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Abstract Marine dissolved organic carbon (DOC) is a major carbon reservoir influencing climate, but is
poorly quantified. The lack of a comprehensive DOC climatology hinders model validation, estimation of the
modern DOC inventory, and understanding of DOC's role in the carbon cycle and climate. To address this
problem, we used boosted regression trees to relate a compilation of DOC observations to different
environmental climatologies, and extrapolated these inferred relationships to the entire ocean to compute annual
layer‐wise DOC climatologies with uncertainties. Prediction performance was satisfactory, with R2 values
within 0.6–0.8 for all layers and prediction error comparable to within‐pixel measurement variability. DOC was
mainly predicted by dissolved oxygen in the bathypelagic layer, and by nutrients in other layers. We estimate the
total oceanic DOC inventory to be around 690 Pg C. Our results exemplify that machine learning is a powerful
tool for constructing climatologies from limited observations.

Plain Language Summary Marine dissolved organic carbon (DOC) is a large and important
component of the Earth's carbon cycle that influences climate. However, we do not have a good understanding
of how much DOC is in the oceans. This lack of information makes it difficult to improve climate models and
fully understand how DOC affects the global carbon cycle. To address this, we used a machine learning
technique (boosted regression trees) to relate available DOC data to environmental factors. We then applied this
analysis to the entire ocean to produce annual estimates of DOC concentrations, along with the associated
uncertainties. Our model performed well, explaining between 60% and 80% of the variance across different
ocean layers. We found that dissolved oxygen seems to the main factor influencing DOC in deep waters, while
nutrients were more important in the upper layers. We estimate that the total amount of DOC in the ocean is
about 690 billion tonnes of carbon. Our work shows that machine learning can be a useful tool to generate global
estimates from limited data.

1. Introduction
Ocean dissolved organic carbon (DOC) is a major reservoir of carbon in the ocean‐atmosphere‐climate system
(662 Pg C: Hansell, 2013), comparable in size to the preindustrial atmosphere. The reservoir is also characterized
by a bulk radiocarbon age in the deep ocean (>1,000 m) of between 4,000 and 6,000, years requiring DOC to
survive multiple cycles of ocean overturning. The size and apparent persistence of DOC has fueled interest in
DOC as an additional facet of the marine carbon cycle, but there remains considerable uncertainty about the
processes driving these features (Arrieta et al., 2015; Hansell, 2013). DOC production is mainly due to ecological
processes (e.g., zooplankton grazing, virus‐induced phytoplankton cell lysis) in the euphotic layer and solubi-
lization from marine snow aggregates, while its removal is due to remineralization by bacteria or abiotic processes
(e.g., UV oxidation or adsorption to particles) (Carlson & Hansell, 2015). Despite being one of the least con-
strained parts of the global carbon cycle, DOC is widely expected to be a reactive reservoir that is capable of
impacting climate (Sexton et al., 2011; Wagner et al., 2020).

Understanding the cycling of DOC and its associated impact on the Earth system relies fundamentally on robust
estimates of the global DOC inventory and resolving the spatial patterns of DOC concentrations. The DOC in-
ventory constrains the climate impact of DOC as changes in marine carbon reservoirs scale predictably to changes
in atmospheric CO2 (Goodwin et al., 2008). Spatial gradients in DOC concentrations are key to diagnosing DOC
remineralization rates (Hansell & Carlson, 2013; Sulpis et al., 2023) that provide a basis for supporting the varied
hypotheses of DOC persistence. Inverse estimates of DOC export production (Roshan & DeVries, 2017) and
numerical modeling of past and future changes in DOC cycling (Gilchrist & Matsumoto, 2023; Matsumoto
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et al., 2022) also rely on constraints from spatial patterns (e.g., at a 1° horizontal resolution) of DOC
concentrations.

A key challenge for global DOC observations as constraints is the relative sparsity of observations compared to
standard quantities such as macronutrients (Hansell et al., 2021; Letscher & Moore, 2015). Spatial gradients have
previously been interpolated to a higher resolution by assimilating observations in a numerical model (Hansell
et al., 2012) and using artificial neural networks as part of a wider study on DOC export (Roshan & DeV-
ries, 2017). Both approaches provide a broad climatological view of the horizontal and vertical distribution of
DOC. Temporally resolved products limited to the surface ocean have also been derived from satellite products
(Aurin et al., 2018; Bonelli et al., 2022; Siegel et al., 2002) but typically focus on the subset of DOC compounds
that are optically measurable.

In this study, we take advantage of machine learning (ML) to relate DOC observations to other variables for which
climatologies are already available, and use the inferred relationships to predict DOC values where no obser-
vations are available, hence generating a DOC climatology. We build upon the work of Roshan and DeV-
ries (2017) by using a more comprehensive DOC data set as well as a more robust machine learning algorithm
(Hastie et al., 2009). Indeed, compared to artificial neural networks (i.e., multilayer perceptron), tree‐based
ensemble methods (e.g., boosted trees, random forest) are less prone to overfitting and more effective at
handling common challenges with predictors, such as missing values, outliers or irrelevant variables. With respect
to recent approaches by Laine et al. (2024) and Bonelli et al. (2022), we focus on the annual and seasonal scales
and we provide DOC estimates for deeper layers. Furthermore, we also detail the relationships between the output
and predictors. Finally, we provide a ML‐based estimate of total DOC by integrating predicted DOC content
across oceanic layers.

2. Materials and Methods
2.1. Data Inputs and Processing

2.1.1. DOC

DOC observations come from a global compilation of dissolved organic matter collected between 1994 and 2021
(Hansell et al., 2021). An initial quality check discarded problematic observations (e.g., missing depth or date,
flag indicating a problem with the observations).

To account for the depth‐dependent processes driving the DOC concentration and to provide DOC climatologies
suitable for different analyses (e.g., surface climatology for constraining satellite products), DOC observations
were assigned to four layers based on their depth: surface (0–10 m), epipelagic (10–200 m), mesopelagic (200–
1,000 m) and bathypelagic (>1,000 m). These depth layers are intended to approximately delineate differences in
cycling as expected from semi‐labile, semi‐refractory and refractory DOC which have a strong depth dependence
(Hansell, 2013). In addition, surface layer DOC observations were assigned to four meteorological seasons
(northern hemisphere) based on the sampling month to construct a surface seasonal climatology. Finally, DOC
observations were averaged on a 1° grid to match the environmental predictors described below, resulting in a
global coverage of ∼2000 observations for annual predictions, and 500–700 observations for seasonal pre-
dictions, with less coverage during winter at high latitudes (Table S1, Figures S1, and S2 in Supporting
Information S1).

To focus on autochthonous DOC, we excluded high DOC values from allochthonous sources in the Kara Sea and
Laptev Sea (Dittmar & Kattner, 2003). Specifically, we discarded 96 surface layer pixels (4.2% of the 2,301
originally available) located within the polygons 50–100°E, 70–80°N (Kara Sea) and 100–150°E, 70–80°N
(Laptev Sea). These excluded DOC values ranged from 77 to 567 μmol kg− 1, with a median of 240 μmol kg− 1.

2.1.2. Environmental Predictors

We used monthly climatologies from the World Ocean Atlas (WOA18) (Garcia et al., 2019) on a 1° grid to create
annual climatologies for temperature, salinity, density, oxygen, apparent oxygen utilization (AOU), silicate,
phosphate, and nitrate in each depth layer. Seasonal climatologies were also generated for the surface layer. Since
WOA nutrients were unavailable below 800 m, we used deep nutrient data from GLODAPv2 (Key et al., 2015;
Lauvset et al., 2016) for the bathypelagic layer. Additional predictors such as thermocline, pycnocline, mixed
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layer depth (MLD), and nutricline depths were derived from these variables, using the depth of maximum
variance in the relevant variable along a sliding window. We also generated annual and seasonal climatologies
from satellite data for net primary production, euphotic depth, particle backscattering (bbp), microphytoplankton
fraction, log of surface chlorophyll a concentration (log([chla] )) , particulate inorganic carbon, slope of phyto-
plankton size spectra and irradiance (Cael et al., 2023). Since processes at a given depth are influenced by
shallower processes (e.g., sinking particles), for each layer, we used predictors from that layer and from the layers
above it and satellite data. A full list of predictors is available in Supporting Information S1 (Table S2).

2.2. DOC Modeling

2.2.1. Model Definition

We used Boosted Regression Trees (BRTs) to regress layer‐wise DOC concentrations against all the biogeo-
chemical predictors described above. BRTs combine regression trees, which relate a response variable to pre-
dictors through recursive binary splitting (Breiman et al., 1984), with boosting, which improves prediction
performance by combining many small models (Hastie et al., 2009; Schapire, 2003). Thus, BRTs are an ensemble
method in which many “base learners” (i.e., small trees) are combined, each working on the residuals of the
previous one. Tree‐based methods offer advantages like flexibility with predictors (type, outliers, missing values,
relevance), fitting complex non‐linear relationships, and the ability to handle interactions between predictors
(Hastie et al., 2009). Boosting overcomes the limited prediction performance of single trees, making BRTs a very
powerful and popular ML algorithm, with higher performance than many other modeling methods (Elith
et al., 2008). BRTs can also use bootstrapping of observations and predictors to reduce overfitting (Fried-
man, 2002; Hastie et al., 2009). They can adapt to different response variable types and distributions with an
appropriate loss function (Elith et al., 2008). In our study, a log‐transformation of DOC values ensured normally
distributed residuals, making root mean square error suitable. Finally, BRTs are accessible through various
programming languages (e.g., R, Python), ensuring usability for non‐ML specialists.

2.2.2. Model Training and Assessment

During the training phase, the model generates a succession of small trees to relate log‐transformed DOC con-
centrations to environmental predictors. To properly estimate the generalization ability of the model, a subset of
the data is held out during training and used as an independent test set to assess performance. However, the choice
of observations included in the test set can influence the performance estimate. A common solution is to use cross‐
validation (CV), where the data is split into k folds. In each of the k iterations, one fold serves as the test set while
the remaining folds are used for training. This process results in k performance estimates, providing a more robust
and reliable evaluation of the generalization performance of the model.

Furthermore, BRTs offer the possibility of hyperparameter tuning, such as adjusting the number and size of trees.
Optimizing these hyperparameters is essential to prevent overfitting and ensure good generalization performance
(Elith et al., 2006, 2008). Hyperparameter optimization typically involves training multiple models with different
hyperparameters on the training data and evaluating their performance on a separate validation set. To avoid
underestimating errors, it is essential for the validation set to be distinct from the test set. However, as with
performance evaluation, the selection of observations included in the validation set can influence the selected
hyperparameters. Once again, a common solution is to use CV for a robust hyperparameter optimization.

Thus, to address both generalization error estimation and hyperparameter tuning, we used a nested CV (Varma &
Simon, 2006). As the name suggests, this procedure consists of two nested CV. In the first (or outer CV), one fold
serves as the test set to estimate generalization error, while the remaining folds are used for model training. Within
these training folds, a second (or inner) CV optimizes hyperparameters by iteratively using one fold as the
validation set and the others as the training data. In our study, hyperparameter tuning was performed using a
space‐filling parameter grid of size 30, exploring the following parameters and their respective sampling ranges
(note that the extrema may not have been sampled): number of trees [1, 2000], maximum depth of trees [1, 15],
minimum number of objects in a node to split further [2, 40], and learning rate [10− 10, 10− 1]. Error stabilization
around a minimum indicated sufficient grid size to explore the hyperparameters space. Both inner and outer CV
used 10 folds, with stratification based on deciles of the response variable (log(DOC)) to ensure similar distri-
bution across resamples. This approach resulted in 10 distinct models, each with potentially different hyper-
parameters selected through optimization, rather than a single finalized model.
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To avoid overestimating model performance due to spatial correlation between outer and inner folds (i.e., test and
learning sets), we performed another nested CV based on spatial location, for the surface layer only, as spatial
variation in environmental variables decreases with depth (Costello et al., 2018). We used spatial block CV
(Roberts et al., 2017), dividing the space into a 10 × 10 grid and randomly assigning cells to 10 folds. This
procedure was used for both the outer and inner resampling of the nested CV. This method results in greater
variation between outer and inner resampling compared to stratified CV, making the prediction task more
challenging and likely leading to lower performance estimates. Thus, stratified CV provides an upper estimate,
while spatial CV provides a lower estimate of model performance. Model performance was computed as both
Root Mean Squared Error (RMSE) and R2 between predicted and true values of the outer resampling (test set) for
each iteration (n = 10), in a log‐transformed space to prevent artificial inflation from very high DOC values,
resulting in 10 RMSE and R2 values for each prediction task.

All models were fitted using the tidymodels framework (Kuhn & Wickham, 2020) version 1.1.1 and the
LightGBM engine (Ke et al., 2017) in R (R Core Team, 2023) version 4.3.2.

2.2.3. Model Interpretation

To identify important predictors for DOC prediction among all available variables and thus understand which
parameters were susceptible to drive DOC concentrations, we conducted a feature importance procedure by
computing model performance after shuffling the predictor values one at a time over 10 permutations (Brei-
man, 2001). A large drop in performance (usually computed as a loss) suggests an important predictor. Predictor
importance was averaged across CV folds. To further understand how the response variable changes with a
predictor while keeping others constant, we computed univariate partial dependence profiles (Friedman, 2001).
Specifically, we generated 100 ceteris‐paribus (CP) profiles for the most important predictors. To estimate the
shape of the response to a predictor and the consistency of that shape, we then calculated the mean and standard
deviation of the centered CP profiles. These values were then averaged across CV folds.

2.2.4. DOC Projection

To generate global maps of DOC concentration, we applied the fitted regression to all pixels where at least 90% of
predictors were available (covering 84%–92% of pixels depending on the layer). For annual data, the predictors
distribution was similar between DOC‐annotated data (i.e., points for which DOC is known) and new data (i.e.,
pixels for which DOC was to be predicted) (Figure S3 in Supporting Information S1). This similarity in distri-
butions is crucial to avoid data set shift and prevent extrapolation beyond the training data range, thereby ensuring
robust and reliable predictions (Quiñonero‐Candela et al., 2022). For seasonal predictions, especially in summer,
there was more variation between DOC‐annotated data and new data (Figure S4 in Supporting Information S1), so
these predictions should be treated cautiously. Using 10‐fold nested CV resulted in 10 predictions per task. For
each pixel, the final DOC prediction and uncertainty were computed as the weighted average and standard de-
viation of these 10 predictions, weighted by the R2 value of each iteration.

2.3. Total DOC Estimate

We estimated the total DOC inventory by integrating our predictions over the global ocean volume. First, we
computed the surface area of each 1° pixel using latitude (Equation S1 in Supporting Information S1). This area
was multiplied by the layer thickness, derived from NOAA bathymetry data (NOAA National Centers for
Environmental Information, 2022), to get pixel volume. This volume was then converted to seawater mass using
the average seawater density (1,027.7 kg m− 3) (Wunsch, 2015). The total DOC content was obtained by summing
the DOC of each pixel. We performed this calculation for each CV fold to estimate uncertainty. Since some pixels
(8%–16% depending on the layer) could not be predicted due to missing predictors, this provided a minimum
DOC content estimate. We also provide a second estimate where missing pixels were assigned the layer‐wise
average DOC prediction.

2.4. Assessing DOC ML Predictions Using a Biogeochemical Model

To assess the quality of our ML predictions in unobserved ocean regions, we conducted a similar experiment on
the DOC output of a biogeochemical model (Nowicki et al., 2022). In this model, DOC fields were available only
for the epipelagic, mesopelagic, and bathypelagic layers. A comparison of modeled and observed DOC revealed

Geophysical Research Letters 10.1029/2024GL112792

PANAÏOTIS ET AL. 4 of 10

 19448007, 2025, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
112792 by T

est, W
iley O

nline L
ibrary on [28/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



that bathypelagic data had the highest agreement (R2 = 51.6%, RMSE = 3.83 μmol kg− 1). We thus focused our
experiment on this layer. The bathypelagic DOC field was subsampled using the locations of DOC observations
(n = 1,148). Using BRT, we regressed these values against the same set of predictors used to predict DOC
observations in the bathypelagic layer (Table S2 in Supporting Information S1), following the procedure
described earlier. Inferred relationships between modeled DOC and predictors were then applied to reconstruct
the bathypelagic DOC field, which was then compared to the bathypelagic DOC field from Nowicki et al. (2022).

3. Results
3.1. Surface Climatologies

The model performance for the annual surface climatology was satisfactory (Figure S5 in Supporting Informa-
tion S1): RMSE = 0.095 ± 0.007 μmol kg− 1 and R2 = 77.5 ± 3.3% for the stratified CV, RMSE = 0.120 ± 0.030
μmol kg− 1 and R2 = 62.8 ± 16.4% for the spatial CV (as mentioned in the methods, spatial and stratified CV
provide respectively a lower and an upper estimate of model performance). Lower performance and more
variation was expected in the spatial CV due to the increased difference between the training and test sets. In both
cases, RMSE values are in the same order of magnitude as the standard deviation across log‐transformed DOC
measurements (Figure S6 in Supporting Information S1), which can be considered a proxy for both measurement
error and seasonal variations. Regarding the R2 values, they highlight that there is variance in the data that could
not be captured by the ML model.

In terms of global projections, mid‐range values were predicted at mid‐latitudes, with lower values (<50 μmol
kg− 1) in the Southern Ocean and to some extent in the equatorial Pacific and high northern latitudes (Figure 1a). In
addition, very high DOC values (>150 μmol kg− 1) were predicted in the Kara, Leptov and East Siberian Seas,
while relatively high values (>100 μmol kg− 1) were also predicted in coastal waters, including the North Sea, East
China Sea and Gulf of Guinea. The prediction uncertainty (computed as the standard deviation across CV folds)
was higher in coastal waters (up to 30 μmol kg− 1 in the Arctic Ocean) but low elsewhere (<3 μmol kg− 1)
(Figure 1b). Note that the difference in the CV method did not lead to strong changes in the global projection
(Figure S7 in Supporting Information S1).

For the surface seasonal climatologies, RMSE values ranged from 0.071 ± 0.009 μmol kg− 1 to 0.126 ± 0.030
μmol kg− 1, while R2 values ranged from 62.4 ± 13.1% to 83.0 ± 3.5% (Figure S5 in Supporting Information S1).
Once again, RMSE values are above but in the same order of magnitude as uncertainties of DOC measurements
(Figure S6 in Supporting Information S1). Overall, the seasonal prediction uncertainty (Figure S9 in Supporting
Information S1) was higher for the summer prediction, consistent with a sparser DOC sampling, especially in the
southern hemisphere (Figure S2 in Supporting Information S1). This is also the season for which the model had to
make predictions outside of its training range (Figure S4c in Supporting Information S1), making summer DOC
predictions less reliable than others. High seasonal amplitude was predicted in the Sea of Okhotsk, East China Sea
and Bering Sea, as well as along the coast of Peru and in the Gulf of St. Lawrence (Figure 1c). Conversely,
seasonal amplitude was low in the Southern Ocean and at low latitudes in the Western Pacific. However, it cannot
be excluded that this latitudinal pattern is due to data limitations that affect the quality of seasonal predictions.

3.2. Deeper Climatologies

Regarding deeper climatologies, the prediction performance was high in both the epipelagic (R2 = 78.4 ± 2.2%)
and the bathypelagic (R2 = 76.8 ± 4.4%), and a little lower in the mesopelagic (R2 = 61.1 ± 7.2%) (Figure S5 in
Supporting Information S1). In the epipelagic layer, the predicted DOC was higher in the subtropical gyres and
the Arctic Ocean (60–70 μmol kg− 1), while lower values (<50 μmol kg− 1) were found in the Southern Ocean
(Figure 2). The pattern in the mesopelagic layer was quite similar to that in the epipelagic layer, but with lower
values. Finally, in the bathypelagic layer, the highest DOC values were found in the North Atlantic with 45–50
μmol kg− 1. Additionally, the sharp patterns observed in the southwest Pacific and next to the Antarctic Peninsula
are within the range of prediction uncertainty (Figure S10 in Supporting Information S1), and thus likely not
significant.
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3.3. Important Predictors

The most important environment predictors varied across layers (Figure 3). In
the surface, epipelagic and mesopelagic layers, macronutrients appeared to
drive DOC predictions, with surface nitrate being the best predictor of both
surface and epipelagic DOC, while mesopelagic phosphate was the best pre-
dictor of mesopelagic DOC. While this pattern is very clear in both the surface
and epipelagic layers, the signal in the mesopelagic layer is not as clear, with
both surface oxygen and mesopelagic nitrate appearing almost as important as
mesopelagic phosphate. In all cases, higher nutrients were associated with
lower predicted DOC (Figure S11 in Supporting Information S1), consistent
with DOC production resulting from biological activity associated with
nutrient consumption (Carlson & Hansell, 2015). Conversely, in the bathy-
pelagic layer, bathypelagic dissolved oxygen was the strongest predictor, with
higher dissolved oxygen associated with higher DOC predictions, suggesting
that deep ocean DOC concentrations are limited by the remineralization of
DOC by heterotrophic bacteria (Carlson & Hansell, 2015).

3.4. Total DOC Estimate

By integrating our DOC predictions across the globe, we estimate the total
DOC inventory to be a minimum of 679 Pg C. Assigning non‐predicted pixels
to the average DOC concentration of each layer increases this estimate to
691 Pg C. In both cases, averaging across CV folds resulted in a negligible
uncertainty (2σ = 0.72 Pg C). In terms of layer‐wise content, DOC distri-
bution was around 70% in the bathypelagic layer, 20% in the mesopelagic, 7%
in the epipelagic, while the surface layer contained less than 1% (Table 1) in
agreement with previous estimates scaled up from mean basin concentrations
in the bathypelagic (Hansell et al., 2009).

3.5. Verification Against a Biogeochemical Model Output

Our model demonstrated excellent performance in predicting DOC outputs
from a biogeochemical model (Nowicki et al., 2022), with R2 = 98.9 ± 0.5%
and RMSE = 0.217 ± 0.054 μmol kg− 1 when evaluated on the outer
resamples of each CV iteration. Additionally, the comparison between the
ML‐reconstructed field and the original field (n = 8,520) showed very strong
agreement (R2 = 97.3%, RMSE = 0.290 μmol kg− 1), with no systematic
spatial pattern in prediction error (Figure S12 in Supporting Information S1),
apart from a slight underestimation in the Mozambique Channel and a slight
overestimation in the Arabian Sea, the Gulf of Mexico, and the Sea of Japan,
all of the order of 2 μmol kg− 1.

4. Discussion
4.1. Limitations and Potential Improvements

For each DOC prediction task, the prediction error was higher but remained
within the same order of magnitude as the DOC measurement error and
temporal variation. More specifically, RMSE decreased progressively from
the surface to the bathypelagic layer, which is consistent with the lower
variability in DOC concentrations in the deeper layers (33 μmol kg− 1

compared to 220 μmol kg− 1 in the surface layer). Conversely, R2 decreased
from the surface to the bathypelagic layer, except in the mesopelagic layer,

where R2 was substantially lower (61.1% compared to 76.8%–78.4% in the other layers). This indicates that the
predictors included in our models could not capture all the variance in the response variable (i.e., DOC

Figure 1. The surface (0–10 m) DOC climatology. (a) DOC prediction in the
surface layer, computed as the mean across CV folds, weighted by R2 values.
(b) Uncertainty of DOC prediction in the surface layer, computed as the
standard deviation across CV folds, weighted by R2 values. (c) Seasonal
amplitude computed as the difference between maximal seasonal DOC and
minimal seasonal DOC, for pixels where seasonal DOC could be predicted
for all four seasons. These seasonal projections can be found in Figure S8 in
Supporting Information S1, uncertainties can be found in Figure S9 in
Supporting Information S1. Note that all color‐scales are log‐transformed.
Areas where no prediction could be made are left blank.
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concentration), either because the set of predictors is not diverse enough, or
because some of this variance is attributable to noise. This limitation was
particularly true for the mesopelagic layer. One possible explanation is that
mesopelagic DOC dynamics may be influenced by processes not captured by
the included predictors, such as DOC production by zooplankton and mi-
croorganisms through sloppy feeding on sinking particles of organic carbon
(Legendre, 2024). The inclusion of predictors encompassing biological pro-
cesses responsible for DOC production or removal could be a lead for
improvement, but these climatologies are still lacking. In terms of seasonal
predictions, prediction performance was most of the time lower (lower R2 and
higher RMSE) than for annual predictions. This can be explained by the lower
number of available observations to train the models (Table S1 in Supporting
Information S1). Regarding the spatial and temporal distribution of prediction
errors, regions with higher standard deviation across folds in global pro-
jections (i.e., higher uncertainty, as shown in Figure 1b, Figures S9 and S10 in
Supporting Information S1) are inherently associated with higher prediction
errors. This was particularly apparent for the Arctic Ocean, across both layers
and seasons.

Furthermore, for a ML model to be able to generalize beyond the training
data, it is essential that the new data has a similar distribution to the data seen
during training (Quiñonero‐Candela et al., 2022). This criterion was met for
our annual projections, while there is still room for improvement for seasonal
projections. Indeed, the summer surface prediction was particularly limited
by the scarcity of observational data. Consequently, we propose that future
sampling should focus not only on addressing spatio‐temporal gaps (primarily
caused by sampling challenges during winter at high latitudes) but also on
filling gaps in environmental coverage. More specifically, future DOC esti-
mates could benefit from increased sampling of critical variables for DOC
prediction (nutrients in the upper layer, dissolved oxygen in the bathypelagic).

Despite these limitations, the reconstruction experiment of the DOC field
from a biogeochemical model demonstrated that our approach was free from
evident systematic biases and produced reliable predictions in unobserved
ocean regions. Consequently, the DOC climatologies produced in this study
significantly advance the understanding of DOC quantification and the spatial
patterns of DOC concentrations.

4.2. Previous Climatologies and Total DOC Estimates

Our predicted surface DOC concentrations in the open ocean (40–80 μmol
kg− 1) are consistent with findings from previous studies (Bonelli
et al., 2022; Fichot et al., 2023; Laine et al., 2024; Yamanaka &
Tajika, 1997). Additionally, the higher DOC concentrations predicted for
coastal areas compared to open waters align well with the DOC concen-
tration gradient reported by Massicotte et al. (2017), further validating the
ability of our model to capture key spatial patterns influenced by terrestrial
inputs. Our projections for the epipelagic and mesopelagic layers also show
consistency, both in terms of spatial patterns and concentration values, with
the maps presented by Roshan and DeVries (2017). In the bathypelagic
layer, however, our results differ from those of Yamanaka and Tajika (1997)

and Martin and Fitzwater (1992), who, respectively based on a modeling approach and observations, found no
significant difference between the North Atlantic and Pacific. In contrast, we estimate higher DOC concen-
trations in the North Atlantic, with values approximately 10 μmol kg− 1 higher, in accordance with results
reported by Hansell (2013). Finally, our projections of seasonal variability in the surface layer align with those
reported by Laine et al. (2024), supporting the robustness of our temporal predictions. Overall, by integrating

Figure 2. Deeper DOC climatologies. DOC prediction in the (a) epipelagic
(10–200 m), (b) mesopelagic (200–1,000 m) and (c) bathypelagic
(>1,000 m) layers, computed as the mean across CV folds, weighted by R2

values. Note that color scales are log‐transformed and vary across plots.
Areas where no prediction could be made (missing predictors, shallow
waters) are left blank. Prediction uncertainties can be found in Figure S10 in
Supporting Information S1.

Geophysical Research Letters 10.1029/2024GL112792

PANAÏOTIS ET AL. 7 of 10

 19448007, 2025, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
112792 by T

est, W
iley O

nline L
ibrary on [28/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



these various aspects, our work not only reinforces previous findings but also significantly advances our un-
derstanding of spatio‐temporal variability of DOC distribution.

Observation‐based inventory estimates (662±32 Pg C) are derived by scaling from mean deep (typically
>1,000 m) concentrations at a basin scale with global ocean volume (600 Pg C; 700 Pg C; 685 Pg C: Hansell &
Carlson, 1998; Martin & Fitzwater, 1992; Williams & Druffel, 1987). These estimates have been more recently
supplemented by the artificial neural network estimate of Roshan and DeVries (2017) and modeling (DeVries &
Weber, 2017; Hansell et al., 2012; Nowicki et al., 2022) estimates giving a similar but more constrained inventory
of 660± 5 Pg C. Our total DOC estimate lies at the higher end of previous estimates Table 1. Using a simple
integral model of the preindustrial carbon cycle (Goodwin et al., 2008), the difference in atmospheric CO2 from a
complete remineralization of the DOC inventory, given the previous lowest estimate and our higher estimate, is
10 ppm. This suggests that in terms of climate‐relevance, these differences in inventory sizes are relatively
minimal. The consistency of DOC inventory estimates between simple and complex estimation procedures gives
confidence in inventory estimates. Our climatology also agrees closely (<1%) with the proportional distribution

Figure 3. Variable importance plots for the five most important predictors for the annual climatology in each layer
(importance of all other predictors is averaged and shown as “other”), shown as the increase in root mean square error
(RMSE) when a predictor is removed compared to the full model (gray vertical line).

Table 1
Total DOC Content (Pg C) in Each Layer for the a Minima (Non Predicted Pixels Were Left Empty) Filled (Non Predicted
Pixels Were Filled With the Average DOC Value for the Layer) Predictions, As Well As Previous Estimates From Hansell
et al. (2009)

Layer Prediction a minima (PgC) Prediction filled (PgC) Previous estimates (PgC)

Surf. 2.8 3.0 47a

Epi. 45.5 47.4

Meso. 140.0 145.3 138

Bathy. 490.3 495.1 477

Total 678.6 690.7 662
aThis covers both surface and epipelagic layers.
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over depth intervals found by Hansell et al. (2009) giving further confidence that our climatology provides robust
estimates of DOC concentrations.

4.3. Use, Future, and Access

In conclusion, we show that ML is a powerful tool for constructing a global climatology from a limited number of
DOC observations. Our climatology is useful not only for empirical quantitative constraint of the present DOC
inventory, but also for validation of both prognostic and diagnostic models of DOC. Further observations should
allow us to refine this product, especially the seasonal projections, and eventually to predict large DOC shifts in
the context of global climate change (Beucler et al., 2024). Generated climatologies are made available online on
SEANOE (https://doi.org/10.17882/101170).

Data Availability Statement
Generated climatology products are made available online on SEANOE via Panaïotis et al. (2024). The code to
generate the climatologies is archived on Zenodo via Panaïotis (2025).
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