracking,	migration,	Rangifer,	sea	ice	forecast
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Nunavut	 in	recent	decades	 (Dawson	et	al.,	2018).	 In	response,	the	
Victoria	Island	Waterways	Safety	Committee	(VIWSC)	was	formed	
to	collaboratively	identify,	assess	and	manage	cumulative	risks	from	
shipping—highlighting	 “impacts	 of	 icebreaking	 activities	 on	 car-
ibou	migration,	 food	 security,	 and	hunter	 safety”	 as	 a	 key	priority	
(Doucette	&	Mansfield,	2024).

In	2019,	VIWSC	“icebreaking”	workshops	identified	seasonal	pe-
riods and locations where caribou and people use sea ice to find an 
approach	for	pro-	active	management	of	shipping	risks	(Doucette	&	
Mansfield,	2024).	During	the	autumn,	it	was	noted	that	the	caribou	
“may	 start	 crossing	 as	 soon	 as	 sufficient	 ice	 has	 formed,	which	 is	
variable	on	a	year-	to-	year	basis”	(Ekaluktutiak	Hunters	and	Trappers	
Organisation,	 2019).	 Telemetry	 studies	 indicate	 that	 between	
1999 and 2006 the average overall autumn crossing date was 1 
November,	but	varied	over	25 days	annually	during	this	period	(Poole	
et	al.,	2010).	More	recent	data	 (collected	since	2015)	suggests	au-
tumn sea ice crossings have shifted later in November in line with 
later	freeze-	up	dates	(Leclerc	&	Boulanger,	2018,	2020).	The	result-
ing	management	 decision	was	 to	 implement	 a	Notice	 to	Mariners	
(NOTMAR)	communication	system	spanning	these	observed	cross-
ing	periods.	Between	15	October	 to	30	November,	 the	NOTMAR	
recommends	 vessels	 to	 give	 notice,	 with	 follow	 up	 call/emails,	
1 week	prior	to	transiting	through	designated	winter	caribou	protec-
tion	zones,	to	a	pre-	defined	list	of	local	contacts	(NOTMAR,	2020).	
Local	 partners	 also	 have	 access	 to	 near-	real	 time	maritime	 vessel	
traffic data via an online platform and can communicate with ves-
sel	operators	to	alert	of	hazards	(Doucette	&	Mansfield,	2024).	The	
NOTMAR	 includes	 voluntary	measures	 to:	 slowdown	 to	minimum	
safe	speed	if	caribou	or	people	are	encountered,	use	local	informa-
tion	to	avoid	passing	in	front	of	caribou	or	people,	and	avoid	opening	
multiple	leads	(NOTMAR,	2020).

The	 NOTMAR	 framework	 is	 a	 flexible	 two-	way	 communica-
tion	 system	 which	 incorporates	 on-	the-	ground	 observations	 (e.g.	
from	hunters	and	vessel	operators)	of	real- time caribou movements. 
However,	near- future	 information	on	expected	peak	 sea	 ice	 cross-
ing periods would help mitigate impacts ahead of time and allow 
refinement	 of	 the	 notice	 period	 on	 an	 annual	 basis	 (Doucette	 &	
Mansfield,	 2024).	 Here,	 we	 explore	 whether	 AI	 sea	 ice	 forecasts	
could	be	used	to	anticipate	the	timing	of	autumn	sea	ice	crossings,	
to	drive	these	more	refined	area-	based	management	strategies.	As	a	
demonstration	model	we	use	IceNet,	which	shows	promising	results	
in	forecasting	daily	pan-	Arctic	sea	ice	concentration	(SIC)	at	25 km	
resolution	 (Andersson,	 Hosking,	 Krige,	 et	 al.,	 2021;	 Andersson,	
Hosking,	 Pérez-	Ortiz,	 et	 al.,	2021).	We	 adopt	 a	multi-	stakeholder	
approach,	developing	our	objectives	and	methods	with	an	interdis-
ciplinary	team	which	includes	AI-	forecasting	experts,	regional	gov-
ernment	biologists,	conservation	practitioners,	software	engineers,	
and	remote	sensing	and	sea	 ice	experts	 (all	 listed	co-	authors).	Our	
research	had	three	main	objectives;	these	were:	(i)	to	quantify	links	
between	autumn	SIC	 formation	and	 the	 timing	of	DU	caribou	 sea	
ice	crossings,	by	linking	movement	records	from	telemetry	tracked	
caribou	with	 the	passive	microwave	derived	SIC	products	used	 to	
train	IceNet,	(ii)	develop	metrics	which	can	convert	SIC	time	series	

to	anticipated	sea	ice	crossing	times,	and	(iii)	explore	the	utility	of	the	
IceNet	prediction	system	for	local	communities,	conservation	plan-
ners	and	regional	governments,	while	also	assessing	 its	 limitations	
and potential future improvements to enhance the accuracy of sea 
ice crossing predictions.

2  |  MATERIAL S AND METHODS

2.1  |  Study region, sea ice conditions and migration 
patterns

The	region	of	interest	in	this	study	lies	between	Victoria	Island	and	
mainland	Nunavut	in	the	Canadian	Arctic	Archipelago,	and	includes	
the	eastern	Dolphin	and	Union	Strait,	Coronation	Gulf,	Dease	Strait,	
and	western	Queen	Maud	Gulf	 (Figure 1).	During	the	summer,	the	
region	 is	 fully	 open	 water	 for	 several	 months,	 transitioning	 to	 a	
continuous cover of land fast ice which remains for several months 
over	 the	winter	 (Montpetit	 et	 al.,	2023).	 There	 is	 substantial	 tem-
poral	and	spatial	variability	in	autumn	freeze-	up	patterns	(Paquette	
et	al.,	2023;	Poole	et	al.,	2010).	Typically,	 freeze-	up	 levels	suitable	
for	 caribou	 crossings	 are	 expected	 between	 15	 October	 and	 30	
November,	 which	 is	 the	 timeframe	 designated	 for	 caution	 in	 the	
NOTMAR	(NOTMAR,	2020).	Freeze-	up	also	consistently	occurs	from	
east	to	west,	with	areas	initially	freezing	over	with	a	layer	of	new	ice	
before	solidifying	into	more	stable	grey	ice	(Poole	et	al.,	2010).

Dolphin	 and	 Union	 caribou	 begin	 their	 southwards	 migration	
from	 post-	calving	 summer	 and	 autumn	 ranges	 on	 Victoria	 Island.	
When	 they	 reach	 the	Victoria	 Island	 coastline,	 they	 are	 forced	 to	
wait for stable grey ice conditions to form before continuing their 
migration	over	sea	ice,	eventually	reaching	mainland	winter	ranges	
(Poole	et	al.,	2010).	We	note	that	in	this	study	we	focus	on	the	sea	ice	
crossing segment of the autumn migration specifically. Depending 
on	the	 location	within	the	study	region,	sea	 ice	crossing	distances	
range	between	approximately	20	 to	70 km,	with	caribou	generally	
completing	the	crossing	in	a	matter	of	days	(for	more	details	we	refer	
readers	to	Poole	et	al.,	2010).	While	a	small	number	of	caribou	may	
remain	on	Victoria	Island	(e.g.	due	to	poor	body	condition	preventing	
migration),	this	study	focuses	on	inferring	the	general	behaviour	of	
the	herd	that	undertakes	the	sea	ice	crossing.

2.2  |  Data and models

2.2.1  |  Satellite	telemetry	(collar)	dataset

The data used in this study captures the movement patterns of 131 
mature	 female	 DU	 caribou	 fitted	 with	 collar	 trackers;	 herein	 re-
ferred to as the collar dataset. For more details of capture and col-
laring	 procedures,	 please	 see	 Leclerc	 and	Boulanger	 (2018,	2020)	
and	Roberto-	Charron	(2021).	We	note	that	DU	caribou	bulls	are	not	
fitted	with	collars	due	to	their	necks	expanding	during	the	rutting	
season;	however,	 there	 is	 strong	evidence	 that	during	 the	autumn	
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sea	ice	crossing,	males	and	females	migrate	together	(Species	at	Risk	
Committee,	2023).	In	this	paper,	we	refer	to	each	GPS	location	re-
corded by a collar as a fix,	and	the	frequency	of	records	as	the	 fix 
rate.	Collars	were	deployed	across	seven	different	campaigns	span-
ning	 the	 periods	 1996–2005	 and	 2015–2022,	with	 fix	 rates	 vary-
ing	both	between	and	within	years	(Table S1).	We	used	a	restricted	
date range of collar records collected between 15 October and 30 
December for each year to cover the period of the autumn migra-
tion	only.	Collars	can	remain	active	for	several	years;	hence,	there	
are often multiple autumn sea ice crossing trajectories recorded for 
each	individual	caribou.	From	the	131	individuals,	there	were	a	total	
of 263 of these autumn migration trajectories for use in the analysis 
(Table S2).

Figure 1 shows the study region and a summary of the autumn 
migration trajectories. The main sea ice crossing routes used by the 
caribou	are	in	the	east	to	Kent	Peninsula	and	in	the	west	using	the	
island	chains	from	Edinburgh	Island.	As	DU	caribou	travel	in	groups	
(in	the	2019	aerial	survey	observed	group	sizes	were	8.4 ± 7.3	indi-
viduals	on	average	(Leclerc	&	Boulanger,	2020)),	satellite	telemetry	
tracks	can	be	used	to	 infer	herd	spatial	and	temporal	movements.	
During	 deployment	 campaigns,	 collars	 are	 distributed	 across	 the	
Dolphin	 and	 Union	 winter	 range,	 from	 the	 west	 side	 of	 Bathurst	
Inlet	to	the	east	side	of	the	Kent	Peninsula,	to	capture	the	variation	

in	movement	across	individuals	(or	groups	of	individuals;	Leclerc	&	
Boulanger,	2018,	2020;	Roberto-	Charron,	2021).

2.2.2  |  Observational	sea	ice	concentration	data

Sea	ice	concentration	(SIC)	is	defined	as	the	percentage	of	a	passive	
microwave	 satellite	 image	 grid	 cell	 that	 is	 covered	 by	 ice,	 ranging	
from	open	water	(0%)	to	full	ice	coverage	(100%).	We	use	passive	mi-
crowave radiometry satellite brightness observations that are con-
verted	to	SIC	values	using	the	well-	established	Ocean	and	Sea	Ice	
Satellite	Application	Facilities	(OSI-	SAF)	algorithm.	The	passive	mi-
crowave radiometry record provides some of the longest and most 
continuous	records	of	SIC	because	it	is	not	affected	by	cloud	cover	
or light levels and has been in- orbit since the late 1970s.

The	 (OSI-	SAF)	products	used	 in	 this	 study	are	derived	 from	 the	
Special	 Sensor	 Microwave	 Imager/Sounder	 sensors.	 These	 prod-
ucts	 have	 provided	 daily,	 pan-	Arctic	 data	 on	 SIC	 at	 25 km	 resolu-
tion	 (25 km × 25 km	pixel	size)	since	1979	(Lavergne	et	al.,	2019).	We	
downloaded	OSI-	SAF	 data	 from	 the	 European	Organisation	 for	 the	
Exploitation	of	Meteorological	Satellites	data	portal	 (OSI	SAF,	2017,	
2019).	To	assess	potential	performance	gains	from	using	higher	spatial	
resolution	data,	we	also	compared	against	the	University	of	Bremen	

F I G U R E  1 Map	showing	study	region	and	autumn	migration	routes	recorded	for	mature	female	DU	caribou	between	15	October	and	
15	December,	as	the	caribou	migrate	south	from	Victoria	Island	to	the	Kitikmeot	mainland.	Telemetry	tracks	are	coloured	by	two	time	
periods	in	which	they	were	recorded,	between	1996–2005	(blue)	and	2015–2022	(orange).	The	5 km	Victoria	Island	coastline	buffer	used	for	
extracting	sea	ice	crossing-	start	points	is	shown	as	a	red	dashed	line.	Base	map	sourced	from	OpenStreetMap	(OpenStreetMap,	2023).
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    |  5 of 15BOWLER et al.

product	derived	from	the	Advanced	Microwave	Scanning	Radiometer	
2	(AMSR2)	sensor,	which	started	recording	SIC	in	2012	at	a	6 km	res-
olution	(Spreen	et	al.,	2008).	We	downloaded	the	SIC	dataset	derived	
from	the	AMSR2	sensor	from	the	University	of	Bremen	data	portal.

2.2.3  |  IceNet	model	and	forecasts

The	IceNet	model	is	based	on	a	U-	Net	convolutional	neural	network	
architecture	(Ronneberger	et	al.,	2015),	and	is	accessible	via	an	open-	
source	repository	(https:// github. com/ icene t-  ai/ icenet).	It	is	trained	
to	 forecast	 future	 OSI-	SAF	 SIC	 conditions	 by	 learning	 from	 over	
30 years	of	historical	 training	data,	 including	past	 and	present	SIC	
fields	and	atmospheric	reanalysis	data	(Andersson,	Hosking,	Pérez-	
Ortiz,	et	al.,	2021).	IceNet's	monthly	pan-	Arctic	25 km	SIC	forecasts	
were	shown	to	outperform	the	leading	physics-	based	model,	SEAS5,	
at	two-	month	lead	times	and	beyond,	while	using	a	fraction	of	the	
computational	cost	(Andersson,	Hosking,	Pérez-	Ortiz,	et	al.,	2021).	
Following	the	initial	publication,	IceNet	has	been	adapted	to	forecast	
25 km	SIC	at	a	daily	timescale	for	up	to	93 days	lead	time	(Andersson,	
Hosking,	Krige,	et	al.,	2021).

The daily version of IceNet we employ for this study is an ensem-
ble	of	10	individual	U-	Net	models,	each	separately	trained	using	daily	
OSI-	SAF	SIC	and	climate	records	from	1979	to	2014	(Table S3).	We	val-
idated models using data from 2015 to 2019. Data from 2020 to 2022 
were	left	as	an	unseen	test	set	to	assess	results.	Missing	OSI-	SAF	dates	
pre-	2015	were	excluded	from	the	training	phase	(n = 291),	and	a	small	
number	of	missing	dates	 in	the	validation	and	test	years	(n = 3)	were	
filled	using	temporal	linear	interpolation	(for	a	full	list	of	missing	files	
see	OSI-	SAF	 product	 user	manual;	 EUMETSAT,	2023).	 Final	 IceNet	
outputs are presented as the mean across the 10- model ensemble.

2.3  |  Analytic approach

2.3.1  | Multi-	stakeholder	development	approach

Our	method	was	developed	using	a	multi-	stakeholder	 approach	 to	
ensure	 relevant	 expertise	 and	 knowledge	 continually	 informed	 the	
system's	design.	An	interdisciplinary	team	of	scientists	and	stakehold-
ers	provided	expertise	in	key	areas,	including	regional	biology,	remote	
sensing	of	sea	ice,	AI	sea	ice	forecasting	and	polar	conservation	and	
management. This approach facilitated ongoing refinement of the de-
sign	of	the	tool,	with	the	aim	of	providing	practical	outputs	to	guide	
human	experts	in	their	decision-	making	rather	than	a	fully	automated	
approach.	For	example,	using	SIC	forecast	maps	and	metrics	in	con-
junction	with	other	weather	forecasts,	real-	time	collar	locations,	and	
expert	ecological	knowledge.	Team	discussions	also	highlighted	the	
need	 for	probabilistic	outputs,	 for	 instance	 summarised	as	percen-
tiles	or	likelihood	of	caribou	crossing,	such	that	uncertainty	could	be	
clearly captured and assessed by users of the tool.

Beyond	the	core	team,	we	engaged	a	broader	network	of	stake-
holders	at	key	points	during	the	project.	Inuit	partners	were	regularly	

updated	on	the	research	on	the	DU	caribou	herd	by	Government	of	
Nunavut representatives. The local hunters and trappers community 
was	supportive	of	the	work,	provided	comments,	and	received	the	final	
project	report.	A	DU	caribou	user-	to-	user	meeting	(November	2022)	
provided	an	opportunity	to	present	project	findings	and	seek	further	
feedback.	At	the	end	of	the	project,	representatives	from	government	
organisations	involved	in	the	NOTMAR	system	were	invited	to	a	wider	
stakeholder	meeting.	This	event	provided	an	opportunity	 to	discuss	
the	project	 findings	and	their	application,	 including	the	potential	 for	
the outputs to be integrated into the current management approach. 
An	example	of	feedback	from	the	wider	stakeholder	engagement	was	
reiterating the importance of the privacy of real- time caribou teleme-
try	data.	Emphasis	was	that	if	real-	time	data	were	to	be	integrated	into	
the	tool,	strong	data	privacy	should	be	built	 into	any	software	infra-
structure,	with	access	limited	to	authorised	individuals	only.

2.3.2  |  Crossing-	start	detection	algorithm

Through visual assessment of animations depicting caribou migra-
tion	patterns	in	relation	to	SIC	data	products,	we	observed	that	sea	
ice	 conditions	 at	 the	Victoria	 Island	 coast	were	 a	 strong	 precursor	
for	sea	ice	crossing-	start	times.	We	therefore	refined	our	objective,	
focusing specifically on predicting when caribou begin their sea ice 
crossings	 rather	 than	 the	duration	or	 routes	 taken.	To	achieve	 this,	
we	 developed	 a	 novel	 crossing-	start	 detection	 algorithm.	 First,	we	
defined	a	“crossing-	start	contour”	which	is	the	Victoria	Island	coast-
line	(from	Open	Street	Map's	land	polygon	dataset;	Open	Street	Map	
data,	2023)	with	a	5 km	buffer	added	away	 from	the	coast	 (hereon	
the	“VI-	buffer”).	This	buffer	accounts	for	potential	inaccuracy	in	the	
coastline and collar data and means that all crossing- start points can 
be	defined	at	a	consistent	distance	from	the	coast.	Then,	we	made	
small	 manual	 adjustments	 to	 the	 VI-	buffer	 to	 incorporate	 expert	
knowledge	of	 the	 region	and	caribou	crossing	 routes,	 to	 include	 is-
lands	very	close	to	the	mainland,	which	the	caribou	use	for	staging.	
The	final	VI-	buffer	is	displayed	in	Figure 1.

Using	the	VI-	buffer,	our	crossing-	start	detection	algorithm	pro-
cesses each autumn migration trajectory as follows:

1.	 Intersect	 the	 caribou	 trajectory	 with	 the	 VI-	buffer.	 Label	 each	
GPS	 fix	 as	 either	 on	 Victoria	 Island	 (=1)	 or	 not	 (=0).

2.	 Search	the	trajectory	for	the	point	where	the	caribou	leaves	the	
VI-	buffer	and	does	not	return	(i.e.	a	GPS	fix	of	1	followed	by	only	
0 s).	If	the	trajectory	ends	in	a	1,	mark	it	as	invalid.

3.	 Estimate	the	point	and	time	the	caribou	crosses	the	VI-	buffer	by	
linearly	interpolating	between	the	last	GPS	fix	on	Victoria	Island	
and	the	first	GPS	fix	of	 the	sea	 ice	crossing	 (assuming	constant	
speed	and	travelling	in	a	straight	line).	This	defines	the	crossing-	
start point for the trajectory.

The	 longer	 the	 time	 interval	 between	 the	 last	 fix	 on	 Victoria	
Island	and	 the	 first	 fix	of	 the	 sea	 ice	crossing,	 the	 less	 certain	we	
can be of the estimated crossing- start point time and location 
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6 of 15  |     BOWLER et al.

(when	and	where	the	caribou	crosses	 the	VI-	buffer).	 In	 this	study,	
we	selected	an	upper	limit	of	3 days	difference;	however,	this	could	
be adjusted depending on different user specifications. Of n = 263	
autumn	migration	trajectories,	n = 37	were	marked	as	invalid,	and	a	
further n = 29	had	fix	intervals	above	3 days	(Table S2).	This	resulted	
in n = 197	autumn	migration	trajectories	(n = 53	pre-	2014	and	n = 144	
post-	2014)	for	our	final	analysis.

2.3.3  |  Linking	SIC	and	crossing-	start	times

To	quantify	the	link	between	crossing-	start	time	and	passive	micro-
wave	derived	SIC	data,	we	extract	the	OSI-	SAF	and	AMSR2	SIC	time	
series	 recorded	at	each	crossing-	start	point	 (Figure 2).	We	sample	
SIC	±46 days	either	side	of	each	crossing-	start	date,	 resulting	 in	a	
93-	day	SIC	time	series	equivalent	to	the	 length	of	an	 IceNet	fore-
cast.	To	assess	the	relationship,	we	plot	the	distribution	of	SIC	val-
ues recorded across all crossing- start points in the training dataset. 
We	also	summarise	the	distribution	of	SIC	values	recorded	on	the	
crossing- start dates.

To	convert	a	given	SIC	time	series	to	a	predicted	crossing-	start	
date,	we	first	apply	a	rolling	mean	average	with	window	length	ω to 
reduce	the	effects	of	noise,	and	then	search	for	the	date	at	which	the	
smoothed	SIC	time	series	first	passes	above	a	given	SIC	threshold	
(sic_thresh).	This	gives	us	a	predicted	crossing-	start	date	which	can	
be	 compared	 to	 the	 observed	 crossing-	start	 date	 extracted	 using	
the crossing- start detection algorithm. To find optimal smoothing 
parameters we search for ω	and	sic_thresh	values,	which	minimise	
the	mean	absolute	day	error	(MADE)	on	the	test	set	(see	Methods	
S1	for	more	details).	We	found	ω = 40	produced	the	best	results	for	

OSI-	SAF	(minimum	MADE = 6.35)	and	ω = 50	for	AMSR2	(minimum	
MADE = 6.13)	datasets.

2.3.4  |  Percent-	crossed	metrics	and	maps

Using	our	chosen	ω	values,	we	compute	predicted	crossing-	start	
dates	for	a	 range	of	SIC	thresholds	 (from	0.5	to	1	with	an	 inter-
val	of	0.01).	For	each	 threshold,	we	 recorded	 the	percentage	of	
caribou	that	had	crossed	before	the	predicted	date	(i.e.	observed	
crossing-	start	date	≤	predicted	crossing-	start	date).	We	define	the	
SIC	 conditions	which	 equate	 to	n percent of the caribou cross-
ing as the n%- crossed	SIC	criteria	 (where	n	can	be	chosen	at	any	
value	between	0%	and	100%).	This	allows	 for	a	probabilistic	 in-
terpretation	 of	 outputs,	 for	 example,	 estimating	 time	 intervals	
when	10%–90%	of	the	herd	would	be	expected	to	cross.	To	pro-
duce	 spatiotemporal	 outputs,	 we	 apply	 n%-	crossed	 SIC	 criteria	
to	 forecast	 SIC	 time	 series	 to	 generate	n%- crossed maps. These 
show	the	dates	at	which	each	grid	cell	is	expected	to	meet	the	n%-	
crossed	SIC	criteria.	The	n%-	crossed	SIC	criteria	were	computed	
using	1996–2019	records	for	OSI-	SAF	and	2015–2019	records	for	
AMSR2.	Years	2020–2022	were	reserved	for	testing	the	sea	 ice	
crossing prediction system.

2.3.5  |  Evaluating	IceNet's	performance	in	the	
study region

We	 use	 a	 similar	 analysis	 to	 Andersson,	 Hosking,	 Pérez-	Ortiz,	
et	 al.	 (2021)	 to	 evaluate	 the	 sea	 ice	 forecasting	 ability	 of	 this	

F I G U R E  2 (a)	An	example	crossing-	start	point	(black	cross)	extracted	using	the	crossing-	start	detection	algorithm.	This	is	overlaid	on	
(i)	OSI-	SAF	and	(ii)	AMSR2	sea	ice	concentration	observations	recorded	on	the	crossing-	start	date.	(b)	Example	OSI-	SAF	and	AMSR2	SIC	
profiles	extracted	at	the	crossing-	start	point,	with	black	dashed	line	showing	the	observed	crossing-	start	date.
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    |  7 of 15BOWLER et al.

daily-	resolution	variant	of	 IceNet,	 and	make	comparisons	against	
the	European	Centre	for	Medium-	Range	Weather	Forecasts	SEAS5	
model	(Johnson	et	al.,	2019).	SEAS5	is	one	of	the	best	performing	
dynamical	SIC	forecast	models,	allowing	us	to	benchmark	the	ac-
curacy	of	our	AI	approach	against	leading	non-	AI	alternatives.	We	
note	that	the	version	of	SEAS5	assessed	here	is	a	25-	model	ensem-
ble;	however,	due	to	restricted	computational	resources	for	train-
ing,	 the	 version	of	 IceNet	 consists	 of	 a	10-	model	 ensemble—this	
gives	SEAS5	an	advantage	due	to	lower	variance	in	the	ensemble	
mean.

We	assess	the	accuracy	of	the	forecasts	both	at	the	pan-	Arctic	
scale	 and	 in	 the	 study	 region.	 We	 bias	 correct	 SEAS5	 forecasts	
(a	 routine	 approach	 for	 calibrating	 climate	 models;	 Andersson,	
Hosking,	 Pérez-	Ortiz,	 et	 al.,	 2021)	 by	 subtracting	 the	mean	 error	
field	for	a	given	date	and	lead	time,	computed	as	an	average	over	the	
years	2005–2014.	Each	forecast	lead	time	date	is	compared	against	
observational	OSI-	SAF	data	using	the	SIC	mean	absolute	error	(%).	
Since	SEAS5	forecasts	are	only	initialised	on	the	1	of	each	month,	we	
restrict comparisons to these initialisation dates for the 2015–2022 
validation	and	test	years	(n = 96	forecasts).	We	present	results	as	the	
mean	 error	 for	 each	 of	 the	 93-	day	 lead	 times,	with	 bootstrapped	
95%	confidence	intervals	for	the	mean.

2.3.6  |  IceNet	crossing-	start	prediction	analysis

To compare predicted crossing- start dates to those observed in the 
test	years,	we	show	date	 ranges	by	extracting	 the	earliest	date	 in	
the	10%-	crossed	map	to	the	latest	in	the	90%-	crossed	map,	taking	
only grid cells which were used by caribou in that year. We also show 
the	inter-	quartile	range	of	predictions	(the	earliest	25%-	crossed	date	
to	the	latest	75%-	crossed	date).	These	are	plotted	against	crossing-	
start dates observed in the test years. We validate the approach by 
applying	the	methods	to	observed	OSI-	SAF	and	AMSR2	time	series.	
We	apply	OSI-	SAF	n%-	crossed	SIC	criteria	to	IceNet	forecasts	to	as-
sess the success of the final prediction system. We compare IceNet 
forecasts	generated	one,	two,	and	three	weeks	before	the	first	ob-
served	crossing-	start	date	in	each	year	(IceNet_1w,	IceNet_2w	and	
IceNet_3w	 respectively).	 These	 lead	 times	were	 recommended	 as	
appropriate	 levels	of	early	warning	for	stakeholders	 from	shipping	
and conservation agencies.

3  |  RESULTS

3.1  |  The relationship between SIC and 
crossing- start times

Our	analysis	of	the	relationship	between	SIC	and	crossing-	start	
times	 reveals	 a	 clear	 pattern;	 the	 distribution	 of	 SIC	 freeze-	up	
profiles	shows	that	crossing-	start	times	coincide	with	SIC	reach-
ing	high	levels	(Figure 3).	The	link	is	clearer	in	AMSR2	(Figure 3b,	
(i))	than	OSI-	SAF	(Figure 3a,	(i)),	however,	we	also	observe	higher	

variability	 in	AMSR2	data	prior	to	the	crossing-	start	date,	 likely	
due	 to	 the	 higher	 resolution	 product	 capturing	 more	 SIC	 vari-
ation	 at	 the	 coast.	Distributions	 of	 SIC	 values	 on	 the	 crossing-	
start	 date	 are	 higher	 and	 less	 variable	 in	 AMSR2	 (median	
98.8%	 (IQR = 94.1%,	 100.0%))	 than	 in	 OSI-	SAF	 (median	 90.0%	
(IQR = 83.0%,	95.8%)).

Using	our	percent-	crossed	analysis	(Section	2.3.4)	we	were	able	
to	convert	this	SIC	 information	 into	probabilistic	mappings,	show-
ing	 the	 percent	 of	 caribou	 (in	 the	 pre-	2020	 collar	 dataset)	which	
had	crossed	by	various	SIC	thresholds	 (Figure 4).	We	see	that	the	
likelihood	of	crossing	increases	as	SIC	thresholds	increase	in	a	sim-
ilar	 pattern	 for	 both	OSI-	SAF	 and	AMSR2.	 These	mappings	 allow	
end- users to select different percent- crossed values depending on 
their	 requirements,	 fulfilling	 needs	 highlighted	 in	 our	 stakeholder	
discussions.

3.2  |  Metric outputs and maps

To	 visualise	 and	 interpret	 the	 spatiotemporal	 links	 between	 SIC	
and	crossing-	start,	the	relationship	in	Figure 4 can be used to gen-
erate n%-	crossed	maps.	These	maps	indicate,	for	each	coastal	grid	
cell,	when	n%	of	caribou	in	the	pre-	2020	collar	dataset	would	have	
started	migrating,	based	on	SIC	criteria.	In	Figure 5	we	show	exam-
ple	10%-	crossed	maps	generated	using	observational	OSI-	SAF	data;	
for	corresponding	AMSR2	and	IceNet	outputs,	see	Figures S1 and 
S2.	We	note	in	the	case	of	OSI-	SAF	and	AMSR2	“initialisation	date”	
here	refers	to	the	first	date	of	the	93-	day	time	series	extracted	from	
the	observational	data,	creating	an	exemplar	forecast	for	compari-
son	with	IceNet	predictions.	We	present	three	example	initialisation	
dates	at	2-	week	intervals	before	and	during	the	sea	ice	crossing	(17th	
October,	 31st	 October	 and	 14th	 November),	 comparing	 between	
2021 and 2022. Real- time caribou locations for each initialisation 
date are overlaid on each map to illustrate how this information can 
guide	users	 in	 identifying	which	grid	cells	are	most	 likely	to	be	se-
lected for crossing. We note that in 2021 the freeze- up and crossing- 
start	dates	were	particularly	late;	on	average	10 days	later	than	the	
mean crossing- start date recorded between 2015 and 2022. This 
late	crossing	is	well	captured	by	the	10%-	crossed	maps,	which	show	
longer time horizons for the 17th and 31st October initialisations in 
2021 compared to 2022.

3.3  |  IceNet performance

In	terms	of	raw	SIC	forecasting	accuracy,	IceNet	outperforms	SEAS5	
at	all	lead	times,	both	in	the	pan-	Arctic	outputs	and	in	the	study	re-
gion	(Figure 6).	Bootstrapped	95%	confidence	intervals	for	the	mean	
errors	do	not	overlap,	showing	the	differences	are	significant.	In	the	
study	region,	mean	SIC	errors	compared	to	OSI-	SAF	are	5.5 ± 0.5%	
for	 IceNet	 (when	averaging	across	 lead	 times)	 and	12.0 ± 0.7%	 for	
SEAS5.	 We	 note	 that	 in	 the	 study	 region,	 mean	 errors	 for	 both	
models	 remain	 relatively	 level	 as	 lead	 time	 increases,	 rather	 than	
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8 of 15  |     BOWLER et al.

increasing	as	expected	in	the	pan-	Arctic	case.	This	is	likely	because,	
for	much	of	the	year,	the	region	is	either	completely	frozen	or	com-
pletely	 ice	 free,	 which	makes	 long-	range	 forecasts	 quite	 accurate	
overall,	with	main	sources	of	error	occurring	in	the	relatively	short	
freeze-	up	and	break-	up	seasons.

To	assess	IceNet's	ability	at	forecasting	crossing-	start	times	we	
summarise the spatiotemporal data represented in Figure 5 into 
date	 ranges.	We	 take	 the	 earliest	 date	 in	 the	 10%-	crossed	map	
to	 the	 latest	 in	 the	90%-	crossed	map	as	whiskers,	 selecting	only	
grid cells actively used by collared caribou for crossing that year. 
Similarly,	boxes	represent	the	earliest	date	in	the	25%-	crossed	map	
to	the	latest	in	the	75%-	crossed	map.	In	Figure 7	we	show	IceNet's	
predicted crossing- start ranges for 2021 and 2022; results for 
2020 are presented in Figure S3 due to the low number of obser-
vational	data	points	that	year	(n = 3).	We	note	that	while	this	allows	
us to compare predicted date ranges against observational data 
(the	crossing-	start	times	from	collared	caribou	which	are	shown	as	
grey	points),	it	is	important	to	highlight	that	this	is	a	simplification	
of the problem that is better captured by mapped spatiotemporal 
information.

Using	OSI-	SAF	as	a	benchmark,	our	predicted	date	ranges	ac-
curately encompass the observed crossing- start dates in the test 
years.	 AMSR2	 data	most	 accurately	 captures	 the	 late	 freeze-	up	
in 2021 but predicts slightly later than observed in 2022. IceNet 
results	 are	promising,	with	predicted	 crossing-	start	 ranges	 com-
parable	to	those	achieved	with	OSI-	SAF	data,	especially	in	2022.	
In	2021,	 IceNet_3w	 forecasts	 a	 range	approximately	 two	weeks	
earlier	than	OSI-	SAF,	but	results	improve	as	lead	time	decreases.	
Results	 for	 all	 IceNet	 lead	 times,	 including	 results	 for	 2020,	 are	
presented in Figure S4.

F I G U R E  3 Comparison	of	SIC	data	extracted	from	all	crossing-	start	points	using	(a)	25 km	resolution	OSI-	SAF	(n = 197)	and	(b)	6 km	
resolution	AMSR-	2	(n = 144)	satellite	records.	We	show	(i)	the	daily	distribution	of	SIC	values	recorded	at	crossing-	start	points ± 45 days	from	
the	crossing-	start	date	and	(ii)	the	distribution	of	SIC	values	recorded	on	the	crossing-	start	date	(day = 0).

F I G U R E  4 Curves	showing	the	percentage	of	caribou	(from	pre-	
2020	satellite	telemetry	collar	observations	only)	that	had	crossed	
by	each	SIC	threshold.	Results	computed	for	both	OSI-	SAF	and	
AMSR2	SIC	datasets.
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    |  9 of 15BOWLER et al.

F I G U R E  5 Example	10%-	crossed	maps	produced	on	three	initialisation	dates	(17	October,	31	October	and	14	November)	for	2021	and	
2022.	Colours	show	the	number	of	days	after	the	initialisation	date	that	each	grid	cell	is	expected	to	meet	the	10%-	crossed	SIC	criteria	(the	
SIC	conditions	where	10%	of	caribou	in	the	observational	data	would	have	crossed).	Dark	red	(<0 days)	means	the	10%-	crossed	SIC	criteria	
have	already	been	met.	Black	points	show	the	locations	of	collared	caribou	on	each	initialisation	date.

F I G U R E  6 Mean	SIC	error	(%),	where	error	is	the	mean	absolute	difference	between	forecast	SIC	and	OSI-	SAF	SIC,	taken	across	96	
forecasts	from	2015	to	2022.	Error	bars	represent	the	bootstrapped	95%	confidence	intervals	for	the	mean.	We	show	results	(a)	for	the	pan-	
Arctic	and	(b)	for	the	study	region	only.

 26888319, 2025, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.70034 by B

ritish A
ntarctic Survey, W

iley O
nline L

ibrary on [29/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 15  |     BOWLER et al.

4  |  DISCUSSION

4.1  |  The relationship between SIC and 
crossing- start times

Our	 results	 show	 a	 strong	 link	 between	 SIC	 reaching	 high	 levels	
and	 the	 female	DU	caribou	 starting	 their	 autumn	 sea	 ice	 crossing	
between	Victoria	Island	and	the	Canadian	mainland	(Figure 3).	This	
shows	clear	potential	 in	using	 forecast	SIC	 freeze-	up	profiles	 as	 a	
precursor	for	crossing-	start	times.	The	distribution	of	SIC	values	re-
corded on crossing- start dates shows values critical for the caribou 
to migrate across the gulf. While both datasets revealed a similar 
pattern,	 crossing-	start	 SIC	values	were	higher	 and	 less	 variable	 in	
AMSR2	(median	98.8%	(IQR = 94.1%,	100.0%))	than	in	OSI-	SAF	(me-
dian	90.0%	(IQR = 83.0%,	95.8%)),	due	to	finer	spatial	resolution.	In	
both	 cases,	 the	 requirement	 for	~90%	SIC	 for	 caribou	 sea	 ice	use	
aligns with values derived from other data sources and traditional 
knowledge	(Paquette	et	al.,	2023;	Poole	et	al.,	2010).

The	6 km	resolution	AMSR2	data	provides	a	more	accurate	pic-
ture	 of	 localised	 SIC	 variation,	 at	 a	 scale	more	 comparable	 to	 the	
movement	 of	 individual	 caribou.	 A	 visual	 comparison	 in	 Figure 8 
clearly	reveals	how	AMSR2	can	capture	small	areas	of	open	water	
blocking	 the	 caribou	 crossing,	while	 this	 detail	 is	 averaged	 out	 in	
the	 corresponding	OSI-	SAF	data.	This	motivates	 the	development	
of higher resolution IceNet forecasts capable of capturing fine 
scale ice dynamics. We also note there are inherent uncertainties 
and	 biases	 in	 SIC	 values	 derived	 from	passive	microwave	 radiom-
etry	data,	 for	example	contamination	with	 land	 in	coastal	 regions,	
sensitivities	to	surface	melt	water,	and	underestimation	of	thin	sea	

ice	 (EUMETSAT,	 2023).	 In	 comparison	 to	 ground-	based	 observa-
tional	data,	OSI-	SAF	and	AMSR2	have	biases	of	−1.0%	and	−3.9%	
respectively	 (Kern	 et	 al.,	 2019),	 although	 these	 uncertainties	 are	
lower	at	high	SIC	values	required	by	caribou	(Heinrich	et	al.,	2006).	
Nevertheless,	passive	microwave	radiometry	data	can	only	provide	
an estimate and could be compared to direct observations of sea 
ice from visible or synthetic aperture radar satellites to validate 
observations.

While	 our	 analysis	 indicates	 a	 strong	 link	 between	 OSI-	SAF	
and	AMSR2	SIC	time	series	and	crossing-	start	times,	it	is	import-
ant	 to	 highlight	 the	 limitations	 of	 using	 passive	 microwave	 SIC	
datasets	as	 the	 sole	predictor.	Sea	 ice	 is	 complex,	 and	 there	are	
numerous	aspects	including	ice	thickness,	surface	roughness,	and	
the	presence	of	surface	melt	water,	which	could	influence	the	car-
ibou	sea	ice	crossing	(Leblond	et	al.,	2015;	Paquette	et	al.,	2023).	
Relationships to these variables could be assessed using supple-
mentary	 datasets,	 for	 example	 new	 year-	round	 satellite	 records	
of	ice	thickness	(Landy	et	al.,	2022)	or	Canadian	Ice	Service	charts	
(Paquette	 et	 al.,	2023)	 to	 build	 a	more	 complete	 understanding	
of how caribou respond to other properties of sea ice. Other 
weather-	related	 factors	 such	 as	 snow	 depth,	wind	 strength	 and	
storm events could also prevent the caribou from migrating even 
if	 ice	conditions	appear	suitable	(Gurarie	et	al.,	2019).	These	ele-
ments could be assessed from other forecasts to guide decision- 
making	 leading	 up	 to	 expected	 crossing-	start	 dates.	 Ultimately,	
it is important to recognise that the decisions guiding individuals 
or groups of animals are not influenced by a single environmental 
variable.	 For	 example,	 complex	 social	 dynamics	within	 the	 herd	
are	 also	 important	 in	 guiding	 migratory	 movements	 (Cameron	

F I G U R E  7 A	comparison	of	predicted	crossing-	start	ranges	generated	using	OSI-	SAF,	AMSR2	and	IceNet.	IceNet	outputs	are	
demonstrated	for	three	different	lead	times–one-	,	two-		and	three-	weeks	before	the	first	observed	crossing-	start	date	in	that	year	
(IceNet_1w,	IceNet_2w	and	IceNet_3w	respectively).	Whiskers	show	the	earliest	date	in	the	10%-	crossed	map	to	the	latest	in	the	90%	
crossed	map,	considering	only	grid	cells	actively	used	by	migrating	caribou	that	year.	Boxes	show	the	earliest	date	in	the	25%-	crossed	map	to	
the	latest	date	in	the	75%-	crossed	map,	also	restricted	to	actively	used	grid	cells.	Grey	dots	show	the	observed	crossing-	start	dates	for	the	
collared	caribou	in	each	year	(n = 34	in	2021,	and	n = 27	in	2022).
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et	 al.,	 2020;	 Torney	 et	 al.,	 2018).	 Pressures	 such	 as	 predator	
avoidance,	 the	need	 to	access	new	 feeding	grounds,	 and	myriad	
other factors might drive caribou to attempt their sea ice cross-
ing,	potentially	at	different	SIC	levels	(Gurarie	et	al.,	2019;	Leblond	
et	 al.,	2015;	 Paquette	 et	 al.,	2023).	 It	 is	 therefore	 essential	 that	
human	experts	remain	at	 the	centre	of	the	decision-	making	pro-
cess,	so	 in-	depth	knowledge	(including	scientific,	 Indigenous	and	
local	knowledge	systems)	of	the	study	species	and	region	can	be	
combined with forecast and real- time data to determine appropri-
ate conservation actions.

4.2  |  Utility of the sea ice crossing 
prediction system

When	applied	 to	observational	OSI-	SAF	data,	our	n%-	crossed	SIC	
criteria produce crossing date ranges which closely match those ob-
served in the test years. The current version of IceNet shows prom-
ise	 in	 forecasting	these	results,	producing	predicted	crossing-	start	
ranges	comparable	to	OSI-	SAF	in	2022,	but	systematically	forecasts	
an earlier crossing in 2021. This suggests IceNet needs further im-
provement	before	it	would	be	fit	for	operational	use,	although	over-
all	the	results	are	encouraging.	As	our	comparison	to	SEAS5	shows,	
IceNet already significantly outperforms one of the leading physics- 
based	systems,	highlighting	the	potential	for	AI	models	to	offer	im-
proved	forecast	accuracy	for	conservation	decision-	making.	The	fact	
that	AI	 forecasting	 systems	 are	 now	 advancing	more	 rapidly	 than	
traditional	physics-	based	systems	(Bi	et	al.,	2023;	Lam	et	al.,	2023; 
Price	et	al.,	2024)	further	motivates	their	adoption	as	part	of	future	
conservation tools.

Interestingly,	 in	 2022	 we	 see	 poorer	 crossing	 date	 range	 es-
timation	 using	 higher	 resolution	 AMSR2	 when	 compared	 to	 the	
lower	 resolution	 OSI-	SAF,	 possibly	 contradicting	 the	 need	 for	
higher	resolution	forecasts.	This	seems	counterintuitive,	as	the	link	
between	 crossing-	start	 and	 SIC	 is	 clearer	 in	 the	 higher	 resolution	
data. This may be an artefact of using only coastal grid cells to an-
ticipate	 crossing-	start,	which	 are	 known	 to	be	unstable	 in	passive	

microwave radiometry records due to brightness values from the 
land	contaminating	those	in	the	ocean	(EUMETSAT,	2023).	This	may	
be	more	pronounced	and	variable	in	AMSR2	compared	to	OSI-	SAF,	
which	is	captured	over	a	larger	area,	thereby	reducing	noise.	More	
advanced spatiotemporal modelling of caribou movements would 
likely	address	this.	However,	it	is	also	important	to	note	in	all	cases	
that	predicted	date	ranges	are	a	simplification	of	the	more	complex	
spatiotemporal	 problem,	 and	 information	 is	best	 captured	by	map	
outputs.

Using	our	analysis,	maps	showing	the	date	at	which	each	grid	
cell is predicted to become suitable for crossing can be produced 
for	 user-	selected	 probability	 values.	 Combining	 these	 outputs	
with	 real-	time	 collar	 locations	 could	 inform	 experts	 when	 and	
where	 caribou	 are	 most	 likely	 to	 cross	 in	 upcoming	 days	 and	
weeks,	complementing	information	communicated	on	the	ground	
by	hunters	and	vessel	operators	via	 the	NOTMAR.	Feedback	on	
the	 provisional	 system	 from	 external	 stakeholders	was	 positive.	
Attendees	at	the	DU	caribou	user-	to-	user	meeting	expressed	 in-
terest	in	the	technology	as	a	tool	to	manage	risks	to	caribou.	One	
point raised was that the male caribou are not represented in the 
collar	data,	meaning	male	movements	could	not	be	captured	using	
the	 system.	 In	 addition,	 the	 importance	 of	 protecting	 real-	time	
caribou	location	data	was	emphasised	(L-	M	Leclerc,	personal	com-
munication	after	presenting	at	the	workshop,	November	9,	2022).	
This	feedback	highlights	the	importance	of	cooperation	and	inclu-
sion of communities and community organisations as methods are 
developed further.

4.3  |  Future development

The	case	study	brought	together	a	wide	variety	of	expertise	and	
the results have both proved encouraging and provided numer-
ous	 avenues	 for	 future	 research,	 development	 and	 application.	
A	key	limitation	of	the	current	approach	is	that	 it	 is	restricted	to	
crossing-	start	times	(i.e.	the	point	at	which	the	caribou	leave	the	
coast)	but	does	not	build	in	information	on	the	duration	or	route	

F I G U R E  8 A	comparison	of	crossing	routes	from	21	November	2021,	visualised	over	25 km	resolution	OSI-	SAF	and	6 km	resolution	
AMSR2	sea	ice	concentration	data.	In	AMSR2,	you	can	clearly	see	the	areas	of	open	water	preventing	the	caribou	from	leaving	island	chains	
in	the	centre	of	the	gulf;	detail	that	is	lost	in	the	lower	resolution	OSI-	SAF	data.
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taken	for	their	sea	ice	crossings.	Methods	which	factor	in	this	spa-
tiotemporal	aspect	of	the	crossing	would	be	a	valuable	extension,	
as	would	 incorporating	more	 sea	 ice	 variables	 (e.g.	 thickness)	 as	
discussed	 in	Section	4.1.	Upcoming	satellite	 telemetry	collar	de-
ployments	will	use	a	3-	hourly	fix	rate	during	sea	ice	crossing	pe-
riods	 (L-	M	Leclerc,	personal	communications,	 January	23,	2023),	
facilitating studies of fine- scale movements over sea ice in the fu-
ture	(Leblond	et	al.,	2015).	It	is	also	important	to	highlight	that	sat-
ellite telemetry collars are only deployed on a small fraction of the 
herd and on mature female caribou only. Investigations into how 
well these collared individuals capture the movement of the wider 
herd	 would	 be	 beneficial.	 Finally,	 here	 we	 have	 focussed	 solely	
on	the	sea	ice	crossing	segment	of	the	autumn	migration,	due	to	
the	 clearer	 link	 between	 sea	 ice	 formation	 and	 crossing	 times.	
The	timing	of	the	spring	migration	is	more	likely	motivated	by	the	
pregnancy	stage	 in	female	caribou,	with	the	bulls	 following	 later	
(Species	 at	 Risk	 Committee,	2023).	 However,	 sea	 ice	 conditions	
will	 clearly	 still	 be	 important,	 and	 relationships	 between	 spring	
crossing routes and sea ice conditions could be investigated using 
similar methods. This could be valuable for informing conservation 
and	management,	for	example	to	alert	when	early	sea	ice	break-	up	
might encroach on usual spring migration times which also poses a 
risk	to	crossings	(Species	at	Risk	Committee,	2023).

Recent	 advances	 in	 AI	 modelling	 should	 be	 leveraged	 into	 de-
veloping	 IceNet,	 such	 as	 vision	 transformers	 (Chen	 et	 al.,	 2022; 
Fan	et	al.,	2021),	as	well	as	higher	resolution	data	(for	example	from	
AMSR2).	 The	 crossing-	start	 approach	 we	 have	 developed	 is	 gen-
eral,	 and	 as	 sea	 forecasting	 systems	 improve,	 so	 will	 the	 robust-
ness	 of	 early	 warning	 signals.	 To	 facilitate	 review	 of	 information,	
user-	friendly	 visualisation	 tools	 should	 also	 be	 developed,	 such	 as	
a navigable dashboard for visualising IceNet forecasts with derived 
crossing predictions. Options to upload real- time collar locations and 
overlay these on forecast outputs could be incorporated to improve 
user	experience	and	interpretation.	These	should	be	built	with	data	
privacy in mind to ensure sensitive data is viewable only by autho-
rised	 users,	 thus	 meeting	 the	 needs	 and	 concerns	 highlighted	 by	
rightsholders	and	stakeholders.	Expanding	work	to	deliver	warnings	
directly to harvesters planning travel on the sea ice was also empha-
sised	by	stakeholders,	which	would	require	strong	engagement	with	
the	community,	hunters	and	trappers	organisations,	and	bodies	such	
as	 the	 Victoria	 Island	Waterways	 Safety	 Committee.	 As	 with	 our	
methodology	development,	 regular	 consultation	between	develop-
ers	and	stakeholders	will	ensure	end-	user	tools	are	fit-	for-	purpose.

4.4  |  Lessons and wider applications

In	 this	study,	we	have	used	the	DU	caribou	autumn	sea	 ice	cross-
ing	to	explore	how	AI	forecasts	could	inform	dynamic	conservation	
decision-	making,	by	acting	as	an	early-	warning	indicator	for	wildlife	
movement and distribution. This rapidly emerging interdisciplinary 
field	 requires	 case	 studies	 such	 as	 this	 to	 catalyse	 further	 devel-
opment. Our initial findings show the promise in using near- future 

forecasts of environmental variables to inform dynamic manage-
ment	 strategies.	 However,	 given	 the	 complexity	 of	 animal	 behav-
iour	 and	 the	 sparsity	of	observations	we	 recommend	 future	work	
focuses on human- in- the- loop decision- support rather than fully au-
tomated decision- making systems. Focusing on a specific region and 
study species has been valuable for identifying avenues for future 
development	to	help	drive	innovation	forward.	For	example,	zoom-
ing	 in	on	the	pan-	Arctic	 IceNet	forecasts	has	highlighted	areas	for	
improvement	 (e.g.	 increasing	 the	 spatial	 resolution)	 and	 potential	
biases	in	the	model	and	training	data.	Addressing	these	will	help	to	
realise	real-	world	impact	for	forecasting	systems	like	IceNet.	In	ad-
dition,	our	investigations	linking	collar	data	and	SIC	satellite	datasets	
have	delivered	new	findings	on	the	DU	caribou	relationship	with	sea	
ice,	helping	to	further	our	ecological	understanding.

Looking	beyond	this	case	study,	the	concepts	explored	have	the	
potential to transfer to other species whose behaviour or distribu-
tion	is	closely	 linked	to	sea	ice	conditions.	For	example,	predicting	
when	polar	bears	are	most	likely	to	move	off	sea	ice	and	onto	land	
close to communities to mitigate against human- wildlife conflict 
(Abrahms	et	al.,	2023),	 anticipating	Arctic	cetacean	migration	 tim-
ings	 to	protect	vital	migratory	corridors	 from	shipping	 impacts	 (C.	
Johnson	 et	 al.,	2022),	 and	 forecasting	 terrestrial	 haul-	out	 timings	
for	walrus	to	minimise	risk	of	disturbance	and	fatal	stampedes	(Jay	
et	 al.,	2012).	 Using	 forecast	 sea	 ice	 conditions	 as	 an	 indicator	 for	
wildlife	distribution	can	also	guide	fieldwork	efforts,	for	example	de-
termining the best times and locations to fly aerial survey transects 
to optimise data collection and logistics planning. Further study into 
these	different	 systems	 can	guide	new	developments	 in	 the	 field,	
including	building	flexible	downstream	user	interfaces	to	synthesise	
forecast information and derive species- specific metrics and maps. 
This information could ultimately feed into dynamic spatial manage-
ment,	integrating	climate	change	considerations	for	more	effective	
biodiversity	conservation	in	the	polar	oceans	(Cashion	et	al.,	2020; 
Gissi	et	al.,	2019;	Tittensor	et	al.,	2019).
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