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Abstract Glacial lake outburst floods can transport large volumes of sediment. Where these floods reach
the coastline, much of the particulate matter is delivered directly to the marine environment. It has been
suggested that offshore deposits, specifically in fjord settings, may provide a faithful record of past outburst
flood events. However, a lack of observations means that the mechanics and the timing of sediment transport
offshore following a glacial lake outburst event remain poorly constrained. Here, we document the changes in
sea surface sediment dynamics following the 28 November 2020 Elliot Lake outburst flood in British Columbia,
which transported ∼4.3 × 106 m3 of sediment into an adjacent fjord (Bute Inlet) as a deep nepheloid layer
directly following the event. However, analysis of sea surface turbidity using in situ measurements and satellite‐
derived estimates reveals that changes in fjord‐head surface turbidity in the months following the major flood
were surprisingly small. The highest measured sea surface turbidity instead occurred 5 months after the initial
outburst flood. This delayed increase in seaward sediment flux coincided with the onset of the spring freshet,
when the discharge of the rivers feeding Bute Inlet increases each year. We suggest that large quantities of
sediment were temporarily stored within the river catchment and were only remobilized when river discharge
exceeded a threshold level following seasonal snowmelt. Our results reveal a temporal disconnect, where
onshore to offshore transfer of sediment is stepped following a glacial lake outburst flood, which could
complicate the sedimentology of subsequent deposits.

Plain Language Summary Human‐driven climate change is melting glaciers; in turn, this is
increasing the size and number of glacial lakes, both of which are set to continue increasing in the future.
Sometimes these lakes drain suddenly in what is known as a glacial lake outburst flood. These floods are highly
erosive and can transport material many hundreds of km downstream, and even into the ocean if they occur near
the coast. Here, we document the impact of an outburst flood that occurred near the coast of British Columbia,
Canada on 28 November 2020, which eroded and transported a very large quantity of sediment into the ocean.
By analysing satellite images and measuring sediment concentrations in surface seawater, we show that
suspended sediment near the coast shows surprisingly little change immediately after the flood in contrast to
large initial subsurface transport. Instead, we observed a delayed peak in seawater surface sediment 5 months
after the initial outburst flood. This peak was higher than in previous years due to sediment stored in the river
catchment following the outburst flood. The stepped delivery of sediment to the ocean raises questions about the
offshore deposits of glacial lake outburst floods.

1. Introduction
The acceleration of global glacier retreat in response to climate change (Hugonnet et al., 2021) is changing
sediment transport processes (Zhang et al., 2022). Glacial retreat is driving a rapid increase in the size and number
of glacial lakes (Ahmed et al., 2021; Shugar et al., 2020; Wilson et al., 2018) and the subsequent debuttressing of
valley walls is increasing the likelihood of landslides (Deline et al., 2021). Consequently, it has been suggested
that the frequency of glacial lake outburst floods could increase over the coming decades, though whether such
increases will occur remains somewhat contested (Carrivick & Tweed, 2016; Harrison et al., 2018;
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Vandekerkhove et al., 2020; Veh et al., 2020; Wilson et al., 2018). Glacial lake outburst floods can generate
potentially catastrophic floods, following the sudden release of glacial lake meltwater. These floods therefore
have considerable transport potential, whereby large quantities of sediment are eroded and redistributed, resulting
in large‐scale geomorphic changes downstream (Carrivick & Tweed, 2016; Clague & Evans, 2000; Cook
et al., 2018; Sattar et al., 2025; Tomczyk et al., 2020; Tweed & Russell, 1999; Veh et al., 2020), and potentially
beyond, into the submarine realm when glacial lakes are proximal to the coast (Piret et al., 2022; Vandekerkhove
et al., 2021). Such outburst floods therefore pose a significant threat to human populations and infrastructure for
tourism, commerce, communications, energy and food security in glacierized mountain ranges (Carrivick &
Tweed, 2016; Clague & Evans, 2000; Meerhoff et al., 2019; Sattar et al., 2025; Taylor et al., 2023).

Fjords are highly susceptible to changes following glacial lake outburst floods. For example, changes in fjordwater
stratification and suspended sediment concentrations have been observed following outburst events, whereby the
entire fjord ecosystem can be impacted (Geertsema et al., 2022; Marín et al., 2013; Meerhoff et al., 2019). Such
abrupt changes, coupledwith the potential of fjord sediments to record high‐resolution changes in climate (Bianchi
et al., 2020; Howe et al., 2010), have led to the suggestion that fjords could provide an archive of past outburst
floods (Vandekerkhove et al., 2021). However, there is an assumption that a direct and instantaneous connection
exists between outburst flood discharge and offshore sediment transport (e.g., Prior et al., 1987), yet the temporal
resolution (e.g., from radiometric dating techniques) has inhibited testing of this hypothesis.

Here, we analyse sea surface observations to investigate changes in offshore sediment dynamics following a large
glacial lake outburst flood near Bute Inlet, British Columbia (Figures 1a and 1d). An outburst flood occurred
∼10 km upstream of the inlet on 28 November 2020 when ∼11 × 106 m3 of rock entered proglacial “Elliot Lake”
(informal name) at the head of Elliot Creek (a tributary of the Southgate River; Figure 1a) following a rockslide
along the steep valley wall (Donati et al., 2022; Geertsema et al., 2022). The impact of the rockslide produced a
>100 m run‐up wave, causing water to overtop the lake outlet, scouring a 10‐km‐long channel (Figure 1b), and
producing a 2 km2 (∼4 × 106 m3 volume) depositional fan below (Figures 1a and 1c). The event delivered an
additional ∼4.3 × 106 m3 of sediment into the marine environment at Bute Inlet (Figure 1a), creating an extensive
surface sediment plume below a water depth of 200 m (Geertsema et al., 2022). Similar surface sediment plumes
close to the river mouth feeding the fjord have previously been shown to generate turbidity currents (sediment
gravity flows; Hage et al., 2019; Hizzett et al., 2018). These turbidity currents dominate the onshore‐to‐offshore
flux of sediment and organic material in Bute Inlet (and other sub‐polar to temperate fjords) in the absence of
catastrophic events, and are more important than submerged delta‐front landslides for triggering turbidity currents
(Bailey et al., 2023; Bornhold et al., 1994; Clare et al., 2016; Hage et al., 2022; Heijnen et al., 2020, 2022; Hizzett
et al., 2018; Normandeau et al., 2019; Piret et al., 2024; Pope et al., 2022). Such surface sediment plume‐triggered
turbidity currents have also been attributed to relatively small‐scale glacial lake outburst floods (e.g., Vande-
kerkhove et al., 2021), volcanic lake outburst floods offshore from small Pacific islands (e.g., Clare et al., 2018),
and even the formation of some of the largest sedimentary fan deposits downstream of former ice sheets (Bellwald
et al., 2020). However, a lack of observations both before and after a major glacial lake outburst flood exist (e.g.,
Jacquet et al., 2017), meaning our knowledge of how and when sediment transfers from land to sea is poorly
constrained.

In this study, we address this knowledge gap by quantifying sea surface turbidity (i.e., the “cloudiness” of water
caused by suspended sediment content) both prior to, and following, the 2020 Elliot Lake outburst flood. Surface
water turbidity was collected directly using in situ surface water measurements from 2018 to 2022 (n = 42) and
estimated using 38‐year of optical satellite images (n = 320; Figure 2). First, we identify patterns and controls on
nearshore sea surface turbidity in Bute Inlet prior to this outburst flood. This provides an insight to the background
variability and the seasonal controls on sediment transport. Second, we analyse spatial and temporal changes in
turbidity in the 2 years following the outburst flood to document instantaneous and delayed effects on offshore
sediment fluxes. Finally, we present a new model to explain the seaward transport of sediment following a glacial
lake outburst flood and discuss wider implications for sediment transport, geohazards, and insights into the
depositional records in marine settings.

2. Geographic Setting
Bute Inlet is a 74 km‐long fjord in the Pacific Ranges of the Coast Mountains of British Columbia, Canada
(Figure 1). Mountains exceeding 3,000 m above sea level are common within the watershed, and many host small
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Figure 1. Location map of Bute Inlet and Elliot Creek, British Columbia, Canada. (a) Acolite corrected Landsat 8 OLI scene
from 30 July 2021 showing Bute Inlet and the depositional fan formed at the confluence of Elliot Creek with the Southgate
River. The locations of the Homathko and Southgate river gauges, in situ turbidity measurements, and transects used for
collecting satellite‐derived turbidity measurements are also shown. Aerial photographs of (b) erosion in Elliot Creek (source:
Kat Pyne, Hakai Institute) and (c) the depositional fan at the confluence of Elliot Creek and the Southgate River (source:
Grant Callegari, Hakai Institute) following the 28 November 2020 outburst flood. Locations and facing directions of (b) and
(d) shown in panel (a). (d) Map to show the location of Bute Inlet on the west coast of Canada.
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ice caps and valley glaciers; however, no previous outburst flood activity has been documented. The Southgate
and Homathko rivers, which enter at the head of Bute Inlet (Figure 1a), drain watershed areas of 1,985 and
5,782 km2, respectively; the Southgate River has a greater area of glacier cover (33.5% compared to 19.1%;
Giesbrecht et al., 2022). Both rivers display a typical nival regime; low flows are observed in the winter when
water is stored in the seasonal snowpack, followed by high flows during the snowmelt‐driven freshet in spring and
early summer and periods of convective activity in the late summer (e.g., Déry et al., 2005, 2016). The Homathko
River has an average discharge of 250 m3s− 1, but often exceeds daily discharge maxima of 1,000 m3s− 1 during the
May to August freshet season and decreases to 50 m3s− 1 in January to February (Water Survey of Canada station
08GD004; Figure 1a). Sharp peaks in discharge often occur in late October to November, following periods of
intense rainfall (sometimes in excess of 2,000 m3s− 1). The Southgate River has been gauged since June 2021 (as a
result of the 2020 Elliott Creek outburst flood), with discharge measurements of approximately half of the
Homathko River (Water Survey of Canada station 08GD010; Figure 1a; Hage et al., 2022).

Fjord surface turbidity correlates with river discharge, with more turbid surface waters observed at the fjord head
and decreasing to the mouth of the inlet (e.g., Pickard & Giovando, 1960). Estimates of maximum suspended
sediment concentrations for the Homathko River are 0.5–0.7 kg m− 3, which are insufficient for plunging of
(hyperpycnal) river floodwater (Bornhold et al., 1994; Mulder & Syvitski, 1995). However, frequent (tens per
year) turbidity currents can initiate from surface sediment plumes at the Homathko Delta and flow down‐slope
through the submarine channel (e.g., Bailey et al., 2023; Bornhold et al., 1994; Hage et al., 2019; Pope

Figure 2. Time series overview of satellite images acquired with river discharge measurements between 1984 and 2022.
Dates of (a) Landsat 5, (b) Landsat 7, (c) Landsat 8, (d) Sentinel‐2, and (e) PlanetScope images acquired. Maximum satellite
derived turbidity estimated using the Acolite code from transects offshore the (f) Southgate River delta with estimates of
Southgate River discharge for comparison and (g) Homathko River delta with Homathko River discharge observations for
comparison.
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et al., 2022). This submarine channel extends from the deltas of the Homathko and Southgate rivers for ∼40 km
down‐fjord to end at a water depth of 660 m (Figure 1a; Conway et al., 2012; Heijnen et al., 2020).

3. Methods
3.1. River Discharge, Water Level and Meteorological Monitoring

Daily river discharge data were obtained from the Homathko River between 1984 and 2022 (Water Survey of
Canada stations 08GD004; Figure 2g), and for the Southgate River from June 2021 to 2022 (Water Survey of
Canada station 08GD010; Figure 1a; https://wateroffice.ec.gc.ca). Prior to gauge installation, estimates of
Southgate River discharge were assumed to be 44.5% of the discharge recorded at the Homathko River station.
This value (of 44.5%) is the difference between the mean Southgate River and the mean Homathko River
discharge since gauge installation on the Southgate River (Figure 2f). Water level estimates were calculated using
tidal predictions for peak high and low tides at Orford Bay (Figure 1a; https://tides.gc.ca). A time series of tidal
heights was produced by fitting a cubic interpolation to splice these tidal data into hourly measurements.

3.2. Satellite Data Acquisition, Correction, and Sea Surface Turbidity Estimates

Turbidity refers to the “cloudiness” of water caused by particles, which has a strong correlation with total sus-
pended material. Sea surface turbidity in Bute Inlet was investigated using a data set of 320 optical satellite images
acquired between 1984 and 2022 (Figures 2a–2e). These include scenes with minimal (<40%) cloud coverage
over Bute Inlet that were acquired from Landsat 5, 7, and 8, Sentinel‐2, and PlanetScope satellites (Table 1). Top
of atmosphere images (i.e., reflectance values including contributions from clouds, atmospheric aerosols and
gases in addition to the surface) were downloaded from the United States Geological Survey Earth Explorer
(Landsat; https://earthexplorer.usgs.gov), the Copernicus Open Access Hub (Sentinel‐2; https://scihub.coperni-
cus.eu), and the Planet Explorer (PlanetScope; https://www.planet.com/explorer).

Sea surface turbidity estimates were determined using the open access Acolite code (https://odnature.natural-
sciences.be/remsem/software‐and‐data/acolite; Vanhellemont & Ruddick, 2014, 2018). Top of atmosphere im-
ages were first corrected for atmospheric effects using red and near infrared channels using an automated image‐
based “dark spectrum fitting” approach (Vanhellemont, 2019a, 2019b, 2020; Vanhellemont & Ruddick, 2018) to
retrieve water‐leaving radiance reflectance in the red band. Sea surface turbidity was then calculated for each
colour pixel (e.g., Figures 3a and 3b) from the water leaving reflectance. In optical terms, this turbidity estimate is
the measurement at 860 nm (near infrared) of the ratio of 90°‐scattered light to forward‐transmitted light as
compared to the same ratio for a suspension of Formazin (C2H4N2). Using this definition, turbidity is measured in
Formazin Nephelometric Units (FNU; Nechad et al., 2009) such that

T =
Aρw

1 − ρw/C

Where ρw is the water‐leaving reflectance, and A and C are the calibration coefficients. These coefficients are
derived by Nechad et al. (2009) and are based on correlations between the wavelength of the red band of satellite
images and in situ surface water turbidity measurements. The A and C coefficients have been further calibrated in
the Acolite code specifically for Landsat 8 and Sentinel‐2. Landsat 8 red band values for 654 nm were used:
A= 346.32 gm− 3 andC= 0.19905; and the Sentinel‐2 red band values at 655 nmwere used: A= 342.10 gm− 3 and

Table 1
Details of Satellite Imagery Data Used for Remote Sensing and Estimates of Sea Surface Turbidity in Bute Inlet

Satellite Imager Scenes [n] Resolution [m] Coverage

Landsat 5 Thematic Mapper 95 30 1984–2011

Landsat 7 Enhanced Thematic Mapper Plus 27 30 1999–2003

Landsat 8 Operational Land Imager 50 30 2013–2021

Sentinel‐2 Multi‐Spectral Instrument 63 10 2016–2021

PlanetScope Classic Dove/Dove‐2/SuperDove 85 3 2021–2022
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C = 0.19563. All satellite images were converted to 30 m resolution (for consistency between different satellites)
before turbidity point measurements were extracted from two transects with 100 m point spacing offshore of the
Homathko and Southgate Deltas (Figure 1a). Satellite‐derived turbidity measurements have previously been
shown to correlate well with in situ measurements in other locations (Vanhellemont, 2019a, 2019b) and showed
comparable results for scenes obtained on the same day between different satellites at Bute Inlet (Figure 4).

Figure 3. Example of a colour satellite image converted to sea surface turbidity using a Landsat 8 OLI scene from 30 July
2021. (a) Acolite corrected image. (b) Estimates of sea surface turbidity using pixel colour and the algorithm of Nechad et al.
(2009) with land areas removed. The spatial extent of each image is shown in Figure 1a.

Figure 4. Comparison of estimated turbidity measurements captured on the same day by different satellites. Cross plots show
data from (a) Landsat 8 against Sentinel‐2 (n = 1); (b) PlanetScope against Sentinel‐2 (n = 5); and (c) Landsat 8 against
PlanetScope (n= 2). Each plot shows the comparison between all data from scenes of the same date and the transect offshore
the Homathko and Southgate Deltas, with maximum turbidity measurements highlighted.
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3.3. In Situ Near Surface Turbidity Measurements

Water column profiles of in situ turbidity measurements were recorded at eight stations along Bute Inlet
(Figure 1a) over 42 days between 2018 and 2022 (with sampling intervals varying between 2 and 18 weeks). Data
were collected using Seapoint Turbidity meters attached to conductivity, temperature and depth (CTD) profilers.
Seapoint turbidity meters have a near‐infrared light source (880 nm) and were factory calibrated with Formazin to
quantify turbidity in Formazin Turbidity Units (FTU). Measurements were rated to have a linear response (±2%)
to particle concentrations spanning 0–1250 FTU. Profile data were binned into 1 m depth intervals from the
surface to just above the seafloor. In this study, we show only turbidity measurements between 2 and 5 m water
depth from the six most delta‐proximal stations (labelled BU3‐8 in Figure 1a). Turbidity measurements recorded
at water depths shallower than 2 mwere omitted due to interference with bubbles from the vessel propeller. In situ
measurements of turbidity are compared with satellite‐derived estimates of turbidity. The difference in units
between satellite‐derived turbidity estimates (Formazin Nephelometric Units) and in situ measurements (For-
mazin Turbidity Units) relate to the methods of data collection, with values remaining comparable.

4. Results
4.1. Background Seasonal Variations in Sea Surface Turbidity in Bute Inlet

Sea surface sediment plumes were visible offshore from both the Homathko and Southgate rivers between May
and October in all 218 satellite images between 1984 and 28 November 2020 (i.e., date of the Elliot Creek
outburst flood). Prior to the glacial lake outburst flood, higher values of sea surface turbidity across the entire fjord
closely track the discharge from the Homathko and Southgate rivers (Figure 5). For example, both satellite‐
derived and in situ turbidity measurements showed an annual cycle resembling the hydrograph of the
Homathko River with the highest turbidity values observed during the freshet season (Figures 6 and 7). Nearshore
sea surface turbidity generally increased to a threshold of between ∼2.5 and 3.0 log10 FNU during the freshet
period of elevated river discharge (May to August). During the winter (when river discharge is low), near‐delta
turbidity was typically <1.5 log10 FNU (Figures 5–7). However, a disconnect between sea surface turbidity and
river discharge was observed on the rising and falling limbs of the freshet season. For example, from 1984 to the
2020 outburst flood, the month with the highest median Homathko River discharge was July (Figure 6a).
However, the highest sea surface turbidity measurements for both the Southgate and Homathko rivers occurred in
June on the rising limb of river discharge (Figures 6b and 6c).

4.2. Sea Surface Turbidity Immediately After the Elliot Lake Outburst Flood

Turbid water could be observed in satellite images of Bute Inlet for the 3 months directly following the glacial
lake outburst flood; however, shadowing or cloud coverage meant quantification of sea surface turbidity directly
offshore the Southgate Delta was not possible. However, during this period, in situ turbidity measurements in
Bute Inlet were recorded at a series of CTD profiler stations (Figure 1a), including 4 and 16 days following the
glacial lake outburst flood in Elliot Creek (Figures 8b and 8c). Temporal data coverage was low relative to the
resolution of spring/summer satellite images. However, in situ near sea surface (2–5 m water depth) measure-
ments showed increased turbidity at the head of Bute Inlet following the 28 November 2020 event. Despite this
increase, measured changes in sea surface turbidity during the initial 3 months following the outburst flood were
within the range of measurements observed before the event at the most delta‐proximal station (BU8; Figure 7d).
Furthermore, the initial (4 and 16 days) post‐outburst flood turbidity measurements were 2–3 times lower in the
upper reaches of the fjord (stations BU5‐8; Figure 1a) than observations prior to the outburst flood event during
the end of the 2020 freshet season (22 October 2020; Figure 8).

4.3. Delayed Response in Fjord‐Surface Turbidity Following the Outburst Flood

The first cloud‐ and shadow‐free satellite image (10 March 2021) following the Elliot Lake outburst flood reveals
a surface sediment plume offshore from the Southgate River, and not the Homathko River. This is notable as the
Homathko River usually dominates the sediment supply to the fjord (Figures 7a and 7b). The satellite‐derived
surface turbidity offshore the Southgate River was anomalously high compared to the same time of year for
all pre‐outburst flood measurements (Figure 7a). The surface sediment plume offshore from the Southgate River
remained visible through March and into April 2021. The plume rapidly increased in turbidity magnitude and
down‐fjord extent between 16 and 18 April 2021 when turbidity rose dramatically (Figures 9d and 10), eventually
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peaking on 20 and 22 April 2021 (Figures 7a and 10). The highest satellite‐derived turbidity values (2.6 and 2.7
log10 FNU) thus occurred almost 5 months after the initial outburst flood. These peak turbidity values were more
than double the median values for April and are within the top 2% of all turbidity observations from the 1984–

Figure 5. Comparison between river discharge and nearshore sea surface satellite‐derived turbidity measurements. Data points in all plots are coloured to show timing
pre‐glacial lake outburst flood (GLOF), post‐GLOF through 2021 or during 2022. (a) Cross plot showing variation of nearshore sea surface turbidity estimates offshore
the Southgate River delta with Southgate River discharge estimates (taken as 44.5% of Homathko River discharge). (b) Distribution of turbidity for binned intervals of
Southgate River discharge estimates. (c) Cross showing variation of nearshore sea surface turbidity estimates offshore the Homathko River delta with Homathko River
discharge. (d) Distribution of turbidity for binned intervals of Homathko River discharge.
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2022 data set (Figures 3a, 5a and 7a). Following a week‐long (16–22 April 2021) increase in turbidity, cloud cover
obscured satellite images, inhibiting surface turbidity analysis until 4 May 2021 (Figure 10). After this, the
satellite‐derived turbidity in the upper fjord resembled pre‐outburst flood observations throughout the remainder
of the 2021 freshet (despite increasing river discharge), and the entirety of 2022 (Figures 7a and 9).

The elevated post‐outburst flood sea surface turbidity (Figures 7a and 9d) cannot be attributed to higher‐than‐
expected river discharge (Figure 5a), and no correlation between tidal changes in water level and turbidity was
observed. In fact, the only significant differences in pre‐to post‐outburst flood sea surface turbidity (i.e., median
turbidity value outside the interquartile range) were observed for Southgate River discharges below 150 m3s− 1

(Figure 5b). Remarkably, the period of high turbidity between 16–22 April 2021 occurred when the Southgate
River discharge was only ∼65 m3s− 1, yet peak turbidity values were five times higher than pre‐outburst flood
measurements for the same Southgate River discharge (Figure 5a). The Southgate River discharge at this time was
thus very low compared to a peak discharge of ∼1,000 m3s− 1 during the 2021 freshet (Figures 5a and 10), but the
turbidity increase did align with the first, albeit minor, increase in river discharge at the onset of the freshet
(Figure 10). The timing of this turbidity increase also aligned with the first instance of water sourced from Elliot
Creek breaching the depositional fan and entering the Southgate River (Figure 11). It is not possible to quantify
the volume of water flowing through Elliot Creek; however, it would have been minor in comparison to Southgate
River discharge. High sea surface turbidity at the onset of the freshet season was mostly confined proximal to the
Southgate Delta. In situ turbidity measurements from BU8 (located∼4 km from the fjord head; Figure 1a) showed
no obvious variation between pre‐ and post‐outburst flood measurements for March and April, despite showing
minor elevations during the winter (Figure 5d). A surface sediment plume offshore from the Homathko Delta is
first visible on 16 April, 2021. However, the surface turbidity offshore the Southgate Delta on this date was higher
than that offshore the Homathko Delta (Figure 7c). Satellite‐derived turbidity offshore the Homathko Delta did
show a peak of turbidity between 26 June and 6 July 2021, which was not observed offshore the Southgate Delta
(Figure 5). This turbidity peak occurred when the Homathko River discharge was >1,600 m3s− 1, the highest river
discharge recorded during the freshet season for 22 years (Figure 2g) that coincided with the 2021 Heat Dome, in
which British Columbia experienced record temperatures (Philip et al., 2022). As such, while the turbidity
recorded during the Heat Dome was elevated, the values are consistent with previous measurements obtained for
similar Homathko River discharges (Figure 5c).

Figure 6. Box and whisker plots to show annual hydrographic and satellite‐derived turbidity cycles in Bute Inlet. Box and
whiskers represent monthly data between 1984 and 2022 of sea surface turbidity from transects in Figure 1a offshore (a) the
Southgate River delta and (b) the Homathko River delta along with (c) discharge from the Homathko River.
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5. Discussion
5.1. Controls on Sea Surface Turbidity at the Head of Bute Inlet

Here we discuss how sediment supply, regulated by river discharge, is the dominant control on background sea
surface turbidity proximal to the Homathko and Southgate Deltas. A close relationship exists between fjord‐head
surface turbidity and discharge from the Homathko and Southgate rivers (Figure 5). For example, elevations in
river discharge result in an increase in sea surface turbidity up to a value of ∼2.5 log10 FNU, which equates to a
sediment concentration of ∼1 kg m− 3. Sediment in the surface sediment plume then has the potential to plunge or

Figure 7. Day‐of‐year time series of turbidity measurements recorded between 1984 and 2022. Using the transects shown in
Figure 1a. (a) shows satellite‐derived sea surface turbidity offshore the Southgate River delta and (b) offshore the Homathko
River Delta. (c) The difference between turbidity measurements recorded offshore the Homathko and Southgate River deltas.
(d) In‐situ turbidity recorded at station BU8 (Figure 1a) averaged between 2 and 5 m water depth. Data points are colored
depending on timing relative to the glacial lake outburst flood. All panels show the mean 5–95th percentile range of daily
Homathko River discharge between 1984 and 2022.
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settle out of suspension (e.g., Hoyal et al., 1999; Parsons et al., 2001). Seasonal variations in nearshore sea surface
turbidity should therefore be expected to follow the hydrographs of the Homathko and Southgate rivers (Pickard
& Giovando, 1960). As such, turbidity should remain low from January to April, increase through the start of the
freshet season and peak in July and August, before decreasing for the remainder of the year—aside from occa-
sional peaks in rainfall‐induced river discharge. However, sediment flux does not increase linearly with river
discharge (e.g., Hickin, 1989). Our analysis demonstrates this, with peak nearshore turbidity preceding peak
freshet season river discharge (Figure 6). This hysteresis between turbidity and the rising and falling limbs of
freshet river discharge can be attributed to greater sediment availability at the start of the freshet season (i.e., the
“first‐flush”; Riihimaki et al., 2005). For example, during the winter, large volumes of sediment accumulate in the
river channel and at the mouth bars at the top of the Homathko and Southgate Deltas (or indeed other seasonally
fed bedload dominated rivers; e.g. Wright, 1977). Elevations in river discharge on the rising limb of the freshet
season are sufficient to resuspend and flush delta‐top sediment. Depletion of sediment in the Southgate and
Homathko rivers and delta‐tops during the falling limb then generates the hysteresis loop observed in fjord‐head
turbidity. This process allows surface sediment plumes to form offshore from both the Homathko and Southgate
rivers at relatively low (<150 m3s− 1) discharge at the start of the freshet season (e.g., Figure 9).

5.2. Did Sea Surface Turbidity Increase Immediately Following the Outburst Flood?

During the 28 November 2020 Elliot Lake outburst flood,∼4.3× 106 m3 of sediment was directly transported into
the marine environment of Bute Inlet (Geertsema et al., 2022). While it is almost certain that a pronounced sea‐
surface sediment plume was present in Bute Inlet during the Elliot Creek outburst flood, no usable satellite
imagery or in situ CTD data could be found to confirm this. While minor increases in near‐surface turbidity were
observed in the 3 months following the outburst flood, these were within the range of measurements observed
prior to the event (Figures 7 and 8). Conversely, in situ turbidity below a water depth of 200 m showed a fivefold

Figure 8. In‐situ near‐sea surface (averaged between 2 and 5 m) turbidity measurements in Bute Inlet pre‐ and post‐outburst
flood on (a) 22 October 2020 (with Acolite corrected PlanetScope scene clipped to water pixels from 21 October 2020), (b) 2
December 2020 (with Acolite corrected Landsat 8 scene from the same day; NB. no data collected at station BU8); and (c) 14
December 2020 (no cloud free satellite scene was available within 2 days of this date).
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increase throughout the upper 60 km of Bute Inlet (Geertsema et al., 2022). The potential absence of an initial
distinct surface sediment plume following the outburst flood could be attributed to hyperpycnal plunging of
sediment as it entered the fjord. The relative increase in surface turbidity during the 2020/21 winter, which
followed the outburst flood, compared to previous years likely represents finer sediment from the outburst event
remaining in suspension (Figure 7d).

5.3. Explanations for the Sea Surface Turbidity Response Following the Outburst Flood

While a minor increase in nearshore surface turbidity was observed following the Elliot Lake outburst flood
(Figure 7d), the greatest disparity between pre‐ and post‐outburst flood turbidity was observed almost half a year
later. Five months after the Elliot Lake outburst flood, relative turbidity peaked to exceptional levels offshore
from the Southgate River at the onset of the 2021 freshet season (Figures 7a and 10). Sea surface turbidity values

Figure 9. Satellite‐derived estimates of sea surface turbidity in upper Bute Inlet at different periods in the freshet season pre‐
and post‐outburst flood. Turbidity estimates convert colour images from (a) Landsat 8 from 8th May 2020; (b) Sentinel‐2
from 9th May 2019; (c) Landsat 8 from 27th July 2020; (d) Landsat 8 from 8th May 2021; (e) PlanetScope from 15th May
2021; and (f) Landsat 8 from 30th July 2021. Each panel includes the daily average discharge from the Homathko River for
the corresponding day. Estimates are calculated using the algorithm of Nechad et al. (2009) in the Acolite code. The spatial
extent of each image is shown in Figure 1a.
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at this time were in the top 2% of all measurements from 1984 to 2022
(Figures 2f and 5a). We explore two mechanisms that could individually or
together explain this anomalous turbidity peak in April 2021 (Figure 12).

The first mechanism is an upscaled version of the hysteresis effect observed
during a typical annual cycle (Figure 6), whereby sediment is transported to
and deposited at the delta during the winter (e.g., Wright, 1977). We suggest
that eroded material from the glacial lake outburst flood results in an
increased volume of Southgate River channel sediment below the confluence
with Elliot Creek (Figure 1a; c.f. Geertsema et al., 2022). Thus, a much
greater volume of sediment was likely transported to the Southgate Delta
during the 2020/21 winter in comparison to previous years. The 5‐month lag
period from the initial outburst flood to the inception of surface sediment
plumes offshore the Southgate Delta is likely due to insufficient bed shear
stresses during the low winter river discharge, which were incapable of
mobilising and flushing sediment. It was only at the onset of the 2021 freshet,
when the Southgate River discharge increased sufficiently, that bed shear
stresses reached a critical threshold to remobilise delta sediments emplaced
during the outburst flood. Such flushing of sediment is demonstrated by the
week‐long period (16–22 April 2021) of elevated sea surface turbidity
offshore the Southgate Delta (Figure 10). The observation of a short‐lived
pulse of elevated sea surface turbidity provides further evidence of an
upscaled hysteresis effect. For example, the reduction in sea surface turbidity
following 22 April 2021 (Figure 10) likely marks the time when excess
sediment availability on the delta‐top was exhausted. Here, the surface
sediment plume offshore the Southgate River more closely resembles pre‐
outburst flood observations (Figures 7a and 9).

The second potential mechanism relates to the emplacement of a 2 km2 depositional fan at the confluence of Elliot
Creek and the Southgate River (Figures 1a and 1c; see Figure 1 in Geertsema et al., 2022). While this sediment
load was deposited during the outburst flood, the low water level of the Southgate River during winter (once flood
waters had subsided) would have limited remobilisation and transportation downstream. Increased Southgate
River discharge at the onset of the freshet season (e.g., Figure 10) would increase both the height of the water line
and stream power. This combination would likely have eroded material previously above the water line during the

Figure 10. Estimated Southgate River discharge and satellite‐derived
estimates of sea surface turbidity offshore the Southgate River delta at the
start of the 2021 freshet season. Vertical lines denote the dates of images of
the Elliot Creek depositional fan shown in Figure 11.

Figure 11. Satellite images showing first visible water flow across the Elliot Creek depositional fan in 2021. Acolite corrected
PlanetScope (3 m resolution) images from (a) 14 April 2021 and (b) 16 April 2021. Area within yellow dashed lines in panel
(b) shows water flow over the Elliot Creek depositional fan. No water flow is visible for the same area in panel (a).
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winter, as well as coarser sediment, which was then transported to the Southgate Delta and flushed offshore,
therefore increasing fjord‐head turbidity. Additionally, increased flow of meltwater from Elliot Lake through
Elliot Creek provides an additional mechanism to increase sediment concentration in the Southgate River. The
volume of water flowing through Elliot Creek is minor compared to the Southgate River. However, peak turbidity
recorded in the head of Bute Inlet coincides with the timing of water sourced from Elliot Creek breaching the
depositional fan and entering the Southgate River (Figure 11).

The relative peak in sea surface turbidity offshore the Southgate Delta was short‐lived, lasting just over a week
(Figure 10). Despite continued increases in river discharge (peaking in June), turbidity offshore Southgate Delta
resembled pre‐outburst flood measurements for the remainder of 2021 and all of 2022 (Figures 7a and 9). We
suggest this week‐long elevation in sea surface turbidity was due to the availability of excess sediment from the
river, either from accumulation during the winter or from the Elliot Creek Fan (Figure 12). The rapid return of
turbidity to normal values, resembling pre‐outburst flood observations, demonstrates the ability of this system to
efficiently flush excess sediment stored in the Southgate River system. This “self‐correction” is analogous to
traditional (human‐made) dam removal on a river. For example, similar short‐lived peaks in suspended con-
centration temporally lag following dam removal until the river discharge also increases (e.g., the Elwha River;
Magirl et al., 2015; Ritchie et al., 2018; Warrick et al., 2015).

We infer that the non‐freshet timing of the Elliot Lake outburst flood caused the observed 5‐month lag between
the outburst flood and peak turbidity offshore the Southgate Delta. Had the Elliot Lake landslide and subsequent
glacial lake outburst flood occurred during the freshet season, when Southgate River discharge was already
elevated, it is likely that sediment would have rapidly been transported and flushed from the Southgate Delta,
rather than several months later.

Figure 12. Schematic to show sediment transport mechanisms following the Elliot Lake outburst flood leading to the
generation of a lagged response in elevated sea surface turbidity.
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5.4. Implications for a Post‐Flood Disconnect of Onshore‐to‐Offshore Sediment Transport

The lagged sea surface turbidity response offshore from the Southgate Delta signifies a temporal disconnect
between the onshore and offshore transport of sediment and other particulate matter following the Elliot Lake
outburst flood. It has been suggested that fjord sediments may provide an archive of fjord activity (e.g., Koppes
et al., 2015; Koppes & Hallet, 2006), including glacial lake outburst floods (e.g., Piret et al., 2022; Vandeker-
khove et al., 2021). However, such a 5 month disconnect between the initial outburst flood, and the transport of
associated material in the fjord complicates this link somewhat, most notably in settings with high resolution
records (e.g., varved sediment sequences; Xu et al., 2015). Using the case of the Elliot Lake outburst flood as an
example, two phases of increased (relative to background conditions) onshore‐to‐offshore sediment transport
were observed. The first sediment transport event occurred during the outburst flood (i.e., the deeper‐water
sediment plume; Geertsema et al., 2022), with a second sediment transport event occurring 5 months after the
outburst flood. While the initial∼4.3 × 106 m3 volume of sediment transported to the marine environment of Bute
Inlet was likely larger, the second sediment transport event will affect seabed deposits in the fjord. Fine‐grained,
organic‐poor glacial lake outburst deposits that settle from a buoyant plume, and associated turbidity current
deposits, have previously been described in fjords (Vandekerkhove et al., 2021). The 5‐month difference in
transport phases is within the error of high‐resolution dating techniques (e.g., radiocarbon or Pb/Cs). However,
recognition of reworking is important when considering fjord sediments as geological archives, especially in
settings such as Bute Inlet that is known for high turbidity current activity (e.g., Bailey et al., 2023; Bornhold
et al., 1994; Pope et al., 2022). Here, it is possible that an outburst flood deposit could be represented by multiple
deposits (e.g., Haeussler et al., 2018) or be entirely reworked, especially considering the greater‐than‐normal
sediment supply at the onset of the 2021 freshet further increasing turbidity current activity (e.g., Bailey
et al., 2021).

A disconnect between onshore‐to‐offshore sediment transfer may be applicable to other types of catastrophic
water release, in addition to glacial lake outburst floods. One example of a similar sediment transport lag is after
the 2015 failure of the Fundão tailings dam in Brazil, when 62 × 106 m3 of iron mining tailings were released into
the Doce River watershed and transported offshore (Carmo et al., 2017; D'Azeredo Orlando et al., 2020; Kütter
et al., 2023; Marta‐Almeida et al., 2016). An increased number of “high turbidity” events were observed in the
Doce River during the next two wet seasons following the accident (Kütter et al., 2023), suggesting that par-
ticulate matter was stored and later remobilised. Similar delays between events and offshore transport of sedi-
ment, and associated matter, should also be considered where water flows into the marine environment through
river systems, following tailing dam collapses (e.g., Islam &Murakami, 2021), jökulhlaups (e.g., Old et al., 2005;
Russell et al., 2006; Staines & Carrivick, 2015), volcanic crater or lava‐impounded lakes (e.g., Clare et al., 2018)
and lahars that reach the ocean or lakes (e.g., Major et al., 2016; Pierson et al., 2013). In all cases, recognising the
staging areas and timeframes are important for understanding the oxidation of organic carbon, exposure of
ecosystems to pollutants or volcanic ash, and the use of offshore depositional archives to reconstruct past outburst
flood events.

5.5. Future Glacial Lake Outburst Floods and Changes to Fjord Environments

It remains unclear whether the frequency of glacial lake outburst floods will increase (Carrivick & Tweed, 2016;
Harrison et al., 2018; Vandekerkhove et al., 2020; Veh et al., 2020). However, climate change is rapidly
increasing the size and number of glacial lakes (Ahmed et al., 2021; Shugar et al., 2020; Wilson et al., 2018). As
such, future lagged transport of outburst flood sediments, and other particulate matter, into the marine envi-
ronment of fjords could be expected. This is especially likely across the extensive ∼70,000 km2 of glacierised
watersheds in the Coast Mountain Range, British Columbia, where streamflow regimes are comparable to Bute
Inlet (i.e., low winter flow followed by meltwater freshet in spring; Giesbrecht et al., 2022). Fjords are highly
susceptible to environmental change (Marín et al., 2013; Meerhoff et al., 2019), and Bute Inlet has already
warmed by 1.3°C and shown an oxygen loss of 0.6 mL L− 1 since the 1950s in response to global warming
(Jackson et al., 2021). Changes in frequency and magnitude through delayed fluxes of particulate matter to fjords
will likely lead to further changes in fjord water chemistry and light availability, perhaps irreversibly, impacting
marine ecosystems (e.g., Arimitsu et al., 2016; Suchy et al., 2022).
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6. Conclusions
As glaciated mountains evolve globally in response to human‐exacerbated climate change, the hazards and risks
in these landscapes will also evolve. The 28 November 2020 Elliot Creek glacial lake outburst flood immediately
delivered ∼4.3 × 106 m3 of sediment into the marine environment of Bute Inlet. While highly likely that a sea
surface plume was present during the initial outburst flood (and not observed due to lack of satellite coverage),
satellite‐derived and in situ measurements show that sea‐surface turbidity was surprisingly muted in the initial
months after the outburst flood. Only minor surface turbidity increases offshore the Southgate Delta were
observed relative to typical elevations recorded during the annual freshet season. Instead, the greatest disparity
between pre‐ and post‐flood measurements occurred almost 5 months after the initial Elliot Lake outburst flood.
This turbidity peak coincided with the onset of the 2021 freshet season, and was in the top 2% of all measurements
recorded from 1984 to 2022.We propose two mechanisms that combine to produce the delayed turbidity peak: (a)
sediment accumulates within the river catchment during the winter months when Southgate River discharge is
low, and this sediment is subsequently flushed from the delta‐top when river discharge increases in the freshet
season; and (b) higher river‐water levels during the freshet season accessed a larger area of erodible flood‐
emplaced sediment at the terminus of Elliot Creek. This sediment was then transported to the coast at the
Southgate Delta. The short‐lived turbidity peak demonstrates the efficiency with which the system can remove
excess sediment. The observed lag period between onshore‐to‐offshore sediment transport at Bute Inlet (and
similar lags following other major discharge events) implies that caution should be applied if attempting to
directly link offshore deposits with an initial outburst flood. The true picture may be far more complicated than a
direct, immediate connection, and requires a holistic understanding of flood initiation, mechanics of onshore
transfer, identification of potential storage in staging zones, and of the often‐temporally variable processes that
ultimately result in the offshore transfer and seafloor accumulation of particulate matter.

Data Availability Statement
The data on which this article is based, including satellite‐derived and in situ turbidity data, including dates of
images used for satellite comparison, and meteorological data are available in (Bailey et al., 2025) and can be
downloaded from https://doi.org/10.5683/SP3/WNRZUD. River discharge data (acquired from Environmental
and Natural Resource Canada can be downloaded from the following links; Homathko River (Station 08GD004)),
https://wateroffice.ec.gc.ca/report/data_availability_e.html?type=historical&station=08GD004&parameter_
type=Flow+and+Level; Southgate River (Station 08GD010), https://wateroffice.ec.gc.ca/report/data_avail-
ability_e.html?type=historical&station=08GD010&parameter_type=Flow+and+Level. Acolite image conver-
sion (Vanhellemont, 2025) is an open access code and can be downloaded from the following link: https://github.
com/acolite/acolite/releases/tag/20250114.0.
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