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A B S T R A C T

Soil water repellency (SWR) is a natural process and affects water dynamics from nano to ecosystem scales. 
However, the spatial distribution of SWR at the ecosystem scale, as well as the underlying drivers across diverse 
habitats, land uses and soil textures, remain underexplored. This study presents a comprehensive survey of SWR 
in Denmark and its predicted spatial distribution, using approximately 7,500 samples. We used digital soil 
mapping methods (Quantile Random Forest model) to map and identify the relationship between SWR and 
various environmental variables, including vegetation (via satellite imagery), soil properties (texture and soil 
organic carbon), and landforms (slope and wetness index). The predicted maps at 10 m resolution revealed that 
SWR varies across different land uses and vegetation types, with higher values in areas of natural vegetation (e. 
g., heathlands and coniferous forests) compared to grasslands and croplands (mostly hydrophilic). The analysis 
also identified soil organic carbon, Sentinel band 3 (Green band − Chlorophyll absorption) and soil texture as key 
drivers of spatial variation in SWR at the national extent. We found that soil texture influences SWR intensity, 
which generally decreases as clay content increases across most land use types, except for heathlands. While the 
predicted maps provided valuable insights into SWR distribution and its environmental drivers, further research 
is needed to explore the spatio-temporal dynamics of SWR within each habitat, particularly in relation to soil 
moisture changes. This study highlights the potential of combining machine learning and remote sensing to 
provide crucial spatial information for managing water resources and enhancing ecosystem resilience in the face 
of climate change.

1. Introduction

Soil water repellency (SWR) is a natural process and occurs at the 
nanoscale due to complex interactions between water and surface 
properties, chemical composition, biological communities and envi-
ronmental conditions (Doerr et al., 2000a; Smettem et al., 2021). 
Moreover, it can significantly affect water dynamics at micro, pedon, 
and ecosystem levels (Mao et al., 2019). This phenomenon is present in a 
wide range of biomes globally (Doerr et al., 2000a), occurring in cold 
and wet regions (Fu et al., 2021; Hermansen et al., 2019; Weber et al., 
2023) even though the majority of studies have focused on areas subject 
to forest fires and arid regions due to its pronounced negative impact on 
crop development and yields (Hall et al., 2010; Li et al., 2019). These 
adverse effects of SWR in agricultural areas are largely due to uneven 

soil wetting patterns and increased preferential flow, with water 
bypassing the root zone to deeper soil layers (Robinson, 1999). How-
ever, recent studies suggest that SWR may also have positive effects on 
water infiltration and evaporation dynamics (Bachmann et al., 2001; 
Imeson et al., 1992; Rye and Smettem, 2018), potentially as a result of 
the co-evolution of plants and microorganisms to enhance drought 
resilience (Seaton et al., 2019). Although contrasting findings regarding 
the benefits and adverse effects of SWR indicate the role of land use on 
SWR, its spatial assessment across diverse vegetation types and soil 
conditions remains limited (Seaton et al., 2019).

Soil water repellency is largely caused by hydrophobic compounds 
produced by plants and microorganisms, which coat soil mineral sur-
faces and prevent them from becoming wet (Bisdom et al., 1993; Gio-
vannini et al., 1983) or are present as interstitial organic matter in the 
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soil matrix (e.g. peat). It is well-known that plant cover affects the 
severity of SWR and is related to the biochemical quality of litter and 
root exudates (Popović and Cerdà, 2023). For example, Eucalyptus and 
Pinus species produce waxes and lipids that can cause severe SWR (Doerr 
et al., 1996; Hewelke et al., 2018; Martins et al., 2020). In agricultural 
areas, SWR has been recorded in grasslands (Gao and Yang, 2023), 
which can present superhydrophobic leaves (Barthlott et al., 2017). In 
addition to plant cover, SWR is also affected by the microbial commu-
nity (Chai et al., 2022; Doerr, Shakesby, and Walsh 2000; Majid et al., 
2023; Seaton et al., 2019) which is well-established for fungi (Hallett, 
Ritz, and Wheatley 2001; Unestam 1991; Unestam and Sun 1995).

The degree of SWR is affected by the composition and activity of the 
living microorganisms (Simpson et al., 2019) but also the microbial 
necromass which can represent a large proportion of the organic carbon 
content (Liang et al., 2019). The relationship between SWR and micro-
organisms is complex, as microorganisms can either decrease or increase 
the degree of SWR depending on whether they produce or degrade hy-
drophobic compounds (Chai et al., 2022; Seaton et al., 2019; Liu et al., 
2013; Roper et al., 2005; Simpson et al., 2019). The production of hy-
drophobic compounds by the biological communities can be linked to 
water inundation or stress responses (Seaton et al., 2019).

Although the quality and quantity of organic matter is a determining 
factor in whether a soil can become water repellent, the type of soil 
minerals also play an important role (Doerr et al., 2000). For example, 
the clay and silt fractions are characterized by large specific surface 
areas (Petersen et al., 1996) when compared to the sand fraction. 
Therefore, a large amount of hydrophobic material is needed to cover 
conventionally hydrophilic clay mineral surfaces (van Oss and Giese, 
1995) and render these water repellent as compared with coarse- 
textured soils with relatively small specific surface areas (Doerr et al., 
2000a; Giovannini and Lucchesi, 1983). Thus, soil texture has an effect 
on SWR, but SWR is a complex phenomenon, and the effect of texture on 
SWR is not straightforward and has not been explored at a national level 
covering multiple vegetation types. For example, Jordán et al. (2009)
and Mirbabaei et al. (2013) found positive correlations between SWR 
and sand content, while Doerr et al. (1996) found that SWR was asso-
ciated with fine-grained soil fractions rather than coarse-grained frac-
tions in pine and eucalyptus forests in northern Portugal.

Soil water repellency is also a transient soil property. The severity of 
SWR can vary according to, e.g., soil water content (de Jonge et al., 
1999; Doerr et al., 2000b; Karunarathna et al., 2010; Regalado et al., 
2008), pH (Diehl et al., 2010a; Graber et al., 2009b; Hermansen et al., 
2019), temperature (Graber et al., 2009b; King, 1981), and ambient 
relative humidity (Doerr et al., 2000b; Roy and McGill, 2002a). Soil 
water content, in particular, can affect the severity of SWR since SWR 
varies nonlinearly with this parameter, and the exact same soil can 
change from being hydrophilic to becoming extremely hydrophobic 
with only small increments in soil water content (Hermansen et al., 
2019; Regalado et al., 2008). Although it is well-known that SWR varies 
as a function of water content, it is extremely time-consuming to mea-
sure SWR versus water content curves, which causes this approach to be 
inappropriate for large-scale SWR surveys. Dekker and Ritsema (1994)
introduced the term ‘potential’ SWR, referring to an SWR measurement 
on soils heat-pretreated at 60 ◦C, and the approach of measuring po-
tential SWR after heat pretreatment of 60–65 ◦C has been applied in 
other studies as well studies (Bisdom et al., 1993; Dekker et al., 2001; 
Müller et al., 2010). Assessing the severity in SWR using ‘potential’ SWR 
has previously been referred to as an appropriate parameter for the 
intercomparison of soils regarding the severity in SWR (Dekker et al., 
2001; Dekker and Ritsema, 1994a).

There are several common methods for measuring the severity of 
SWR. Some of the most applied methods for assessing SWR are the 
measurement of SWR persistence following the water drop penetration 
time (WDPT) method (King, 1981) and the measurement of the degree 
of SWR with the molarity of an ethanol droplet (MED) test (King, 1981; 
Roy and McGill, 2002a). The WDPT gives a measure of how long water 

repellency persists on a soil surface, whereas the MED test gives an in-
direct measure of the soil surface tension since it gives a measure of how 
strongly a droplet of water is repelled by the soil surface (Doerr, 1998). 
Both methods are well-suited for large amounts of soil, but the WDPT 
test has the disadvantage that long persistence times can cause this 
method to be very laborious (Doerr, 1998; Wallis and Horne, 1991).

The development of digital soil mapping (DSM) has enabled the 
spatial assessment of soil properties and the identification of the main 
drivers at different scales (McBratney et al., 2003). Over the last three 
decades, fundamental soil properties, such as soil texture components 
and soil organic carbon (SOC), have been mapped from the field (Guo 
et al., 2020; Møller et al., 2021) to global scales (Hengl et al., 2017; 
Poggio et al., 2021). DSM uses geostatistical and machine learning 
models to capture the linear and non-linear relationships between target 
variables and explanatory variables and make predictions in space. For 
instance, the Quantile Random Forest is a commonly used approach and 
has the advantage of retrieving the predictions quantiles (Meinshausen, 
2006; Poggio et al., 2021). Although DSM techniques have proven 
highly useful for mapping soil properties that exhibits little temporal 
variation (such as soil texture and SOC), mapping dynamic soil prop-
erties that vary greatly in space and time and represent soil functions (e. 
g., water infiltration/water regulation) remains a challenge (Gomes 
et al., 2023). The constraints in mapping soil functions lie in the fact that 
they are processes influenced by dynamic soil properties and environ-
mental conditions (e.g., climate, vegetation). Dynamic soil properties 
have high potential as indicators for soil health assessment, but the 
absence of maps hinders their use across large areas by farmers and 
policymakers. SWR is a prime example of a soil process/property that is 
time-consuming to measure and is influenced by biotic and abiotic 
factors that vary in space and time. Despite some efforts to map SWR in 
grassland areas in China (Gao and Yang, 2023) and New Zealand (Bayad 
et al., 2020), comprehensive national spatial assessments covering 
different agricultural and natural habitats are unprecedented. Under-
standing the spatial distribution of SWR across large areas with diverse 
vegetation types and soil conditions could provide valuable insights into 
its significance for different land uses/ land cover at a national level.

Although SWR is not a major problem in Denmark, it has been 
recorded in agricultural (de Jonge et al., 2007), forest areas (Wahl, 
2008), and numerous natural and semi-natural habitat types (Danielsen 
et al., 2023; Danielsen et al., 2025). A better understanding of SWR 
across different habitats and its links with soil and vegetation factors can 
provide important insights into its potential benefits for infiltration and 
drought resistance (Robinson et al., 2010), which are important in the 
context of climate change. Therefore, this study aims to (i) conduct a 
national potential SWR survey across all habitats, land uses, and soil 
types in Denmark; (ii) map the potential SWR on a national scale; and 
(iii) identify the main drivers of SWR and their effects.

2. Material and methods

2.1. Study area and sampling

Denmark covers approximately 43,000 km2 and has a climate clas-
sified as warm temperate humid, according to the Köppen-Geiger clas-
sification. The country’s mean annual temperature ranges from 6 to 10 
◦C, with an average annual precipitation of 780 mm. The land use in 
Denmark is primarily agricultural, covering about 60 % of the land 
surface, followed by forests (14 %) and other natural areas such as 
wetlands (2 %; Levin and Gyldenkærne (2022)). The predominant soil 
types in Denmark are Luvisols, Arenosols, and Cambisols (Adhikari 
et al., 2014). Soil texture varies across the country, with low clay content 
(0–5 %) in the west, where Arenosols dominate, and higher clay content 
in the east, where Luvisols are prevalent. There are also small areas with 
very high clay content (28–63 %) in the southwest (Fig. 1a).

To capture the diversity of agricultural and natural habitats, we 
collected around 7,500 soil samples across Denmark in the period from 
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2021 to 2023, covering all land uses and a wide range of soil organic 
carbon contents as well as soil texture groups (Fig. 1b). All samples were 
collected from the topsoil (0–20 cm) with the majority sampled in 
agricultural areas (3,841 samples), followed by forests (1,883 samples) 
and grasslands (1,043 samples), according to the Danish land use clas-
sification (Levin and Gyldenkærne, 2022). The forest areas were well- 
represented in the sampling to cover different forest types, which is 
evident from the clustered samples (green) shown in Fig. 1b. In the 
Danish land use classification, the grassland category encompasses a 
broad range of habitats, including managed and natural grasslands, 
where the vegetation is dominated by grasses and forbs, as well as 
heathlands. To analyze the results of this study, we distinguished be-
tween agricultural grasslands (hereafter referred to as grasslands) and 
heathlands.

2.2. Soil water repellency measurements

The degree of SWR was measured with the molarity of an ethanol 
droplet (MED) test (Roy and McGill, 2002b) on air-dried and 2-mm 
sieved soil samples which, prior to SWR measurement had been heat- 
pretreated in the oven at 60 ◦C, and thereafter kept at lab conditions 
(20 ◦C) for 48 h to equilibrate. Thus, as in previous studies (Dekker and 
Ritsema, 1994b; Deurer et al., 2011) a measure of the ‘potential’ SWR 
was obtained by measuring SWR after heat-pretreatment at 60 ◦C.

Following the approach outlined in Hermansen et al. (2019) and 
Weber et al. (2021), droplets of 60 µL (ethanol solution concentrations 
within a concentration range of 0 to 0.80 cm3 cm3) were placed on the 
soil surface. The resulting degree of SWR (Liquid Surface Tension − LST 
(mN m− 1)) was derived from the highest ethanol concentration, which 
did not infiltrate within 5 s (Roy and McGill, 2002b).

Water-repellent soils exhibit a lower surface tension than hydrophilic 
soils. Increasing concentrations of ethanol gradually decrease the liquid 
surface tension of the droplets placed on the soil surface. Using the 
equation given in Roy and McGill (2002) to convert between molarity 
and liquid surface tension of ethanol, pure water with a concentration of 

0 cm3 cm3 ethanol corresponds to a liquid surface tension of 71.276 mN 
m− 1 and characterizes hydrophilic soil, whereas surface tensions below 
71.276 mN m− 1 characterize an increasing severity of SWR with 
decreasing liquid surface tension. In reality, the liquid surface tension of 
water at 25 ◦C is 72.75 mN m− 1 (Doerr et al., 2000), but for consistency 
we applied the value of 71.276 mN m− 1 to define hydrophilic soil.”.

The severity in SWR was divided into five categories. The upper level 
of SWR severity was defined as extreme SWR, based on the definition of 
40.9 mN m− 1 given in Doerr et al. (2000a). Thus, three SWR categories 
were created with an equal span in surface tension: high (40.9 – 51.0 mN 
m− 1); moderate (51.0 – 61.1 mN m− 1) and mild (61.1 – 71.27 mN m− 1). 
Hydrophilic soil (No SWR) was characterized by a surface tension of 
71.27 mN m− 1.

2.3. Digital soil mapping and covariates

We applied the DSM approach (McBratney et al., 2003) to predict 
SWR across Denmark using the Quantile Random Forest (QRF) model 
(Meinshausen and Ridgeway, 2006). The QRF model allows us to retain 
predictions from all trees (quantiles), providing a measure of uncer-
tainty within the model. Here, we selected the 0.1, 0.5 and 0.9 quantiles 
to produce the median values (q0.5) and the prediction interval (q0.1 to 
q0.9). We split the dataset into 75 % for training and 25 % for testing, 
using the test set as external validation. However, random selection of 
data for training and testing can affect the results, so to mitigate this 
issue, we ran the model 50 times, each time creating different training 
and test datasets. We used a 10-fold cross-validation with ten potential 
values for tuning hyperparameters to optimize the model.

The models’ performance was assessed using test data and evaluated 
with five statistical metrics. The mean absolute error (MAE) and root 
mean squared error (RMSE) summarize the residuals and describe the 
absolute accuracy of the models, indicating how close the predicted 
values are to the actual values. The coefficient of determination (R2) 
indicates the proportion of variance in the target variable that the model 
explains, showing how much the model improves predictions compared 

Fig. 1. Clay content map (%, a) and the distribution of soil water repellency sampling points (b) within the different land use cover classes in Denmark. Clay map
adapted from Adhikari et al. (2013).
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to simply using the mean of the observed target variable as the predic-
tion. Lin’s concordance correlation coefficient (LCCC) evaluates the 
agreement between the observed and predicted values, assessing both 
the precision and accuracy of the predictions (Khaledian and Miller, 
2020). As an additional validation, we applied the “Null” MAE and “Null 
RMSE” by calculating these metrics for a null model that uses the mean 
observations as predictions. Using “Null” models is a good strategy to 
establish thresholds and evaluate the “badness” of the models, allowing 
for comparison with a model where the predictors are set to 0 (null).

To predict topsoil water repellency, we used covariates related to soil 
properties, landscape, and vegetation. We used soil organic carbon and 
soil texture maps from Denmark (Møller et al., 2024). Slope and the 
SAGA wetness index were calculated from a Digital Elevation Model 
(DEM) and used to represent the landforms. The vegetation covariates 
were derived from Sentinel-2 images taken during the spring season 
(01/03 – 31/05) from 2019 to 2023 and compiled into a composite 
image. All bands were used, and the vegetation indices Normalized 
Vegetation Index (NDVI) and Normalized Moisture Index (NDMI) were 
calculated. We selected images from the spring season due to the 
availability of cloud-free data. All covariates were at a 10 x 10 m reso-
lution. Given the lack of a significant gradient in air temperature across 
Denmark, we decided not to use climate-related covariates to predict 
SWR.

3. Results and Discussion

3.1. Soil water repellency

Soil water repellency (SWR) was observed in 50.7 % of soil samples, 
with the SWR severity (LST < 45 mN m− 1) predominant found in the 
western regions and specific locations in the eastern parts of Denmark 
(Fig. 2). A substantial number of samples (3,716) were classified as 
hydrophilic (LST ≥ 71.276 mN m− 1) and were distributed throughout 
Denmark, with the majority associated with cultivated cropland areas 

(Fig. 3) such as spring barley and winter rape under tillage systems. 
Natural habitats exhibited the highest severities in SWR, with a 
decreasing gradient observed from forests and wetlands, followed by 
grasslands (agricultural and heathland) and croplands (Fig. 3). Our 
findings support the notion that SWR is more the norm than the 
exception (Doerr and Ritsema, 2006). Studies conducted in similar 
humid climates to Denmark have reported varying degrees of water 
repellency, with 63 % (Doerr et al., 2006) and 92 % (Seaton et al., 2019) 
of samples showing some level of water repellency. These studies also 
observed higher severities in SWR in natural habitats compared to 
agricultural areas.

The differences in SWR between natural habitats and agricultural 
areas can be attributed to the presence and quality of organic matter 

Fig. 2. Soil water repellency samples (SWR, Liquid Surface Tension − LST (mN m− 1)) (a), and soil organic carbon (SOC) map (b) from Denmark. SOC map adapted 
from Adhikari et al. (2014b).

Fig. 3. Soil water repellency (SWR; Liquid Surface Tension − LST (mN m− 1)) in 
the different land use/cover in Denmark. The grassland class here covers 
agricultural grasslands and heathlands.
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with hydrophobic compounds produced by local plants and microor-
ganisms (Cesarano et al., 2016; Mao et al., 2015). Plants in natural 
habitats often retain evolutionary traits, such as the production of hy-
drophobic compounds like cutin and suberin, which enhance their 
ability to withstand various environmental stresses, including water 
stress, insect damage, and pathogen attacks (Popović and Cerdà, 2023). 
For instance, coniferous trees are known to produce litter with a high 
concentration of hydrophobic compounds (Jetter et al., 2006). 
Conversely, agricultural areas in humid climates generally exhibit lower 
SWR severities or no repellency as compared to natural areas, consistent 
with previous studies conducted in the UK (Doerr et al., 2006; Seaton 
et al., 2019). The difference between agricultural and natural habitats 
may result from crop types that produce less hydrophobic material 
(Miller et al., 2019) and agricultural management practices such as 
intense tillage, which can deplete soil organic carbon, a key source of 
hydrophobic compounds and a factor highly correlated with SWR. In 
addition, the croplands are mainly located in areas with higher clay 
content and lower SOC (eastern region), which contribute to the dif-
ferences in SWR compared with natural habitats. Soil pH management 
may also be a factor and remains to be explored further (Diehl et al., 
2010b; Graber et al., 2009a). Grasslands exhibited the greatest variation 
in SWR (Fig. 3), likely due to differences between heathlands and 
agricultural grasslands. The grasslands also span a wide pH gradient, 
which may further contribute to the observed variation in SWR. Addi-
tionally, many managed grasslands contain up to 50 % clover, poten-
tially influencing the production of hydrophobic compounds.

3.2. Spatial distribution of soil water repellency

The predictive model demonstrated good performance on the test 
dataset, achieving mean values of R2 = 0.58, LCCC = 0.72, MAE = 5.6 
mN m− 1 and MAE_NULL = 11.7 mN m− 1, considering mapping activities 
in large areas (Chen et al., 2022). The spatial distribution of predicted 
SWR mirrored the trends observed in the soil samples (Fig. 4). Higher 
severities in SWR are observed in the western part of Denmark (Central 
Jutland) and the northern and southwestern coastal regions, while lower 
or no water repellency is found in the eastern part of Denmark. In 

general, agricultural areas, primarily croplands, show no SWR, whereas 
natural areas such as forests and heathlands exhibit higher SWR 
severity. A detailed examination of SWR distribution within these nat-
ural areas reveals variations between habitat types (Fig. 5). For instance, 
the model effectively distinguishes between coniferous and deciduous 
trees (Fig. 5). A closer look at a peatland area in northern Denmark in-
dicates that bogs and grasslands have higher SWR compared to peat-
lands under intensive agriculture. Additionally, spatial variation in SWR 
within heathland areas likely relate to the density of different plant 
species in these habitats (Fig. 5).

The uncertainty of predictions, based on the 80 % prediction inter-
val, was higher for coarse-textured soils in the west than in fine-textured 
soils in the east (Fig. 4b). Specifically, the model performed well in 
predicting high values of SWR and hydrophilic soils, with cropland areas 
located mainly in the loamy soils in the east presenting low uncertainty 
(< 5 mN m− 1). The same was observed for coniferous forests, with 
higher SWR values but lower uncertainty compared with deciduous 
forests (Fig. 5). The lower uncertainty in the extreme values of SWR 
gradient can be attributed to the role of satellite images, which is 
powerful to capture cropland and the uniformity of coniferous trees.

The use of Sentinel images with a 10 m resolution enabled detailed 
observations related to SWR across various land uses and within natural 
areas. Bayad et al. (2020) used time-series Sentinel images and machine 
learning models to predict SWR occurrence in grasslands in New Zea-
land. Although our study did not identify SWR in croplands, higher 
variation was found in grasslands. These findings highlight the potential 
of remote sensing images to monitor SWR occurrence. This capability is 
valuable not only for natural areas but also for agricultural settings, 
where it can be used to identify critical zones for targeted interventions. 
It may also be of high value for identifying inclined forested areas prone 
to overland flow and flash floods, particularly in relation to forest fires.

3.3. Main drivers of SWR

Analysis of the observed SWR from soil samples revealed that while 
vegetation type is a key driver of SWR, soil texture also significantly 
modifies its intensity in natural habitats (Fig. 6). SWR generally 

Fig. 4. Predicted map of soil water repellency (SWR, Liquid Surface Tension − LST (mN m− 1)) (a) and the uncertainty map (PI − prediction interval) in Denmark (b). 
The quantiles q0.10 and q0.90 represent the 80% prediction interval.
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decreases with higher clay content (>10 %) across most habitat types, 
except for heathlands. In heathlands, soils with higher clay content 
exhibited the highest severities in SWR. The observed increase in SWR 
with higher clay content in heathlands may be attributed to three 

factors. First, heathlands represent one of the last frontiers in agricul-
tural conversion in Denmark (Lohrum et al., 2024), and many of these 
areas may only be used for grazing, thereby preserving the natural 
vegetation for long periods. Second, the plant species in heathlands 

Fig. 5. Detailed visualization of predicted soil water repellency (SWR; Liquid Surface Tension − LST (mN m− 1)) and the uncertainty (PI- prediction interval) for 
different land uses/covers in Denmark.

Fig. 6. Soil water repellency (SWR, LST – Liquid Surface Tension (mN m− 1)) in Denmark’s specific land uses/habitat types grouped by clay content (%). More 
information about the land uses can be found in Table S1.
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produce hydrophobic compounds with high carbon-to-nitrogen (CN) 
ratios (Strandberg et al., 2018), which tend to accumulate in the soil 
over time. These hydrophobic compounds may create coatings around 
aggregates, which ultimately decrease the specific surface area needed 
to be covered by hydrophobic material to render the soil water-repellent 
(Doerr et al., 2000a). Third, some of the heathlands are burned 
(controlled fires), which may enhance SWR. Consequently, the combi-
nation of high production of hydrophobic compounds and their pro-
longed presence can lead to increased SWR, even in soils with high clay 
content. For example, SWR has been detected in soils with clay contents 
as high as 34 % (Wijewardana et al., 2016) and 60 % (Dekker and Rit-
sema, 1996).

Our results also reveal the effect of clay content on the severity of 
SWR varies between different habitat types. For example, the impact of 
increasing clay content on SWR is less pronounced in coniferous forests 
compared to deciduous forests (Fig. 6). This variation is likely related to 
the quality of litter and hydrophobic compounds produced by different 
forest types (Cools et al., 2014). For instance, coniferous trees produce 
litter with more recalcitrant compounds (e.g., lignin) compared with 
deciduous trees (Berg and McClaugherty, 2008). Lorenz and Thiele- 
Bruhn (2019) identified high SOC stocks under coniferous trees 
compared to deciduous species, which was linked to their SOM quality 
(e.g., higher CN ratio). Our findings underscore that while hydrophobic 
compounds are a major controller of SWR, soil texture and clay mineral 
type play a significant role in moderating the occurrence and severity of 
SWR.

The spatial distribution of predicted SWR was primarily explained by 
SOC, Sentinel 2 band 3 (SB3_spring), clay content, and coarse sand 
(Fig. 7). It is uncommon in digital soil mapping to have a few covariates 
explaining most of the variation of a soil property, and this highlights 
the importance of these variables in determining the severity and 
occurrence of SWR. Soil pH is also an important driver of SWR occur-
rence by affecting the orientation of hydrophobic compounds (Graber 
et al., 2009a), but a soil pH map is not yet available for Denmark at the 
spatial resolution of this study.

Partial dependency plots indicate that SWR increases with SOC from 
2 to up to 30 %, beyond which no further response is observed (Fig. 8). 
The relationship between SWR and SOC is consistent with findings from 
previous local-scale studies (Hermansen et al., 2019; Mao et al., 2019). 
For SB3_spring, there is no effect on SWR between reflectance values 

around 500 and 700, followed by a rapid decrease to 900, with lower 
SWR at higher reflectance values. Sentinel images have been used with 
success to map different tree species at plot scale (Axelsson et al., 2021) 
to national scale (Blickensdörfer et al., 2024), and the green band also 
appear as an important predictor (Persson et al., 2018). Sentinel B3 is 
sensitive to total chlorophyll, especially in spring, when deciduous trees 
are more photosynthetically active. Regarding clay content, no effect is 
noted between 1.5 % and 5 %, but SWR decreases with clay content up 
to 14 %, beyond which no additional effect is observed. Coarse sand 
exhibits a contrasting effect. All variables described in the partial 
dependence plots present peaks, indicating a certain threshold where 
their effect on SWR becomes visible. This shows that before the peak, 
other variables may explain the variation in SWR. The intensity of the 
peak is clearer for the Sentinel image compared with the soil properties. 
This is because spectral changes from cropland to natural areas and 
among forest types are more pronounced than gradual spatial changes in 
soil properties. Although these partial dependency plots show the gen-
eral trends between SWR and the explanatory variables, they should be 
interpreted with caution, as our results also indicate that the potential 
SWR is the result of an interplay between soil and vegetation charac-
teristics. Additionally, it is important to note that the SOC and soil 
texture values are derived from predicted maps, which limits our ability 
to discuss these results in greater detail at a local scale.

4. Conclusions

In this paper, we conducted a national survey of topsoil SWR across 
all habitats and soil types in Denmark, enabling us to map its spatial 
distribution and identify the main drivers. While modelling and 
upscaling SWR does not capture all of its underlying complexities, it 
provides valuable insights into its spatial variability and key influencing 
factors at the ecosystem level.

Our study shows that most cropland soils do not have a severe 
problem, regardless of soil texture, with a gradient of increasing SWR 
severity from grasslands to forests and heathlands. This SWR gradient 
supports the hypothesis that SWR is a natural process and indirectly 
results from the co-evolution between plants and microorganisms in 
natural habitats, enhancing resilience against environmental stress 
(Smettem et al., 2021).

The interaction between vegetation and soil texture plays a major 
role in determining Denmark’s spatial distribution of SWR. Soil organic 
carbon and vegetation spectral data emerged as the two most important 
variables. These factors are autocorrelated since SOC is primarily pro-
duced by vegetation. This highlights the importance of both SOC 
quantity (SOC content) and quality (represented here by Sentinel band 
3). Our findings also reveal clear thresholds for these variables, showing 
that SWR is positively correlated with SOC and negatively correlated 
with clay content. However, these trends are derived from partial 
dependence plots, which only account for the individual effects of each 
factor. Other factors, such as soil moisture and microorganisms, also 
play a significant role in the occurrence and severity of SWR.

The large number of samples from natural habitats also allowed us to 
identify that soil texture appears to buffer the effects of hydrophobic 
compounds in the environment. In natural habitats and agricultural 
grasslands, SWR generally decreases as clay content exceeds 10 %, with 
the exception of heathlands. Additionally, the influence of increasing 
clay content on SWR is less pronounced in coniferous forests than in 
deciduous forests.

This study represents only part of the complex dynamics of SWR in 
space. Future research should explore the full spectrum of SWR across 
different soil moisture content and investigate the physical and biolog-
ical drivers within natural habitats and their interaction across space 
and time. The role of SWR on water dynamics is unquestionable, and the 
maps generated in this study could be used within spatial hydrological 
models and studies exploring the resistance and resiliency of vegetation 
to drought events.

Fig. 7. Relative importance of covariates (% increase of mean square error- 
MSE) for the prediction of soil water repellency (LST – Liquid Surface Ten-
sion) in Denmark. Soil organic carbon (SOC), Sentinel bands (SB2_spring; 
SB3_spring, SB5_spring, SB8_spring, SB11_spring, SB12_spring, areas without 
grass in rotation between 2010 and 2021 (IMK_croplandonly_reclass), normal-
ized moisture index (NDMI), normalized vegetation index (NDVI).
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Popović, Z., Cerdà, A., 2023. Soil water repellency and plant cover: A state-of-knowledge 
review. Catena 229.

Regalado, C.M., Ritter, A., de Jonge, L.W., Kawamoto, K., Komatsu, T., Moldrup, P., 
2008. Useful soil-water repellency indices: Linear correlations. Soil Science 173, 
747–757. https://doi.org/10.1097/SS.0b013e31818d4163.

Robinson, D., 1999. A comparison of soil-water distribution under ridge and bed 
cultivated potatoes. Agricultural Water Management 42 (2), 189–204.

L.C. Gomes et al.                                                                                                                                                                                                                                Geoderma 457 (2025) 117280 

9 

http://refhub.elsevier.com/S0016-7061(25)00118-1/h0050
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0050
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0050
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0050
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0055
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0055
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0055
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0055
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0060
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0060
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0060
https://doi.org/10.1016/j.jenvman.2023.118677
https://doi.org/10.1016/j.jenvman.2023.118677
https://doi.org/10.1111/ejss.70063
https://doi.org/10.2136/sssaj1999.03615995006300030003x
https://doi.org/10.2136/sssaj1999.03615995006300030003x
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0080
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0080
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0080
https://doi.org/10.1029/94wr00749
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0090
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0090
https://doi.org/10.2136/sssaj2001.1667
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0100
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0100
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0100
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0100
https://doi.org/10.1016/j.geoderma.2010.06.005
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0110
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0110
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0110
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0115
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0115
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0120
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0120
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0120
https://doi.org/10.1016/S0012-8252(00)00011-8
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0130
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0130
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0130
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0135
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0135
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0135
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0140
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0140
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0140
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0145
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0145
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0150
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0150
https://doi.org/10.3389/fsoil.2023.1090145
https://doi.org/10.3389/fsoil.2023.1090145
https://doi.org/10.2136/sssaj2008.0131
https://doi.org/10.2136/sssaj2008.0131
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0165
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0165
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0165
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0170
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0170
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0170
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0175
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0175
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0180
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0180
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0180
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0180
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0180
https://doi.org/10.1016/j.geoderma.2018.12.007
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0190
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0190
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0190
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0195
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0195
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0195
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0205
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0205
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0205
https://doi.org/10.1097/SS.0b013e3181f55ab6
https://doi.org/10.1097/SS.0b013e3181f55ab6
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0215
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0215
https://doi.org/10.1071/Sr9810275
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0225
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0225
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0225
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0230
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0230
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0235
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0235
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0235
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0240
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0240
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0240
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0245
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0245
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0245
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0250
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0250
https://doi.org/10.1016/j. soisec. 2023. 100091
https://doi.org/10.1016/j. soisec. 2023. 100091
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0260
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0260
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0260
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0265
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0265
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0265
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0270
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0270
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0270
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0275
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0275
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0280
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0280
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0285
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0285
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0285
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0290
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0290
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0290
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0300
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0300
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0300
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0305
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0305
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0305
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0310
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0310
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0310
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0315
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0315
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0315
https://doi.org/10.1097/SS.0b013e31818d4163
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0330
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0330


Robinson, D.A., Lebron, I., Ryel, R.J., Jones, S.B., 2010. Soil Water Repellency: A Method 
of Soil Moisture Sequestration in Pinyon–Juniper Woodland. Soil Science Society of 
America Journal 74 (2), 624–634.

Roper, M.M., 2005. Managing Soils to Enhance the Potential for Bioremediation of Water 
Repellency. Soil Research 43 (7), 803–810.

Roy, J.L., McGill, W.B., 2002. Assessing soil water repellency using the molarity of 
ethanol droplet (MED) test. Soil Science 167, 83–97. https://doi.org/10.1097/ 
00010694-200202000-00001.

Rye, C.F., Smettem, K.R.J., 2018. Seasonal variation of subsurface flow pathway spread 
under a water repellent surface layer. Geoderma 327, 1–12.

Seaton, F.M., Jones, D.L., Creer, S., George, P.B.L., Smart, S.M., Lebron, I., Barrett, G., 
Emmett, B.A., Robinson, D.A., 2019. Plant and soil communities are associated with 
the response of soil water repellency to environmental stress. Science of Total 
Environment 687, 929–938.

Simpson, R.M., Mason, K., Robertson, K., Muller, K., 2019. Relationship Between Soil 
Properties and Enzyme Activities With Soil Water Repellency. Soil Research 57 (6), 
689–702.

Smettem, K., Rye, C., Henry, D., Sochacki, S., Harper, R., 2021. Soil water repellency and 
the five spheres of influence: A review of mechanisms, measurement and ecological 
implications. Science of the Total Environment 787, 147429.

Unestam, T., 1991. Water Repellency, Mat Formation, and Leaf-Stimulated Growth of 
Some Ectomycorrhizal Fungi. Mycorrhiza 1 (1), 13–20.

Unestam, T., Sun, Y.-P., 1995. Extramatrical Structures of Hydrophobic and Hydrophilic 
Ectomycorrhizal Fungi. Mycorrhiza 5 (5), 301–311.

van Oss, C.J., Giese, R.F., 1995. The Hydrophilicity and Hydrophobicity of Clay Minerals. 
Clays and Clay Minerals 43 (4), 474–477.

Wahl, N.A., 2008. Variability of water repellency in sandy forest soils under broadleaves 
and conifers in north-western Jutland/Denmark. Soil and Water Research 3 (Special 
Issue 1), S155–S164.

Wallis, M.G., Horne, D.J., 1991. An evaluation of the intrinsic sorptivity water repellency 
index on a range of New Zealand soils. Australian Journal of Soil Research 29, 
353–362.

Weber, P.L., Hermansen, C., Norgaard, T., Pesch, C., Moldrup, P., Greve, M.H., 
Müller, K., Arthur, E., de Jonge, L.W., 2021. Moisture-dependent Water Repellency 
of Greenlandic Cultivated Soils. Geoderma 402, 115189.

Weber, P.L., Hermansen, C., Pesch, C., Moldrup, P., Greve, M.H., Blaesbjerg, N.H., 
Romero, G.M., Arthur, E., de Jonge, L.W., 2023. Glacial rock flour reduces the 
hydrophobicity of Greenlandic cultivated soils. Soil Science Society of America 
Journal 87 (3), 439–452.

Wijewardana, N.S., Müller, K., Moldrup, P., Clothier, B., Komatsu, T., Hiradate, S., de 
Jonge, L.W., Kawamoto, K., 2016. Soil-water repellency characteristic curves for soil 
profiles with organic carbon gradients. Geoderma 264, 150–159.

L.C. Gomes et al.                                                                                                                                                                                                                                Geoderma 457 (2025) 117280 

10 

http://refhub.elsevier.com/S0016-7061(25)00118-1/h0335
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0335
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0335
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0340
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0340
https://doi.org/10.1097/00010694-200202000-00001
https://doi.org/10.1097/00010694-200202000-00001
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0350
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0350
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0355
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0355
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0355
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0355
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0360
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0360
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0360
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0365
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0365
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0365
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0370
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0370
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0375
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0375
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0380
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0380
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0385
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0385
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0385
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0390
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0390
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0390
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0395
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0395
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0395
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0400
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0400
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0400
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0400
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0405
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0405
http://refhub.elsevier.com/S0016-7061(25)00118-1/h0405

	Mapping potential water repellency of Danish topsoil
	1 Introduction
	2 Material and methods
	2.1 Study area and sampling
	2.2 Soil water repellency measurements
	2.3 Digital soil mapping and covariates

	3 Results and Discussion
	3.1 Soil water repellency
	3.2 Spatial distribution of soil water repellency
	3.3 Main drivers of SWR

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


