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Abstract Global kilometer‐scale models represent the future of Earth system modeling, enabling explicit
simulation of organized convective storms and their associated extreme weather. Here, we comprehensively
evaluate tropical mesoscale convective system (MCS) characteristics in the DYAMOND (DYnamics of the
atmospheric general circulation modeled on non‐hydrostatic domains) simulations for both summer and winter
phases. Using 10 different feature trackers applied to simulations and satellite observations, we assess MCS
frequency, precipitation, and other key characteristics. Substantial differences (a factor of 2–3) arise among
trackers in observed MCS frequency and their precipitation contribution, but model‐observation differences in
MCS statistics are more consistent across trackers. DYAMOND models are generally skillful in simulating
tropical mean MCS frequency, with multi‐model mean biases ranging from − 2%–8% over land and − 8%–8%
over ocean (summer vs. winter). However, most DYAMONDmodels underestimate MCS precipitation amount
(23%) and their contribution to total precipitation (17%). Biases in precipitation contributions are generally
smaller over land (13%) than over ocean (21%), with moderate inter‐model variability. While models better
simulateMCS diurnal cycles and cloud shield characteristics, they overestimateMCS precipitation intensity and
underestimate stratiform rain contributions (up to a factor of 2), particularly over land, albeit observational
uncertainties exist. Additionally, models exhibit a wide range of precipitable water in the tropics compared to
reanalysis and satellite observations, with many models showing exaggerated sensitivity of MCS precipitation
intensity to precipitable water. The MCS metrics developed here provide process‐oriented diagnostics to guide
future model development.

Plain Language Summary Global storm‐resolving models represent a significant advancement in
predicting extreme weather events, as they can directly simulate convective storms and their impacts. These
models are crucial for understanding how extreme weather might change in a warming climate. This study
evaluates the performance of these advanced models in predicting large tropical storms, known as mesoscale
convective systems, which are key drivers of heavy rainfall and severe weather. The research used 10 different
methods to track storms in model simulations and satellite observations. We found that different tracking
methods can yield varying results regarding storm frequency and rainfall. However, when comparing simulated
storms to observed ones, the results are more consistent across the different trackers. The models generally
perform well in predicting the average frequency of tropical storms. But they underestimate the rainfall amount
from these storms by about 23% and their contribution to total precipitation by about 17%. Additionally, most
models predicted heavier rainfall for a given amount of atmospheric water vapor compared to observations. The
multi‐method tracking analysis offers valuable insights for improving future model development efforts,
helping them better predict extreme weather events and address societal needs in a changing climate.
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1. Introduction
Organized moist convection that is clustered in space and time plays a critical role in the Earth's energy budget and
hydrological cycle (Stephens et al., 2023). A mesoscale convective system (MCS) is a form of highly organized
moist convection with a cluster of cumulonimbus clouds spanning at least 100 km horizontally and lasting many
hours to more than a day (Houze, 2014). Decades of research, field campaigns, and remote sensing technology
advancements, along with high‐resolution modeling and theoretical insights have led to a fundamental under-
standing of the structure and evolution of MCSs as well as their impacts on weather and climate (see reviews by
Houze (2018), Schumacher and Rasmussen (2020), and Chakraborty et al. (2023)).

MCSs contribute to over half of the total precipitation in the tropics (Feng, Leung, et al., 2021; Nesbitt
et al., 2006; Yuan & Houze, 2010) and several midlatitude regions (Feng et al., 2019; Haberlie & Ashley, 2019;
Kukulies et al., 2021; Prein et al., 2024). When tropical convection is more clustered, the surrounding free
troposphere becomes drier with reduced cloudiness, increasing emission to space, and thus enhancing radiative
cooling (Bony et al., 2020). Tropical MCSs are often coupled with large‐scale modes of variability. A dominant
intraseasonal mode is the Madden‐Julian Oscillation (Madden & Julian, 1971, 1972), which has significant
impacts on sub‐seasonal prediction (Kim et al., 2023). MCSs were considered as a potential building block of
large‐scale tropical variability such as the MJO (Chen et al., 1996; Mapes et al., 2006). Recent work showed
that active phases of large‐scale convectively coupled equatorial waves enhanced MCS frequency, size, and
precipitation throughout the tropics, especially for Kelvin waves, tropical depressions, and the MJO (Cheng
et al., 2023). Over Africa, the propagation and growth of African easterly waves is largely modulated by MCSs
(Núñez Ocasio et al., 2020a, 2020b). The interaction of MCSs with African easterly waves over Africa and the
Atlantic has proven intrinsic in tropical cyclone formation (Núñez Ocasio et al., 2024; Rajasree et al., 2023).
These studies point to the importance of properly simulating the processes that produce MCSs and their upscale
effects on large‐scale circulations in numerical models (Yang et al., 2019) for more accurate sub‐seasonal
predictions.

Over land, MCSs were linked to a myriad of hazardous weather events. Extreme precipitation is dispropor-
tionately produced by infrequent and long‐lived MCSs (Núñez Ocasio et al., 2020a; Prein et al., 2023; Roca &
Fiolleau, 2020; Stevenson & Schumacher, 2014; Wu et al., 2024). While numerous case studies have documented
flooding associated with individual MCS events in both tropics and midlatitudes, some recent studies have
quantified the dominant role of MCSs in producing warm‐season floods in the United States and East Asia
(Brunner & Dougherty, 2022; Ding et al., 2024; Hu et al., 2021). Certain types of MCSs can cause widespread
straight‐line wind damage, sometimes referred to as derechos, which were extensively observed in the United
States and Europe (Ashley & Mote, 2005; Bentley & Mote, 1998; Coniglio et al., 2006; Fery & Faranda, 2024;
Surowiecki & Taszarek, 2020). Although relatively rare, MCSs can also produce large hail and tornadoes
(Thompson et al., 2012; Wang et al., 2023).

Despite their importance to both weather and climate, simulating MCSs in general circulation models (GCMs)
with coarse horizontal grid spacing (∼100 km) and parameterized convection has been a long‐standing challenge
(Feng, Song, et al., 2021; Hsu et al., 2023; Wu et al., 2024). Some recent studies showed that higher resolution
GCMs (25–50 km grid spacing), such as those from the High Resolution Model Intercomparison Project
(HighResMIP) for CMIP6 (Haarsma et al., 2016), also struggled to properly simulate organized convection and
their associated precipitation (Dong et al., 2021; Feng, Song, et al., 2021; Lin et al., 2022; Zhang et al., 2024), as
exemplified by biases in the diurnal cycle of precipitation (Dong et al., 2023; Song et al., 2024) and surface
temperature (Lin et al., 2017; Ma et al., 2018; Morcrette et al., 2018).

In contrast, convection‐permitting models (CPMs) with km‐scale horizontal grid spacing can explicitly simulate
deep convection. Many studies have demonstrated that CPMs have significantly improved skill in simulating
various aspects of MCSs in observations, including the frequency, size, duration, diurnal cycle, and precipitation
distribution in different geographical regions (Chen et al., 2021; Crook et al., 2019; Feng et al., 2018; Müller
et al., 2023; Prein, Liu, Ikeda, Bullock, et al., 2017; Prein et al., 2024; Zhang et al., 2021). Compared to models
with parameterized convection, km‐scale models more reliably simulate potential changes of MCSs in a warmer
climate because they explicitly simulate processes that facilitate upscale growth and organization of convection,
such as cold pools and convective dynamics interactions with cloud microphysics, the surface and surrounding
atmosphere. CPMs were used to quantify the effects of warming on high‐impact MCS hazards including extreme
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precipitation (Bao et al., 2024; Fitzpatrick et al., 2020; Prein, Liu, Ikeda, Trier, et al., 2017), flooding (Dougherty
& Rasmussen, 2020; Feng, Chen, & Leung, 2024), and severe winds (González‐Alemán et al., 2023; Lasher‐
Trapp et al., 2023; Li et al., 2023; Prein, 2023).

While a km‐scalemodel is a promising tool to address urgent needs for decision‐making and climate change impact
assessments related to extremes at the regional scale (Gutowski et al., 2020), many important biases exist in these
models. For example, convective updrafts and precipitation intensity are consistently overestimated (Fan
et al., 2017; Müller et al., 2023; Prein et al., 2021; Varble et al., 2014a, 2020; Wang et al., 2020) while stratiform
precipitation is underestimated (Feng et al., 2018; Hagos et al., 2014; Han et al., 2019; Varble et al., 2014b). These
biases highlight the need for more comprehensive evaluation and improvements for CPMs, particularly regarding
their representation of MCSs.

With increasing computational power, global CPM is now a reality (Satoh et al., 2019). The DYAMOND (DY-
namics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains) project (Stevens
et al., 2019) provided an opportunity to examine state‐of‐the‐art global models that explicitly simulate clouds and
convection. Some global km‐scale models have already been used to produce short‐term climate simulations
(Cheng et al., 2022; Hohenegger et al., 2023). Feng, Leung, et al. (2023) found a surprisingly large spread in the
simulated deep convection and MCS frequencies in the DYAMOND models, though large, long‐lived MCSs are
generally underestimated compared to observations. However, only a subset of the DYAMONDWinter (Phase‐II)
ensemble was examined with a single tracking algorithm in that study. Prein et al. (2024) highlighted significant
differences among different feature trackers in estimating MCS characteristics such as frequency, size, and
duration for both observations and km‐scale regional climate simulation in South America. These studies raise
further questions: (a) How sensitive are the DYAMOND simulated MCS characteristics to different tracker for-
mulations? (b) What km‐scale model biases are robust among trackers and how do the biases relate to environ-
mental moisture?

In this study, we conduct a more comprehensive evaluation of simulated MCS characteristics in all available
DYAMOND models for both summer and winter phases by applying 10 different feature trackers to the simu-
lations and satellite observations. We illustrate metrics that are robust among trackers to evaluate MCSs in global
km‐scale models to guide future model evaluation efforts, and also propose a framework for future MCS tracking
method intercomparison (MCSMIP) efforts. The rest of the paper is organized as follows: Section 2 describes the
data sets and tracking methods; Section 3 provides an overview of the simulated convective clouds, precipitation,
and moisture; Section 4 presents results for the MCS tracking intercomparison; discussions and conclusions are
provided in Section 5.

2. Data and Methods
2.1. Observational Data

The primary global satellite data used for trackingMCS in observations are the NOAACPC/NCEP global merged
infrared brightness temperature (Tb) data (Janowiak et al., 2017). The data set merge multiple geostationary
satellite Tb data into a global (60°S–60°N) data set with 4 km pixel resolution at 30‐min intervals. Occasionally,
certain regions have missing Tb data possibly due to satellite sensor issues. Most of the regions between 60°S and
60°N have more than 98% valid data for both DYAMOND phases, except for the southeastern Pacific dropping to
∼80% during summer and east Asia dropping to ∼96% during winter (Figure S1 in Supporting Information S1).
Fortunately, the southeastern Pacific during summer has relatively low MCS frequency (Feng, Leung,
et al., 2021); thus the impact of the missing Tb data on MCS tracking is expected to be small.

The Integrated Multi‐satellitE Retrievals for GPM (IMERG) precipitation product is also used for identifying
MCSs. The IMERG product has 0.1°× 0.1° (∼10× 10 km) resolution at 30 min intervals. The IMERGV06B data
(Huffman et al., 2019) have been used in our previous work to produce long‐term global MCS tracking data set
(Feng, Leung, et al., 2021). The new IMERG V07B data (Huffman et al., 2023) have been released recently.
Numerous changes were made in the V07B to improve precipitation detection, and systematic and random biases
(see Huffman et al. (2023) Technical Documentation for more details). Quantitative evaluation of the IMERG
V07B data set is currently underway. We included the V07B data set in many of our analyses as an estimate of the
uncertainty in the precipitation retrieval.
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Similar to our previous approach (Feng, Leung, et al., 2021), the 4‐km Tb data set are conservatively regridded
to match the IMERG 0.1° × 0.1° resolution. The 00‐min Tb snapshot is used to represent a given hour, and the
two 30‐min IMERG precipitation retrievals are averaged to obtain hourly precipitation rate (e.g., 01:00 and
01:30 are averaged to 01:00). The instantaneous Tb snapshot is comparable to the model simulated outgoing
longwave radiation (OLR), while the average hourly precipitation reduces the artificial temporal variability in
the 30‐min IMERG data due to spatial resolution differences from various satellite microwave sensors
(Rajagopal et al., 2021). The Tb and IMERG precipitation data sets are then combined into a single data set for
MCS tracking in observations. The combined Tb and IMERG data set covers the two DYAMOND phases: 1
August 2016–10 September 2016 (Summer, Phase‐I) and 20 January 2020–28 February 2020 (Winter,
Phase‐II).

We used the GPM DPR (Dual‐Frequency Precipitation Radar) Ku‐band precipitation profile 2A V07 data set
(Iguchi & Meneghini, 2021) to further provide uncertainty estimates for observed precipitation intensity. We
consider the DPR precipitation data set to be more accurate than IMERG because the DPR retrieval uses active
radar sensing that measures reflectivity vertical profiles used to retrieve near‐surface precipitation, while
IMERG relies on passive microwave sensing sensitive to column‐integrated hydrometeor scattering signatures
combined with cloud‐top infrared temperature retrievals and spatiotemporal morphing. However, DPR is
limited in spatiotemporal coverage and cannot be used for tracking MCSs. The DPR Ku‐band precipitation
profile product is a single‐frequency retrieval from the Ku‐band radar and has a 5 × 5 km footprint at nadir with
a 245‐km swath width. The Ku‐band product provides a snapshot of precipitation profiles over the swath and
completes an orbit every ∼1.5 hr. The near‐surface precipitation rate from the DPR product is used in this
study. To facilitate comparison with IMERG, the DPR precipitation data set is conservatively regridded to
match the IMERG 0.1° × 0.1° grid. The DPR data set used in this study covers the same period as the Tb and
IMERG data set.

The satellite‐derived precipitable water (PW, i.e., total column water vapor) product is obtained from the
Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS, Andersson et al. (2021)). The
HOAPS PW is a gridded data set with 0.5° × 0.5° horizontal resolution and 6 hourly temporal resolution. The
HOAPS uses microwave measurements from the Special Sensor Microwave Imager (SSM/I) and the Special
Sensor Microwave Imager Sounder (SSMIS) sensors to retrieve PW over ice‐free ocean surfaces.

PW from the ERA5 reanalysis (Hersbach et al., 2020) is used to characterize the observedMCS environments. The
ERA5 PW data has 0.25° × 0.25° horizontal resolution and hourly temporal resolution. We compared PW from
ERA5 with the HOAPS product over the tropical ocean in Section 3 to quantify the uncertainty of the ERA5
data set.

2.2. DYAMOND Models

We evaluated most of the available DYAMOND models from both Summer and Winter phases with horizontal
grid spacing at or finer than 5 km (see Table S1 in Supporting Information S1). Several models were excluded
from our analysis due to errors either in the outputs or model implementations. Models were initialized on 1
August 2016 (Summer phase) and 20 January 2020 (Winter phase), respectively, and integrated for 40 days. In
this study, only the simulation outputs for the last 30 days were used to avoid the model spin up period.

The model simulated OLR and surface precipitation were used to track MCS consistently with observations. All
simulation outputs were first regridded to match the IMERG 0.1° × 0.1° horizontal grid between 60°S and 60°N.
Variables with finer temporal resolution (e.g., precipitation, typically at 15‐min intervals) were further averaged
to hourly. The simulated hourly instantaneous OLR was empirically converted to Tb following Yang and Slingo
(2001). The combined OLR and precipitation at hourly resolution are used for MCS tracking. Example snapshots
of observed and simulated convective clouds (using Tb < 241 K as proxy) and precipitation from theWinter phase
are shown in Figure 1. Visual inspection reveals that simulated deep convective clouds vary substantially in size
and depth, particularly in the tropics. For example, some models predominantly simulated isolated deep con-
vection (e.g., ICON, SCREAMv0) while some others produced very large and deep cloud clusters (e.g., MPAS,
SCREAMv1). The characteristics of the simulated organized tropical deep convection are the subject of detailed
investigation in Section 4.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD042204

FENG ET AL. 4 of 29

 21698996, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

042204 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [17/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 1. Example snapshots of cold clouds (Tb < 241K, white shading) and precipitation (color shading) from observations and DYAMOND winter models at 13 UTC
on 5 February 2020 (15 days from model initialization). Brighter shading of the clouds denotes lower Tb associated with deep convection with higher cloud tops. A
zoom‐in region over the West Pacific (red boxes) from OBS and SCREAMv1 is shown in the bottom row. The example is meant for qualitative comparisons of cloud
and precipitation features rather than their exact locations.
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2.3. MCS Definition

In this study, MCS is defined using both Tb‐identified cloud shield and precipitation characteristics following
Prein et al. (2024):

1. Cloud shield area with Tb < 241 K must be at least 40,000 km2 and persist for at least 4 continuous hours, and
must contain Tb < 225 K at least once during those hours.

2. Must contain minimum peak precipitation of 10 mm hr− 1 inside the cloud shield for 4 continuous hours.
3. Must reach a minimum rainfall volume of 20,000 km2 mm h− 1 (e.g., 100 km × 100 km × 2 mm hr− 1) at least
once during the lifetime.

Most previous studies use Tb‐only, typically ranging from 220 to 240 K, to track MCSs with varying area and
duration criteria (Dong et al., 2021; Fiolleau & Roca, 2013; Laing & Fritsch, 1997; Machado et al., 1998; Núñez
Ocasio et al., 2020a; Williams & Houze, 1987). Such a methodology works reasonably well in the tropics but
becomes problematic in the extratropics where many types of large and long‐lived cloud systems are often not
entirelyMCSs (e.g., extratropical cyclones, frontal systems/atmospheric rivers), althoughMCSs can be embedded
in them. Tb‐only methods can result in substantially higherMCS frequency than methods that consider both Tb and
precipitation characteristics (Feng, Leung, et al., 2021; Kukulies et al., 2023; Leung et al., 2022). Therefore, using
both cloud shield and precipitation is important to correctly identify MCSs across different climate regimes. The
peak hourly rainfall rate threshold (10 mm hr− 1 in criterion 2) serves to identify storms with heavy convective
precipitation, while the rainfall volume threshold (20,000 km2 mm h− 1 in criterion 3) ensures the storm precipi-
tation footprint achieves mesoscale dimensions, capturing the broader spatial extent with contributions from
moderate stratiform rainfall. We note that tropical cyclones (TCs) can be aliased as MCS because the definition
used here does not exclude TCs. However, TCs are relatively rare in the short period examined in this study.

TheMCS definition used in the current study reflects a consensus among experts in theMCS tracking community,
aiming to balance capturing the physical characteristics of MCSs with the simplicity required for application
across different tracking methods. As expected, some sensitivity of identified MCS properties to threshold
choices exists. For instance, higher Tb thresholds yield larger cloud areas and longer durations, while higher
precipitation thresholds reduce the frequency of identified MCSs. The peak rain rate threshold (criterion 2) is
highly sensitive to spatial resolution (∼10 km in this study), whereas the rainfall volume threshold (criterion 3) is
less affected by grid spacing. This study focuses on examining the sensitivity of MCS statistics to variations in
tracker formulations. Future studies should further investigate how individual trackers respond to varying
thresholds, including potential shifts in the distribution of Tb and precipitation under a changing climate.

2.4. MCS Feature Trackers

There are a total of 10 feature trackers participating in this study. Some trackers have specific functionality to
track MCSs while others are general feature trackers that require post‐processing to identify MCSs. Most trackers
have separate procedures for spatial segmentation of cloud objects and temporal linking (Table 1). The most
significant differences among the trackers lie in the spatial segmentation, which could result in substantial dif-
ferences in the number of cloud objects before they are linked in time. Most trackers use spatial overlap between
consecutive timesteps as a temporal linking method, though detailed implementations (e.g., fraction of overlap
between time steps) could differ. A brief description of each tracker is provided in the Supporting Information S1.
Five out of the 10 trackers were used in Prein et al. (2024) and further details can be found in that study.

Considering the diversity and different built‐in functionality of the trackers, each of them was run with their
preferred configuration to track convective clouds using Tb (various thresholds are provided in Table 1. After-
ward, each tracker identifiedMCSs following the same criteria described in Section 2.3. Subsequently, masks that
contain unique MCSs were recorded from each tracker at the 0.1° × 0.1° grid for each hour, which is then
standardized to a common netCDF file for each DYAMOND model and observations. Lastly, MCS lifecycle
statistics such as size, duration, and precipitation characteristics were derived from the standardized MCS mask
files for further analysis.

3. Evaluation of Simulated Clouds, Precipitation, and Moisture
We first compare the overall distribution of the simulated Tb and precipitation in the tropics against observations
to understand how these variables may affect MCS tracking. Figure 2 shows that the PDF of the simulated Tb from
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most DYAMOND models agrees reasonably well with observations, particularly for Tb < 241 K (blue shaded
region in Figures 2a and 2b), which is the Tb range to identify deep convective clouds. Several models have
noticeable deviations from observations, for example, for the summer period, UM and ARPEGE underestimate
low Tb frequency; during the winter period, MPAS and ICON overestimate low Tb frequency while UM and

Table 1
Key Characteristics of MCS Tracking Algorithms and Thresholds Used in the Current Intercomparison Study

Spatial segmentation Temporal linking method
Merging/splitting

treatment
Programming
language

PyFLEXTRKR (Feng, Hardin, et al., 2023) 2D detect‐and‐spread cold core:
Tb < 225 K, spread to Tb < 241 K

Overlap (0.5) Yes Python

TIMPS (Rajagopal et al., 2023; Russell
et al., 2024)

2D detect‐and‐spread multi‐
thresholds with outer Tb < 241 K

Overlap (max overlap) No Python, C++

simpleTrack (Stein et al., 2015; Crook
et al., 2019)

Threshold‐connectivity Tb < 241 K Overlap (0.6) Yes Python

KFyAO (Dong et al., 2021; Huang et al., 2018) Threshold‐connectivity Tb < 241 K Overlap and Kalman filter (0.15) No Matlab

tobac (Heikenfeld et al., 2019; Sokolowsky
et al., 2024)

Multiple threshold‐connectivity
Tb < 241 K, 233 K, 225 K

Parcels, propagation speed Yes Python

DL + TempestExtremes (Ronneberger
et al., 2015; Ullrich et al., 2021; and this study)

Convolutional neural network
(U‐Net) Trained with
PyFLEXTRKR data

Overlap (uses TempestExtremes) (0.5) No Python, C++

TAMS (Núñez Ocasio & Moon, 2024; Núñez
Ocasio et al., 2020a)

Contour (polygon) Tb < 241 K Overlap (0.5) No Python

ATRACKCS (Robledo et al., 2024) Contour (polygon) Tb < 241 K Overlap (0.25) No Python

MOAAP (Prein et al., 2023) 2D water‐shedding Overlap (one gridcell) Yes Python

TOOCAN (Fiolleau & Roca, 2013) 3D region growing (space + time) Tb dilation from 190 to 241 K, +2 K/step No C

Note. Spatial segmentation refers to how a cloud field is segmented into individual cloud objects, and temporal linking refers to the procedure of connecting cloud objects
in time. Merging/splitting treatment refers to whether an MCS starting as a split from an existing system or ending by merging with another system is explicitly tagged,
hence separating them from “naturally” initiating or dissipating systems.

Figure 2. PDFs of (a, b) infrared Tb and (c, d) hourly rain rate in the tropics for summer (15°S–30°N) and winter (20°S–15°N).
In (c, d), thick black lines are IMERG v6, gray lines are IMERG v7, and thick dark blue lines are GPM DPR retrieval. The
blue shaded region in (a, b) is the Tb range for tracking deep convective clouds. The insets in (c, d) show PDFs of weak rain
rates (gray box) between 1–10 mm hr− 1.
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GRIST underestimate low Tb frequency. These biases in Tb imply that MCS frequencies from those models may
have larger discrepancies with observations.

Both versions of IMERG have a similar frequency of light rain rates (<3 mm hr− 1) but a lower frequency of heavy
rain rates (>20 mm hr− 1) compared to DPR, with IMERG V7 deviating further than V6 (Figures 2c and 2d).
These results are consistent with the literature that IMERG underestimates heavy precipitation and vice versa for
light precipitation (Ayat et al., 2021; Cui et al., 2020; Rajagopal et al., 2021; Zhang et al., 2021). We note that the
hourly rain rates from DPR may represent an instantaneous estimate from the GPM core satellite overpass, while
those from IMERG represent rain rates averaged over an hour. Therefore, we may expect that the rain rates from
IMERG should be lower than those from DPR, although the exact differences are difficult to quantify. The rain
rate PDFs from DPR and two versions of IMERG should be treated as a range of observational uncertainties. The
simulated rain rates exhibit a larger spread among the models than the simulated Tb, with most models over-
estimating observed heavy rain rate frequencies between 10 and 40 mm hr− 1, while underestimating light rain rate
frequencies. The large spread in simulated precipitation rate may also affect MCS identification.

We further compare daily mean PW and accumulated precipitation over the tropical ocean to assess the model
precipitation sensitivity to environmental moisture. Global maps of time‐mean simulated PW and precipitation
differences with observations are provided in Figures S2 and S3 in Supporting Information S1. Compared to the
HOAPS satellite retrieval, ERA5 has a slightly lower PW in both seasons by ∼1 kg m− 2 (Figures 3a and 3b).

Figure 3. Box‐whisker plots of dailymean (a, b) precipitablewater (PW), (c, d) total precipitation over tropical ocean, and (e, f)
mean tropical ocean PWversus precipitation. In (a–d), boxes are interquartile ranges and horizontal lines aremedian values, in
(e, f), circles are mean values and lines are standard deviations. The diagonal lines represent constant precipitation‐to‐PW
ratios from the twoobservational data sets, and the shaded areas encompass the range of observed standard deviations. Legends
in (e, f) show mean values of the ratio between precipitation and PW for OBS, and relative difference (%) between other
sources and OBS. Only the last 30 days of the simulations are included.
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DYAMOND models have widespread PW ranging from overestimation by up to 3 kg m− 2 (e.g., NICAM) to
underestimation by 3–5 kg m− 2 (IFS, GEOS, SCREAMv1, SAM). In contrast, models produce similar or higher
precipitation than both versions of IMERG, with the lone exception being MPAS in Winter (Figures 3c and 3d).
As a result, most models (13 out of 19) have higher precipitation‐to‐PW ratios than observations (points above the
shaded diagonal lines in Figures 3e and 3f), with biases ranging from ∼10% to 33%. These results suggest most
DYAMOND models overestimate the sensitivity of precipitation to environmental moisture over the tropical
ocean.

4. MCS Tracking Intercomparison
4.1. MCS Tracker Differences in Observations

Before assessing the model representation of MCSs and their sensitivity to tracker formulations, we first compare
MCS tracking in observations among the participated trackers. An example ofMCS tracks from observations over
the western Pacific during summer is shown in Figure 4. The example contains several very large cloud clusters
(100s–1,000 km) with complex evolution that are common over tropical oceans. Substantially different MCS
tracks are seen across the trackers (Figures 4a–4j). Some trackers produce a few very large MCSs (e.g., sim-
peTrack, TAMS, DL, ATRACKCS). In contrast, TOOCAN and MOAAP produce numerous small MCSs, while
the rest of the trackers produce MCSs of intermediate size. This difference among trackers has been highlighted
by Prein et al. (2024) (Five of the six trackers in that work are also used in the current study) and was attributed to
several factors, including differences in the spatial segmentation procedures (Table 1), and treatment of merging
and splitting. This example highlights that the number of MCS tracks is highly sensitive to tracker formulation,
and it may not be a robust metric to evaluate model simulations, despite its simplicity.

Rather than counting the number of MCS tracks, we make use of the MCS mask outputs from the trackers to
compute the hour counts for each grid point (the sum of all MCS masks covering the grid point over a period),
regardless of the number of individual MCS tracks. This metric can be converted toMCS frequency of occurrence
(hereafter, MCS frequency) by simply dividing by the total number of hours over the period. Results show that
MCS frequency is more comparable among the trackers than the number of MCS tracks (Figures 4k–4t) because it
eliminates the ambiguity in determining between one large MCS and many small MCSs.

Next, we compare observedMCS contributions to total precipitation among the trackers. Figures 5a and 5b shows
the global distribution from PyFLEXTRKR for the two DYAMOND phases and Figures 5c–5f shows the
regional, tropical, and global mean values from each tracker. Global maps from individual trackers are provided in
Figure S4 in Supporting Information S1. Large tracker differences (up to a factor of 2) in MCS contribution to
total precipitation are seen over most regions for both seasons. Four trackers produce estimates of∼60% or higher
over tropical ocean (PyFLEXTRKR, TAMS, simpleTrack, DL) while two trackers' (TOOCAN, tobac) estimates
are∼40% or less. Inter‐tracker variability inMCS cloud frequency is also quite large (up to a factor of 3, Figure S5
in Supporting Information S1), consistent with MCS rainfall contribution. Similar contrasts are found over
tropical land and global averages.

The lower MCS frequency and precipitation fraction in TOOCAN, tobac, and MOAAP trackers are potentially
due to their more complex spatial segmentation and temporal tracking techniques, such as water‐shedding and
parcel tracking (Table 1), which segment large cloud clusters into smaller, shorter‐lived systems. A fraction of
these smaller systems does not meet the MCS criteria and is therefore excluded, whereas simpler threshold‐
connectivity or contour‐based methods used by other trackers often retain them as part of larger clusters.
These methodological differences contribute to the observed discrepancies in MCS frequency and precipitation
fractions.

Such large differences highlight that the frequently referenced statement “MCSs contribute to over 50% of total
precipitation” is highly sensitive to tracker formulations, especially across major MCS production regions. Our
results are qualitatively consistent with Prein et al. (2024) for South America. Caution is therefore needed when
using a particular tracker to quantify MCS frequency and rainfall contributions. On the other hand, the
consistent discrepancies among trackers across geographic regions and seasons suggest that regional tracker
comparisons, which are computationally lighter and easier for process level investigation, may be broadly
applicable globally.
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Figure 4. Examples of MCS tracker results during a single day for observations over the west Pacific (125°E− 165°E, 10°N–30°N). The left column shows the 6‐hourly
evolution of the cloud shield (gray shading), precipitation (color shading), and the outlines of the detected MCSs based on results from PyFLEXTRKR. The purple
circles show the MCS initiation points, and the purple lines show the MCS tracks. Panels (a–j) show the tracks and swaths of individual MCSs, with different colors
indicating individual MCSs from each tracker. Panels (k–t) show the hour counts of MCS masks from each tracker.
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4.2. MCS Frequency and Precipitation

In this subsection, we evaluate simulated MCS frequency and precipitation over tropical land and ocean sepa-
rately. The tropical belt was selected for each season based on the latitude bands where MCSs most frequently
occur in observations (Figures 6a and 6b). The simulated tropical mean MCS frequency biases are shown by
individual models (rows) and trackers (columns) as heat maps, with multi‐model mean biases shown in the top
row (Figures 6c and 6d). Absolute values from each tracker are provided in Figures S6 and S7 in Supporting
Information S1. The skill of simulating tropical MCS frequency varies widely among DYAMOND models, with
some models substantially underestimating observed values over both land and ocean by up to 90% (e.g.,
ARPEGE, SCREAM, GRIST) while others overestimate by up to 300% (e.g., SCREAMv1, ICON, MPAS). The
model biases are generally consistent among the trackers (similar color/values across a row) with a few ex-
ceptions (MPAS, ICON). The opposite behaviors in SCREAMv1 and SCREAM potentially arise from changes in
the sub‐grid enhancement of autoconversion and accretion, which were disabled in v1 to reduce the tendency to
convert cloud water to rain too quickly (i.e., too much precipitating shallow convection), and the transition from a
relative humidity‐based to a mixing‐ratio‐based ice cloud fraction scheme in v1 that likely increases upper‐level
ice clouds (Donahue et al., 2024), impacting MCS tracking. Multi‐model mean values show that DYAMOND
models are generally skillful in simulating tropical mean MCS frequency, with biases ranging from − 11% to 30%
over land and from − 18% to 20% over ocean, though regional differences are larger (not shown).

Figure 5. Comparisons of observed MCS contribution to total precipitation among the trackers. Global distribution of MCS contribution to total precipitation for
(a) summer and (b) winter based on results from PyFLEXTRKR. Regional mean values of the trackers are shown in (c) summer and (d) winter, and global (60°S–60°N)
mean values are shown in (e) summer and (f) winter. Black boxes show the regions in (a, c) WP (West Pacific), ITCZ (Intertropical Convergence Zone), IO (Indian
Ocean), AO (Atlantic Ocean), AFC (Africa), SAM (South Asian Monsoon), CUS (Central United States), AMZ (Amazon); and in (b, d): MC (Maritime Continent),
ITCZ, SPCZ (South Pacific Convergence Zone), IO, AO, AFC, AMZ, and SES (Southeast South America). Gray shaded areas in (a) are regions with missing Tb data
>70%. Black horizontal lines in each group of bars in (c–f) denote averages from all trackers for that region. Mean values are calculated by dividing the MCS
precipitation amount by the total precipitation amount in each region.
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Figure 6. Comparisons of MCS frequency based on cloud shield occurrence. (a, b) Observed MCS cloud shield frequency based on average from all trackers, (c, d)
relative difference (%) between simulations and observations for each tracker (x‐axis) and for each model (y‐axis), with the top row showing multi‐model mean
differences. Regions of the averaging results are shown in the black box in (a, b). Gray shaded areas in (a) are regions with missing Tb data >70%. In (c, d) the left half is
for land MCS and the right half is for ocean MCS. Relative difference is computed by (simulation–observation)/observation.
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Simulated MCS precipitation amount biases are more consistent than MCS frequency among the DYAMOND
models and trackers (Figure 7). Nearly all models underestimate MCS precipitation amounts over the tropical
ocean with a lesser underestimate by a lesser number of models over tropical land (exceptions over land being
SCREAMv1, ICON, and IFS). ICON (land) and MPAS (ocean) biases differ in sign among trackers. Visual
inspections reveal that ICON and MPAS simulated excessive extents of cold cloud tops with more numerous
embedded small convective precipitation cores (∼10s km), morphologies that differ significantly from obser-
vations (i.e., typically a few large precipitation features spanning ∼100s km underneath a cold cloud shield,
example animations are provided in the Supporting Information S1). These conditions cause the most dis-
agreements in MCS identification among trackers. Further research is needed to better understand the cause of
these morphological differences for individual models, which is beyond the scope of this study. Multi‐model
mean MCS precipitation amount biases among trackers range from − 23% to 4% over land and from − 45% to
− 17% over ocean.

Simulated MCS contributions to total precipitation show the most consistent difference among DYAMOND
models and trackers (Figure 8). Nearly all models show lower MCS contribution than observations in both
seasons except for MPAS over the ocean during winter. The multi‐model mean biases are slightly smaller over
land (− 20% to − 6%) than over ocean (− 28% to − 16%), although several models (ARPEGE, GRIST, SCREAM,
ICON) have relatively larger biases (− 30% to − 50%). These results confirm the finding from Feng, Leung,
et al. (2023) that MCS precipitation is generally underestimated in DYAMOND models. The agreement among
the trackers suggests that although DYAMOND multi‐model means are skillful in simulating MCS frequency,
their associated precipitation is underestimated and more so over the ocean than land. Additionally, some indi-
vidual models can produce much larger differences with observations and can be further improved.

4.3. MCS Diurnal Cycle

A recent study showed that the diurnal cycle of precipitation is better simulated in DYAMOND models than
HighResMIP models, which was attributed to a better representation of MCSs (Song et al., 2024). Here, we
compare the diurnal cycles of MCS initiation and mature stages (see figure caption for definitions) over tropical
land among the trackers (Figure 9). Results show that most DYAMOND models can capture the diurnal cycle of
the MCS mature phase well for both seasons, with peak amplitude occurring between late afternoon to early
evening hours, consistent with the peak precipitation timing over land (Song et al., 2024). Most trackers show
larger amplitudes of the simulated MCS mature phase than observations in winter, while better agreement is
found in summer except for the ARPEGE model.

The diurnal cycle of MCS initiation differs more among the trackers. Several trackers show peak MCS initiation
occurring around 13 LT (PyFLEXTRKR, TOOCAN, tobac, simpleTrack) while others peak∼3 hr later around 16
LT (MOAAP, TAMS, DL, KFyAO). This may be partly related to the trackers in the latter group identifying
MCSs only when they reach 40,000 km2, while those in the former group start tracking MCSs from convection
initiation (Prein et al., 2024). The diurnal cycle of oceanic MCSs is much weaker than those over land, and most
DYAMOND models also captured the mature phase from observations well (Figure S8 in Supporting Infor-
mation S1). Overall, the MCS diurnal cycle is reasonably simulated in most of the DYAMOND models,
particularly their mature phase that corresponds to when most of the precipitation is produced (Song et al., 2024).
Nuance among the trackers is whether convection initiation is included as part of the MCS lifecycle, which affects
the timing of MCS initiation.

4.4. MCS Characteristics

In this subsection, we examine the models' skill in simulating the cloud and precipitation characteristics of
tropical MCSs during their lifecycle. We performed lifecycle composite analysis for MCSs with median lifetimes
among all models for each tracker. Figure 10 shows composites of tropical MCSs over land for both seasons.
Similar composites for tropical oceanic MCSs are provided in Figure S9 in Supporting Information S1. A typical
MCS lifecycle is denoted by an inverted V shaped cloud shield area and an asymmetric check mark (tick) shaped
minimum Tb peaking earlier in the life cycle (Figures 10a, 10b, 10f, and 10g), corresponding to the growth phase
(area expansion and cloud‐top deepening) and the decay phase (area contraction and cloud‐top lowering). Most
DYAMOND models captured this canonical evolution, although the magnitude and rate of change differ among
the trackers.
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Figure 7. Same as Figure 6 except for MCS precipitation amount.
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Figure 8. Same as Figure 6 except for MCS contribution to total precipitation amount. Relative difference is computed by
(simulation–observation).
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The model‐observation differences in cloud shield properties are smallest in TOOCAN compared to other
trackers. However, some models (e.g., MPAS, SCREAMv1, ICON) exhibit large differences in cloud shield area
among trackers due to the spatial variability of simulated OLR/Tb. Models such as MPAS and ICON simulate
extensive regions of cold clouds (Tb < 241 K), which cause simple threshold‐based trackers (e.g., simpleTrack,
KFyAO, TAMS) to identify large systems, while trackers employing more sophisticated approaches (e.g.,
TOOCAN, MOAPP, PyFLEXTRKR) segment these into smaller systems. These discrepancies reflect model
biases in simulating spatial patterns of convective organization, as illustrated by tracking animations provided in
the Movies S3–S6.

In contrast, the simulated MCS precipitation feature (PF, defined as the largest contiguous region with rain rate
>2 mm hr− 1) area and mean rain rate show notably larger differences when compared with either version of
IMERG (Figures 10c, 10d, 10h, and 10i). Following Feng, Leung, et al. (2021), this rain rate threshold was chosen
because it results in closer agreement in PF area and mean rain rate with radar observations over the United States.
Most models have much smaller PF area and much stronger PF mean rain rate (up to a factor of 2) throughout the
MCS lifecycle, particularly during the mature phase for PF area and during the initiation phase for mean rain rate.
These relative biases are consistent among the trackers, even though the absolute magnitudes differ. The
underestimated PF area and overestimated mean rain rate compensate one another to produce a somewhat
comparable simulated MCS rainfall volume to observed (Figures 10e and 10j).

Figure 9. Diurnal cycle of tropical MCS frequency over land at initiation (a, c) [first hour an MCS is detected] and mature stages (b, d) [hours when the largest
precipitation feature major axis length in theMCS> 100 km] for summer (a, b) and winter (c, d). Each row shows results from a tracker. The diurnal cycle amplitude and
phase are shown as vertical bars in each panel, the height of the bars denotes the amplitude (taller bars have higher amplitude). Amplitude and phase are calculated using
the first harmonic of the Fourier transform applied to the diurnal cycle frequency signal (Wallace, 1975). MCSs with lifetime‐mean precipitation area fraction >70%
over land are considered land MCS.
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To quantify model‐observation differences, we show the relative biases of the median values of six key MCS
characteristics for each tracker (Figure 11). Distributions of these MCS characteristics from select trackers are
provided in Figures S10 and S11 in Supporting Information S1. In general, models simulate MCS lifetime and
cloud shield (top rows in Figure 11) better than precipitation (bottom rows in Figure 11), as evident by the lower
relative biases (lighter shading). Most trackers agree that most models have shorter‐lived and smaller MCSs with
lesser lifetime‐total rainfall volume. All trackers show that models consistently produce too intense precipitation
(Figures 11e and 11k) with overestimated heavy rainfall contribution to total rain volume (Figures 11f and 11l),
particularly over land where most models are biased high by a factor of 2–3. MPAS is an outlier with much larger
MCSs in both seasons and much weaker precipitation intensity in summer.

Figure 10. Composite lifecycle evolution for tropical land MCSs with median lifetimes: (a, f) cloud shield area, (b, g)
minimum Tb, (c, h) largest PF area, (d, i) largest PF mean rain rate, and (e, j) total rain volume (includes all precipitation
within MCS cloud shield). Each column shows results from a tracker. Thick black lines are observations with IMERG v6,
gray lines are observations with IMERG v7. The median MCS lifetimes are shown above each column and were calculated
among all simulations for each tracker. To exclude merge/split systems, MCSs with maximum cloud shield area occurring
within the first or last 15% of the lifetime were removed.
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Figure 11. Relative difference in the median values of MCS properties between simulations and observations for each model (x‐axis) and each tracker (y‐axis). Top two
rows are summer and bottom two rows are winter showing (a, g) MCS lifetime, (b, h) lifetime‐maximum cold cloud shield area, (c, i) lifetime‐minimum Tb, (d, j)
lifetime‐total rain volume, (e, k) PF mean rain rate, (f, l) heavy rain (>10 mm hr− 1) to total rain volume ratio. Land (ocean) MCS results are shown on the top (bottom)
half of each panel. Relative difference is computed by (simulation–observation)/observation, except for Tb: (simulation–observation)/(90th–10th percentile in
observation, typically 13–15 K). Only statistically significant differences (Mann‐Whitney U rank test p value < 0.05) are shown.
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We further illustrate the model biases in simulating the contribution to MCS precipitation by hourly rain rate in
Figure 12. The corresponding PDFs of MCS hourly rain rates are shown in Figure S12 in Supporting Informa-
tion S1. Results show that weak rain rates (2–4 mm h− 1, typically associated with stratiform rain) contribute most
to observed tropical MCS total rainfall volume both over ocean and land, with a sharp drop off toward more
intense convective rain rates (>10–15 mm hr− 1). Compared to DPR, both IMERG versions exhibit a higher
contribution from weak stratiform rain and a lesser contribution from intense convective rain. Despite the un-
certainty in the IMERG product, most DYAMOND models show biases of the contribution toward heavier rain
rates, with peak contributions between 5 and 10 mm hr− 1. The underestimation of weak rain rate contribution is
consistently larger over land than over ocean, suggesting that stratiform rain biases are more pronounced over
land. Results using other tracker outputs are qualitatively consistent with those in Figure 12 (not shown).
Sensitivity tests involving coarsening the precipitation data to 0.25° × 0.25° (∼28 × 28 km)—closer to the
footprint of the microwave sensors used in the GPM IMERG data set—yield qualitatively consistent results
(Figures S13 and S14 in Supporting Information S1).These findings, encompassing most available DYAMOND
models, reaffirm the conclusions of Feng, Leung, et al. (2023) that models overestimate convective rainfall in-
tensity and underestimate stratiform rainfall area and amount.

4.5. MCS Sensitivity to Moisture

We now turn toward examining the potential causes of the model biases in simulating MCS precipitation. Recall
in Section 3 that most models have higher total precipitation‐to‐PW ratios than observations (Figure 3). In this
subsection, we focus on the relationships between environmental moisture and MCSs, as previous studies have
shown strong dependence of tropical MCS precipitation on moisture (Chen et al., 2017, 2022; Neelin et al., 2022;
Schiro et al., 2020; Wolding et al., 2020).

Taking advantage of the MCS tracking data set from multiple trackers, we composite the evolution of PW (total
column water vapor) as a function of the MCS lifecycle (Figure 13). Over ocean, a gradual moistening up to 24 hr
prior to MCS initiation is seen from observations. In contrast, PW does not change significantly until ∼6 hr prior

Figure 12. Contribution of hourly, 0.1° rain rates to tropical MCS rainfall amounts based on results from PyFLEXTRKR for (a, b) oceanic MCS and (c, d) land MCS.
Contributions from DPR (thick dark blue lines) are calculated by collocating GPM DPR overpasses with MCS masks based on Tb + IMERG v6.
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to MCS initiation over land, followed by a rapid increase leading to initiation, possibly related to the strong
diurnal cycle of surface heating and topography over land that is absent over ocean. Most DYAMOND models
capture this moistening tendency prior to MCS initiation both over ocean and land, despite differences in the
magnitude. The increases in PW before MCS initiation are largely consistent among trackers but diverge after
initiation. Some trackers show relatively small change in PW over ocean during the MCS lifetime (e.g.,
PyFLEXTRKR, TAMS, simpleTrack, DL, KFyAO, tobac) while others show a gradual decrease (e.g., TOOCAN,
MOAAP). In contrast, most trackers show an increase in observed PW after MCS initiation over land, but models
tend to show flattening or decreasing PW. Such discrepancies among trackers during the MCS lifetime reflect the
tracker formulation differences (Figure 10). The rise in PW after MCS initiation over land from ERA5 data is
consistent with results from a long‐term analysis (Muetzelfeldt et al., 2025) though the reason for the continued
increase in environmental moisture following the MCS lifecycle remains unclear. Future studies should inves-
tigate this phenomenon further. Nevertheless, it is encouraging that global km‐scale models are generally able to
simulate the initiation of MCSs in response to environmental moistening rates that are similar to observations.

Lastly, we compare the relationships between MCS precipitation intensity and PW (Figure 14) from
PyFLEXTRKR because results from other trackers are quite similar (Figures S15–S18 in Supporting Informa-
tion S1). Over ocean, observed MCS precipitation remains weak for PW below 50 kg m− 2 and increases sharply
when PW exceeds 60 kg m− 2 (Figures 14a and 14e) consistent with the critical PW value found in previous

Figure 13. Composite lifecycle evolution of precipitable water (PW) associated with tropical MCSs over (a, c) ocean, and (b, d) land. Each row shows results from a
tracker. Thick black lines are tracking using observations with IMERG v6, gray lines are tracking using observations with IMERG v7. Blue shaded periods are 24 hr
before MCS initiation at the same location as initiation, while the white periods are following the MCS tracks. PWs are averaged within a 100 km circular radius
centered at each MCS track centroid, and hours with less than 100 samples after initiation are removed. PW for observations are from ERA5.
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studies (e.g., Neelin et al., 2009). Over land, the dependence of observed MCS precipitation on PW is much
weaker until PW reaches 70–75 kg m− 2, in contrast to some previous studies (Schiro et al., 2020), though it may
be partly due to different sampling methods and spatiotemporal resolution for the precipitation data. DYAMOND
models generally capture this rapid increase of MCS precipitation to PW, but the magnitudes vary widely. During
summer, four out of eight models have much sharper oceanic MCS precipitation increase beyond the critical PW
value while the rest are more comparable to observations. During winter, almost all models except XSHiELD
show much stronger oceanic MCS precipitation intensity beyond the critical PW value. Over land, all models in
both seasons simulate much steeper increases in MCS precipitation at lower PW values than observations
(Figures 14b and 14f).

Figure 14. Mean tropical MCS hourly rain rate as a function of collocated precipitable water (PW) over (a, e) ocean and (b, f)
land. PDFs of PW collocated with MCS over (c, g) ocean and (d, h) land. In (a, b, e, f), thick black lines are from IMERG v6,
gray lines are from IMERG v7, light gray shadings show interquartile range from IMERG v6, and values with PW sample
size <10 are excluded. In (c, d) and (g, h), both observations of PW are from ERA5. Both observed and simulated MCS
precipitation were conservatively regridded to 0.25° × 0.25° to match ERA5. Only rain rates >0.1 mm hr− 1 within MCS
masks are included in the average. MCS tracking is from PyFLEXTRKR.
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Simulated PW distributions also vary widely among the models, particularly during Summer (Figure 14c).
Almost all models simulate lower PW than ERA5 over the ocean during winter (Figure 14g). Over land, many
models simulate higher PW in summer and lower in winter. Tomitigate the effects of model biases in PW onMCS
precipitation, we rescaled the simulated PW PDFs to match that from the observations and the corresponding
simulated MCS precipitation (Figure S19 in Supporting Information S1). Some of the overestimated oceanic
MCS precipitation sensitivity to PW remains at high PW values, though the sharp increase in simulated MCS
precipitation around the critical PW value compares better with observations after PW rescaling. However, this is
not the case for land MCSs. This analysis suggests that many DYAMOND models simulated greater MCS
precipitation sensitivity to environmental moisture than observations, though the biases in the simulated PW
distribution may be partially contributing to the bias in MCS precipitation intensity. The cause of this higher
sensitivity of MCS precipitation to environmental moisture in DYAMONDmodels is unclear but warrants future
research. We discuss some possible reasons in Section 5.

5. Conclusions and Discussions
In this study, we comprehensively examined tropical MCS characteristics in DYAMOND models for both
summer and winter phases by applying 10 different feature trackers to the simulations and observations. To
provide a common ground for tracker intercomparisons, the same criteria were used for each tracker to identify
MCS based on both infrared Tb and precipitation characteristics. We encompass a wide diversity of trackers that
differ in their way of handling various elements of the identification and tracking of convective systems, such as
the spatial segmentation procedure, temporal linking method, and treatment of merging/splitting. The ensemble
of trackers results in a spread of a factor of 2–3 in the observed MCS frequency (Figure S5 in Supporting In-
formation S1) and their contribution to total precipitation (Figure 5). We also compared a variety of MCS metrics
and their relationships with environmental moisture, using data diagnosed by the trackers from both observations
and simulations.

Table 2 summarizes the MCS characteristics derived from each tracker relative to the average characteristics
across the tracker ensemble in this study. Rather than providing a ranking, the table illustrates how the behavior of
each tracker compares to others, as no reference tracking data set on the global scale exists for the study period to
quantitatively validate the derivedMCS characteristics. Future research using any of the trackers examined in this
study should carefully consider the behavior of their selected tracker, particularly when comparing results across
studies, as differences between trackers may significantly influence outcomes. The choice of tracker should be
guided by the specific scientific objectives of the study, since no single tracker is universally suited to all ap-
plications, as demonstrated by the variability in MCS characteristics shown in Table 2. Moreover, the perfor-
mance of these trackers should be further assessed against reference data sets carefully curated by meteorologists
and storm researchers (e.g., Cui et al., 2021; Machado et al., 1998).

Table 2
Characteristics of MCS Properties for Each Tracker Relative to Other Trackers

Frequency Rainfall contribution Lifetime Max cloud shield size Min Tb PF mean rain rate Rain volume

PyFLEXTRKR Average High Long Average Average Average High

DL + TempestExtremes High High Average Large Average Average High

MOAAP Average Average Average Average Average Average Average

TOOCAN Low Low Average Small Cold High Low

tobac Low Low Short Average Average Average Low

TIMPS Average Average Long Average Average Average Average

simpleTrack Average Average Long Average Average Average Average

KFyAO Average Average Short Large Average Average High

TAMS High High Short Large Average Average High

ATRACKCS High Average Short Small Warm High Low

Note. Qualitative assessments are based on comparisons of tracker results applied to observations, as shown in Figure 5; Figures S5 and S20 in Supporting
Information S1.
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Despite the differences in MCS statistics among trackers, we illustrate various metrics that are robust among
trackers to evaluate simulations. We summarize the main findings concerning the two leading questions about the
sensitivity of simulated MCS characteristics to tracker formulations, and how the robust model biases depend on
environmental moisture.

• MCS frequency and precipitation amount: Models are generally skillful in simulating tropical mean MCS
frequency, with mean biases of − 2%–8% over land and − 8%–8% over ocean (summer vs. winter), though
large variability exists among the models (Figure 6). Most models underestimate MCS precipitation amount
(− 14% over land, − 28% to − 37% over ocean) and their contribution to total precipitation (Figures 7 and 8),
with smaller multi‐model mean biases over land (− 13%) than over ocean (− 21%). The smaller bias over land
may be related to the stronger diurnal cycle that drives MCS development compared to that over the ocean.

• MCS characteristics: MCS diurnal cycle and cloud shield characteristics are better simulated than precipi-
tation (Figures 9 and 10). Most models overestimate MCSmean precipitation intensity (by a factor of 2–3) and
underestimate stratiform rain contribution (up to a factor of 2), particularly over land (Figures 11 and 12).

• MCS environments: Models capture the moistening rate leading up to MCS initiation both over ocean and
land, but a large inter‐model spread in PW is found (Figure 13).

• MCS precipitation intensity: Most models simulate the exponential increase of MCS precipitation intensity
beyond the critical PW value over ocean, although the MCS precipitation sensitivity to PW is overestimated
(by a factor of 2–3) in most models (Figure 14).

This study demonstrated a range of metrics for evaluating MCS statistics in global km‐scale simulations against
observations, which remain robust across different tracker formulations. These metrics include grid‐scale MCS
frequency and precipitation, diurnal cycle, MCS cloud shield and precipitation feature characteristics, as well as
relationships between PW and MCS precipitation intensity. Table 3 provides a qualitative assessment of multi‐
model mean biases, intermodel spread, and confidence across the tracker ensemble. These metrics offer valuable
insights for future km‐scale model development efforts, particularly by highlighting areas where model mean
biases and intermodel spread are most pronounced (emphasized in bold in Table 3).

The model biases in overestimation of convective precipitation intensity and their contribution to total MCS
precipitation, as well as underestimation of stratiform precipitation, are consistent with many previous studies

Table 3
Summary of Model Biases in Simulated MCS Characteristics

Frequency Rain amount
Rainfall

contribution
Diurnal cycle
magnitude Lifetime

Max cloud
shield size Min Tb

Mean PF
rain rate PW

Rain
intensity‐PW

Land

Bias sign X – – X – – – + X +

Mean bias magnitude Moderate Moderate Small Moderate Moderate Moderate Moderate Large Moderate Large
Intermodel spread Large Large Moderate Moderate Large Large Large Moderate Large Large

Ocean

Bias sign – – – X – – – + X +

Mean bias magnitude Moderate Moderate Moderate Small Moderate Moderate Moderate Large Moderate Large
Intermodel spread Large Moderate Moderate Moderate Moderate Moderate Large Moderate Large Large

Note. An “X” in the bias sign column indicates fewer than 50%models share the same bias sign. Color shading in each cell represents the confidence based on agreement
across the tracker ensemble: high confidence (green), low confidence (orange), determined through visual inspection of tracker agreement regarding the sign or
magnitude of the bias. Bold texts highlight instances of large mean bias or large intermodel spread accompanied by high confidence. “PW” refers to the lifecycle
evolution of PW, as illustrated in Figure 13. “Rain intensity‐PW” refers to the relationship betweenMCS rain rates and collocated PW associated with MCSs, as shown
in Figure 14, Figures S12–S15 in Supporting Information S1. Separation of the results by season is provided in Table S2 in Supporting Information S1. Small, moderate,
and large mean bias magnitudes are defined based on relative mean differences: small (0%–20%),moderate (20%–50%), and large (>50%). The categorization of small,
moderate, and large intermodel spread for each tracker is determined as follows: 1. Large spread: If more than one model falls in each of the small, moderate, and large
mean bias magnitude categories, or if at least 20% of the models exhibit opposite bias signs, classify the spread as large. 2.Moderate spread: If model bias magnitudes
span two adjacent categories (small and moderate, or moderate and large), classify the spread as moderate. 3. Small spread: If model bias magnitudes fall into only one
category, with no more than one outlier in other categories, classify the spread as small. Finally, the intermodel spread is determined by the most common spread
classification across the tracker ensemble.
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employing km‐scale models. These seemingly common biases in models that have different dynamical cores,
microphysics parameterizations and other components suggest that the biases are not specific to a particular
model or a single scheme, but a broader issue for km‐scale models. It may be related to model's insufficient
resolution to properly resolve entrainment mixing induced dilution in convective updrafts (Lebo & Morri-
son, 2015; Morrison et al., 2020), leading to convective updrafts being too strong, which lead to further biases
in microphysical processes such as excessive riming and precipitation efficiency (Fan et al., 2017; Kukulies
et al., 2024). MCS updrafts and precipitation intensity over land are also sensitive to wind shear via mod-
ulations of entrainment dilution (Maybee et al., 2024). In addition, convective updraft widths are often too
wide in km‐scale models (Prein et al., 2021; Wang et al., 2020, 2022), leading to overly strong vertical
transport of condensates that would otherwise sediment more easily in thinner updrafts (Varble et al., 2014a),
and biases in momentum transport that could affect MCS evolution (Varble et al., 2020). Future studies
should further investigate the cause of these biases to improve the skills in simulating MCS precipitation for
km‐scale models.

Our analysis showed a wide range of PW simulated by the DYAMOND models, pointing to the need to better
understand how air‐sea interactions are treated in global km‐scale models. While the DYAMOND models are
atmosphere‐only, some global km‐scale models can now be run coupled with ocean models (e.g., ICON‐
Sapphire, Hohenegger et al. (2023)). Deep convection, particularly MCSs, can significantly enhance surface
gustiness through convective downdrafts and momentum transport, which alter the ocean surface conditions and
the coupling with the atmosphere. These processes are more explicitly simulated in km‐scale models and may
play important roles in the feedback between ocean and convection. We also identified consistent model biases in
MCS precipitation amount and intensity distribution. The cause of the higher sensitivity of MCS precipitation to
PW should be further investigated in future studies. In addition, recent observational studies have highlighted
other environmental factors, such as low‐level ascent, deep‐layer wind shear, divergence difference between
upper and lower levels, and vertically integrated moisture flux convergence, which are correlated with MCS
characteristics such as lifetime, size, and precipitation (Chen et al., 2023; Galarneau et al., 2023; Muetzelfeldt
et al., 2025). Future research should explore these relationships in the DYAMOND models to gain a better
understanding of the biases in MCS characteristics identified in this study.

Much of our MCS analysis focused on tropics‐wide comparisons, but regional differences can be quite large and
MCSs in the extratropics have not been examined. Future work should examine how well these models simulate
MCS in varying geographic regions that have different drivers and forcing mechanisms. Lastly, the global km‐
scale models and the observations were processed at 1‐hr resolution in this study. Most of the trackers can work
with higher resolution that could affect identification and tracking of MCSs. Further, individual convective cells
that aggregate to form MCSs can be tracked at temporal resolutions of ∼15 min or finer (e.g., Feng et al., 2022),
which can greatly complement MCS studies to better isolate processes related to model biases. This warrants a
higher resolution intercomparison exercise in the future.

Data Availability Statement
The NOAA CPC/NCEP global merged infrared brightness temperature (Tb) data can be downloaded from the
NASA server (Janowiak et al., 2017). The GPM IMERG precipitation data can be accessed from NASA for V06B
(Huffman et al., 2019) and V07B (Huffman et al., 2023). The HOAPS precipitable water data can be downloaded
from Copernicus (Andersson et al., 2021). ERA‐5 reanalysis data can be accessed from the Copernicus Climate
Data Store (Hersbach et al., 2023). Model and observation data analyzed in this study can be accessed via Globus
at: https://shorturl.at/A6YoA. A free‐to‐register Globus account is required to access the data. Description of the
dataset is provided at: https://mcsmip.github.io/datasets/. Analysis codes and visualizations in this paper are
available on GitHub (Feng, 2025). The PyFLEXTRKR code can be accessed on GitHub (Feng, Hardin,
et al., 2024). The MOAAP code can be obtained on GitHub (Prein, 2024). The TAMS code can be accessed on
GitHub (Moon & Núñez Ocasio, 2023). The tobac code can be obtained from GitHub (tobac, 2024). The sim-
pleTrack code is available on GitHub (Stein, 2025). The DL code can be downloaded from GitHub (Molina
et al., 2024). The KFyAO code is not open source but the original code is available at Huang (2017). Questions
about KFyAO can be directed to Yanluan Lin (yanluan@tsinghua.edu.cn), Xiaomeng Huang (hxm@tsinghua.
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edu.cn), or Wenhao Dong (wenhao.dong@noaa.gov). The TOOCAN code is not open source. Questions about
TOOCAN should be directed to Remy Roca (remy.roca@cnrs.fr) or Thomas Fiolleau (thomas.fiolleau@cnrs.fr).
The Forward in Time (FiT) tracking program used in TIMPS is available on Zenodo (Skok, 2023), and the TIMPS
code is available on Zenodo. The ATRACKCS code is available on Zenodo (Ramírez‐Cardona et al., 2022).
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