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End-to-end data-driven weather prediction

Anna Allen1,11 ✉, Stratis Markou2,11 ✉, Will Tebbutt2,9, James Requeima3, Wessel P. Bruinsma4, 
Tom R. Andersson5,10, Michael Herzog6, Nicholas D. Lane1, Matthew Chantry7, 
J. Scott Hosking5,8 & Richard E. Turner2,8 ✉

Weather prediction is critical for a range of human activities, including transportation, 
agriculture and industry, as well as for the safety of the general public. Machine 
learning transforms numerical weather prediction (NWP) by replacing the numerical 
solver with neural networks, improving the speed and accuracy of the forecasting 
component of the prediction pipeline1–6. However, current models rely on numerical 
systems at initialization and to produce local forecasts, thereby limiting their 
achievable gains. Here we show that a single machine learning model can replace  
the entire NWP pipeline. Aardvark Weather, an end-to-end data-driven weather 
prediction system, ingests observations and produces global gridded forecasts and 
local station forecasts. The global forecasts outperform an operational NWP baseline 
for several variables and lead times. The local station forecasts are skilful for up to ten 
days of lead time, competing with a post-processed global NWP baseline and a state- 
of-the-art end-to-end forecasting system with input from human forecasters. End- 
to-end tuning further improves the accuracy of local forecasts. Our results show that 
skilful forecasting is possible without relying on NWP at deployment time, which will 
enable the realization of the full speed and accuracy benefits of data-driven models. 
We believe that Aardvark Weather will be the starting point for a new generation of 
end-to-end models that will reduce computational costs by orders of magnitude and 
enable the rapid, affordable creation of customized models for a range of end users.

Numerical weather prediction (NWP) systems are vital for creating 
weather forecasts required by emergency agencies, transport provid-
ers, agriculture, energy providers and the general public. Since the 
first numerical forecasts were produced in the 1950s, which required 
24 h to compute a single-day single-variable forecast on a 700-km 
grid7, NWP systems have undergone a remarkable transformation. 
Modern systems predict a wide range of variables at lead times of up 
to 15 days, which is the theoretical limit of medium-range weather 
forecasting predictability8. These systems consist of an intricate series 
of models of different components of Earth’s atmosphere, building 
on decades of research in Earth observation, data assimilation, fluid 
dynamics and statistical post-processing and requiring purpose-built 
supercomputers to run.

Generating a modern weather forecast begins with the acquisition 
of observations from a multitude of sources, including remote sens-
ing instruments, in situ observations, radar systems, radiosondes and 
aircraft data9. Some of these data are processed to generate derived 
products, such as atmospheric motion vectors and surface winds. 
Raw data and the resulting processed products are fed into a data 
assimilation system, which combines these with an initial guess from 
the previous forecast to generate a global approximation of the cur-
rent state of the atmosphere. This approximation is then used as an 
initial state for a forecasting system that integrates the equations of 
fluid mechanics and thermodynamics to output predictions at future 
lead times. Finally, the resulting predictions from the forecasting 

system are used for downstream tasks, for example, to generate local 
forecasts. This step may consist of statistical post-processing and 
running higher-resolution regional NWP models. Each stage of this 
pipeline consists of several numerical models chained together, 
resulting in an intricate workflow10 that is challenging to iterate on 
and improve and requires purpose-built supercomputers to run. 
This motivates the development of fast, lightweight and customiz-
able alternatives.

With end-to-end machine learning revolutionizing several fields by 
replacing complex human-designed workflows, it has been suggested 
that a data-driven model may one day replace the entire NWP pipeline11. 
This will be transformational for weather prediction, reducing compu-
tational costs, removing bias from inflexible aspects of NWP systems 
and enabling fast prototyping and optimization for specific tasks. 
However, this has not been attempted so far, with studies focusing on 
applying machine learning to the easiest components of the pipeline. 
For example, machine learning models have been shown to outperform 
their operational state-of-the-art counterparts to replace the numerical 
solver in the forecasting component1,2,4–6,12, deriving variables from raw 
satellite data in pre-processing13–15 and post-processing forecast data 
in the downstream stages16,17. Work on replacing the most challenging 
component, the assimilation system, remains at the stage of devel-
oping initial prototypes3,18–23. Therefore, the vision of an end-to-end 
data-driven solution remains aspirational, with conventional NWP 
systems being essential for all forms of operational forecasting.
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In a recent article assessing the prospect of end-to-end deep learning 
weather prediction, the verdict was that “a number of fundamental 
breakthroughs are needed before this goal comes into reach”11. Here we 
report that these breakthroughs are happening earlier than expected. 
We present Aardvark Weather, an end-to-end data-driven weather fore-
casting system capable of generating predictions with no input from 
conventional NWP by instead learning a mapping from raw input obser-
vations to output forecasts. This allows Aardvark to tackle the complete 
weather prediction pipeline while being entirely independent from 
NWP products at prediction time, relying solely on observation data to 
generate forecasts. We demonstrate that using an order of magnitude 
fewer observations than those available to operational baselines and 
orders of magnitude less computational resources, Aardvark is capable 
of producing forecasts on a global 1.50° grid that achieves lower root 
mean square error (RMSE) than operational NWP systems across several 
variables and lead times. Furthermore, we demonstrate that this system 
provides local forecasts that achieve lower errors than post-processed 
NWP and a full end-to-end operational forecasting system for several 
lead times and can be optimized end-to-end to maximize performance 
over variables and regions of interest.

Aardvark Weather
Aardvark Weather is a deep learning model that provides forecasts 
of eastward wind, northward wind, specific humidity, geopotential 
and temperature (at 200, 500, 700 and 850 hPa pressure levels), 10-m 
eastward wind, 10-m northward wind, 2-m temperature and mean sea 
level pressure on a dense global grid, and station forecasts for 2-m 
temperature and 10-m wind speed. Aardvark consists of three modules 
and is designed to leverage high-quality reanalysis data during training 
while being entirely independent from NWP products at deployment 
time. Figure 1 (bottom) illustrates the operation of Aardvark, outlining 
the function of each of its three modules.

First, an encoder module obtains observational data from several 
sources, both on the grid and off the grid, and produces a gridded ini-
tial state. On the grid observations are data modalities on a regular 
grid, whereas off the grid modalities are available at a set of longitude–
latitude locations. To achieve this, we leveraged recent advances from  
deep learning24 in handling off the grid and missing data. This approach 
to state estimation differs from data assimilation systems used in  
conventional NWP pipelines. Conventional data assimilation systems 
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Fig. 1 | Data and operation of Aardvark Weather. a, Different data sources 
leveraged in Aardvark. The input data consist of observations from remote 
sensing instruments (top row), which we pre-grid before passing to the model, 
as well as in situ observations from land and marine observation platforms and 
radiosondes (bottom row). Each of these data modalities contains several 
observational variables, of which we selected a subset here for the purposes of 
illustration. Here we show remote sensing data40–45, after performing our 
gridding step, and raw in situ data46–48. Note that the colours in all six plots are 
meant for illustration purposes. The remote sensing data also include a range 
of metadata about the measurements, omitted here for simplicity. White areas 

indicate regions of missing data, which must be handled by the encoder 
module of Aardvark. b, Aardvark at deployment time. First, an encoder module 
uses raw observations as input to estimate the initial state of the atmosphere 
across key variables at t = 0. Next, a processor module ingests the estimated 
state to produce a forecast at the next lead time t = δt. Forecasts at subsequent 
lead times are produced autoregressively. Finally, a decoder module is applied 
to the on the grid states to produce off the grid predictions. The modular 
design of Aardvark allows for pretraining on large high-quality ERA5 reanalysis 
data34. In this figure, the displayed data are the training data used to train each 
module of Aardvark from the aforementioned sources.
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use a recurrent update in which the previous forecast is adjusted in light 
of new observations, similar to Kalman filter recursions in a Markov 
model. In principle, data assimilation accumulates information from 
observations across all past time steps. However, in practice, it has been 
estimated that the effective window size is as short as 4 days (ref. 25). 
Owing to the complexities of training recurrent neural networks, includ-
ing the need for a spin-up period and gradient instabilities26, we opted 
for a non-recurrent approach.

Once the initial atmospheric state has been estimated, it is used as 
an input to a processor module, which produces a gridded forecast at 
a lead time of 24 h. Forecasts at subsequent lead times are produced 
by autoregressively feeding the predictions of the processor module 
back to it as an input, similar to the existing approaches in data-driven 
weather forecasting1,6. Finally, task-specific decoder modules ingest 
these forecasts and produce local predictions. In this study, we con-
sidered a decoder designed for a single downstream task, producing 
local station forecasts. However, this system is suitable for use with 
several separate decoders for different tasks. Together, the encoder, 
processor and decoder modules form a neural process24, a machine 
learning system that naturally handles off the grid and missing data.  
A vision transformer27 forms the backbone of the encoder and pro-
cessor modules, whereas the decoder modules are implemented as 
a lightweight convolutional architecture. The full set of inputs and 
outputs for the modules is detailed in Extended Data Table 1.

A key challenge in designing machine learning systems for observa-
tional atmospheric data is that the records for many instruments are 
relatively short, limiting the data available for training. The modular 
design of Aardvark (Fig. 1) addresses this issue by enabling pretrain-
ing using high-fidelity historical reanalysis data before fine-tuning 
on scarcer observational data. Specifically, we trained the system in 

a way that mimics how it will be deployed. We started by pretraining 
the encoder module using raw observations as input and reanalysis 
data as targets. An advantage of this machine learning approach is 
that the model can learn to correct for biases in the input observa-
tions during training; therefore, no bias correction step was performed 
on the input data. We also pretrained the processor using reanalysis 
data for both inputs and targets and then fine-tuned the output of the 
state-estimation module. In the processor module, the inputs and out-
puts were both on a regular 1.50° grid to match the reanalysis training 
data. Next, we trained the decoder using the output of the processor 
as the input and raw data as targets. This procedure ensures that there 
is no mismatch between the training and deployment of the system. 
Finally, we fine-tuned the encoder, processor and decoder modules 
jointly to optimize the entire model for a specific variable and region. 
For all modules, we trained on data before 2018 and held out 2018 and 
2019 as the test and validation years, respectively.

Input variables
Accurately estimating the state of the atmosphere requires inputs 
from various observation sources. Input variables are selected to 
capture the dynamics both at Earth’s surface and at several levels 
through the atmosphere. In situ observations are taken from weather 
stations and ships at surface level and radiosondes at upper levels. 
As coverage from these instruments is largely confined to the sur-
face, as well as geographically skewed and sparse, remote sensing 
instruments provide a crucial complementary global data source. 
Motivated by gains observed in operational NWP systems28–30, we 
selected four primary sources of satellite data: scatterometer data to 
provide information about surface wind over the ocean, multispectral 
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Fig. 2 | Gridded global forecast performance for selected variables.  
a–h, Latitude-weighted RMSE using ERA5 (ref. 34) reanalysis data as the ground 
truth, on the held-out test year (2018), for the four surface variables: 2-m 
temperature (a; T2M), 10-m eastward wind (b; U10), 10-m northward wind  
(c; V10) and mean sea level pressure (d; MSLP), as well as four headline 
upper-atmosphere variables: temperature at 850 hPa (e; T850), eastward wind 
at 700 hPa (f; U700), specific humidity at 700 hPa (g; Q700) and geopotential 
at 500 hPa (h; Z500) as a function of lead time t. At lead time t = 0, Aardvark 

predicted the initial atmospheric state from observational data alone. The 
error at t = 0 corresponds to the error in the initial state. Note that HRES has  
a non-zero error at t = 0 compared to ERA5 reanalysis. The HRES forecasts33  
we used have been conservatively re-gridded to prevent aliasing, and we 
performed the same operation on the GFS forecasts49. We report the mean 
performance of each system together with 98% confidence intervals in our 
estimate of the mean performance.
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(approximately ten channels) microwave and infrared sounders, 
hyperspectral (approximately 105 channels) infrared sounders to 
provide information on upper-atmosphere temperature and humid-
ity profiles, and geostationary infrared sounder data to provide an 
instantaneous snapshot of the state of the atmosphere. These obser-
vations were made with different time windows ranging from 1 to 
24 h before lead time 0. By contrast to operational medium-range 
NWP systems, observations are only included in the input if they are 
taken before lead time 0 (ref. 31). Figure 1 (top) shows an example of  
a single time slice of input data to Aardvark for in situ and remote 
sensing sources, with full details in Extended Data Table 2. These 
atmospheric observations were augmented by several temporal and 
orographic variables. Aardvark only ingests approximately 8% of the 
observations1 available to conventional NWP systems32, more than 
an order of magnitude less input data.

Evaluation of global forecasting
For global gridded forecasts, we compared Aardvark with four base-
lines. The simplest of these, persistence and hourly climatology, 
assess whether a forecasting system is skilful. A more challenging 
comparison is to the two most widely used deterministic operational 
global NWP systems: the Integrated Forecasting System (IFS) in its 
high-resolution (HRES) configuration from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) and the Global Forecast 
System (GFS) from the National Centers for Environmental Prediction. 
Although HRES typically outperforms GFS on global metrics, opera-
tional centres often use a selection of different models, including 

GFS, to create their local forecasts; therefore, we included it in our 
comparison. For each variable, pressure level and lead time, we report 
the latitude-weighted RMSE, a common metric for assessing the per-
formance of deterministic forecasting systems33. For all baselines, we 
used the ECMWF Reanalysis v5 (ERA5) dataset as the ground truth. 
This choice was made because this is a standard practice for the evalu-
ation of machine learning NWP models. At present, HRES analysis is 
of higher quality than ERA5 reanalysis, because ERA5 was developed 
using cycle Cy41r2 (ref. 34), which remained operational until 2017. 
However, the discrepancies between the two were limited for the 
test year of 2018.

Figure 2 shows the latitude-weighted RMSE performance com-
pared with the baselines for eight headline variables. Here Aardvark 
matched or outperformed GFS across most lead times, with the only 
exception being the geopotential at 500 hPa. In addition, for most 
variables, Aardvark approached the performance of HRES. Overall, 
Aardvark’s errors were larger at higher atmospheric levels and shorter 
lead times than those of the operational baselines. This was possi-
bly caused by the higher concentration of observations close to the 
surface. For longer lead times, a by-product of fine-tuning to mini-
mize errors at future lead times (Methods) is that forecasts tend to 
become spectrally blurred. This phenomenon is commonly observed 
in data-driven weather forecasting systems1,6,35. A full display of the 
latitude-weighted RMSE of Aardvark across all variables and levels 
can be found in Supplementary Fig. 1. Further insights can be drawn 
from inspecting the power spectra, anomaly correlation coefficients 
and activities of Aardvark’s forecasts, as shown in Supplementary 
Figs. 2–4. This analysis suggests that although forecast blurring plays 
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Fig. 3 | Example of Aardvark’s gridded forecasts for the U10 wind 
component. a–l, Plots of the initial condition (a–c) and subsequent forecasts 
(d–l) for U10, showing Aardvark’s prediction (a,d,g,j), the ERA5 ground truth34 
(b,e,h,k) and the difference between the two (c,f,i,l). Lead time t = 0 corresponds 
to 00:00 on 11 January 2018. Aardvark correctly predicted the large-scale 

features for this variable and correctly predicted the formation and  
positioning of the tropical cyclone Berguitta (highlighted in the magent  
a boxes), which reached peak intensity on 15 January 2018 off the coast of 
Madagascar. We emphasize that the model made these predictions entirely 
from raw observations40–48, without any NWP products as input.



Nature | www.nature.com | 5

a role, Aardvark produces skilful forecasts and maintains meaningful 
signals, even at longer lead times.

Figure 3 shows an example of gridded global predictions at lead 
times of 0, 1, 2 and 4 days for 10-m eastward wind. Aardvark successfully 
captured the large-scale features of the atmospheric state, both in the 
mid-latitudes and the tropics. Many details are well represented; for 
example, the formation of a tropical cyclone in the Southern Indian 
Ocean closely matched that in the ERA5 reanalysis data. This example 
hints at the potential of Aardvark for forecasting mesoscale high-impact 
weather events. Although some spectral blurring of the higher spatial 
frequencies is evident, these results are of remarkably high fidelity 
given the limited resolution and range of observations provided to 
the model. A comprehensive set of spatial plots across all variables is 
provided in Supplementary Figs. 6–29.

Encoder module ablation
A central innovation of the Aardvark Weather system is the estimation 
of an initial state from disparate data sources using the encoder mod-
ule. With the volume and diversity of available observational modali-
ties, two important questions arise. Which observational sources are 
most important for estimating each atmospheric variable, and how 
does each affect predictive performance? To investigate this, we con-
ducted an ablation experiment to quantify the significance of each 
observational source in our encoder module. We removed different 
observational sources from the set of encoder inputs, retrained the 
encoder with this reduced set and evaluated it on the same test set 
as our original configuration, marked ‘ALL’ (Fig. 4). For example, the 
rows ‘no in situ’ and ‘no satellites’ correspond to removing in situ data 
and all satellite data, respectively, from the ‘ALL’ configuration. We 
report a fractional increase in the latitude-weighted RMSE relative to 
the ‘ALL’ configuration across all atmospheric variables for the initial 
condition generated at t = 0.

These results demonstrate that remote sensing data are of crucial 
importance in constraining the initial atmospheric state. Removing 
these data (no satellite in Fig. 4) and training with in situ observations 
lead to large skill reductions across all variables. Among different 
satellite modalities, low-Earth-orbit (LEO) sounder data are the most 
important. For example, removing these sounder modalities (no LEO) 
resulted in larger skill deterioration than, for example, removing scat-
terometer data (no Advanced Scatterometer (ASCAT)) or geostation-
ary satellite data (no GEO). In situ observations are most important 
for surface variables. However, they also play a surprisingly large role 

in predicting geopotential, particularly at lower levels. These results 
indicate that for the future improvement of this system and the devel-
opment of other end-to-end data-driven systems, LEO sounder data 
are the most important source to include, with in situ data providing 
an important complementary source to improve surface variables 
and geopotential forecasts. We provide full details of this experiment 
in Supplementary Information A.

Evaluation of station forecasting
In the next stage of the weather prediction pipeline, global gridded 
forecasts are used as inputs to downstream models to produce a variety 
of products for end users. One such category of products is producing 
local forecasts. We focused on applying Aardvark Weather to predict 
2-m atmospheric temperature and 10-m wind speed at off the grid 
station locations. Accurate local predictions of temperature are vital 
for the protection of public health during heatwaves and cold waves, 
in addition to agriculture and other use cases. Similarly, wind speed 
forecasts have a variety of end users, such as in wind energy, marine 
forecasting and fire weather forecasting. The modules for any desired 
downstream task can be substituted for this station forecasting module.

There are significant differences in how agencies in different coun-
tries produce forecasts for end users. In well-resourced countries, 
station forecasts are produced using global models followed by 
higher-resolution regional models out to a few days of lead time and 
statistical post-processing36. By contrast, in less well-resourced areas, 
although agencies have access to global products, they often do not 
have access to comparable infrastructure to run HRES, local NWP or 
post-process forecasts to a comparable degree37. With these consid-
erations in mind, we report Aardvark’s performance across all stations 
globally but also break it down over four regions of particular interest: 
the contiguous United States (CONUS), Europe, West Africa and the 
Pacific (Fig. 5k). The USA and most European countries run both local 
NWP for shorter lead times, as well as sophisticated post-processing of 
both global and local products. By contrast, West Africa and the Pacific 
are regions in which many centres are less well equipped. Although 
some agencies in these regions run sophisticated NWP pipelines, others 
solely use raw HRES forecasts and issue operational forecasts for very 
short lead times37. We compared Aardvark against per-station persis-
tence and climatology, as well as against two challenging baselines: 
station-corrected HRES and a full operational end-to-end baseline, the 
National Digital Forecast Database (NDFD) from the National Weather 
Service36. For a detailed description of the baselines, see Methods.
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Fig. 4 | Encoder ablation experiments quantifying the impact of each 
 data modality. The results of ablation experiments comparing the 
latitude-weighted RMSE (LW-RMSE) of the encoder trained with all data 
sources, both remote sensing40–45 and in situ sources46–48 (ALL) to other 
encoder configurations, including removing the scatterometer data  

(no ASCAT), removing the geostationary sounder data (no GEO), removing  
all in situ data (no in situ), removing all LEO sounder data (no sounder) or 
removing all satellite data (no satellite). We report the fraction of increase in 
LW-RMSE of each configuration relative to ALL.
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Figure 5 shows the mean absolute error (MAE) performance of Aard-
vark reported by variable and region. Globally, Aardvark generated 
skilful forecasts for both temperature and wind speed up to a lead time 
of 10 days, performing competitively with station-corrected HRES. For 
temperature, Aardvark was competitive with the station-corrected 
HRES over both CONUS and Europe. In addition, Aardvark matched 
the performance of the full operational NDFD baseline over CONUS. 
For lower-resource areas in West Africa and the Pacific, Aardvark out-
performed the station-corrected HRES at all lead times. For 10-m wind 
speed, Aardvark had higher errors than the station-corrected HRES 
over CONUS and significantly outperformed the NDFD baseline. Over 
Europe, Aardvark had similar errors with the station-corrected HRES up 
to 4 days of lead time and outperformed it thereafter. Finally, Aardvark 
generally outperformed the station-corrected HRES over West Africa 
while performing slightly worse over the Pacific. In addition to these 
results, we compared Aardvark’s forecasts with a version of HRES that 
we post-processed using a separate scale and bias term for each station 
and NDFD for CONUS, demonstrating competitive performance on 
both variables (Supplementary Fig. 5).

End-to-end tuning
End users of NWP products typically have a particular region and set of 
applications that are of interest. A powerful capability of Aardvark is its 
ability to tune the entire pipeline end to end to directly optimize for any 

desired quantity and region of interest. Optimizing the performance for 
a particular end-user product is challenging and expensive in a conven-
tional NWP system. To explore this capability, we fine-tuned Aardvark 
to optimize predictions of 2-m temperature and 10-m wind speed at 
1-day lead time globally and for each of the four regions. Although we 
focused only on these two variables, this is a powerful paradigm that 
can be applied anywhere there is uncertainty in the reanalysis training 
data, such as clouds and precipitation.

We observed that fine-tuning Aardvark yielded improvements both 
globally and in the specific regions of CONUS, Europe, West Africa and 
the Pacific (Fig. 5; bottom). For temperature, fine-tuning Aardvark 
resulted in large reductions in MAE of 6% over Europe, West Africa, 
the Pacific and globally, and an improvement of 3% over CONUS. For 
10-m wind speed, small but statistically significant improvements of 
1–2% were observed for all regions except the Pacific. To put these 
improvements into context, the last cycle update of IFS improved the 
surface variable scores in the range of 2–6% and took more than a year 
of development by a large team of scientists.

Discussion
We have introduced Aardvark Weather, an end-to-end weather fore-
casting system, which is a data-driven system to tackle the entire NWP 
pipeline. Aardvark provides accurate forecasts that are orders of mag-
nitude quicker to generate than existing systems without any reliance 
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Fig. 5 | Station forecast performance and end-to-end fine-tuning 
improvements. a–j, The results of station forecasting for the held-out test set 
(2018) of HadISD data46, across different geographic regions (Global, CONUS, 
Europe, West Africa and Pacific) and predicted variables (2-metre temperature 
and 10-metre wind speed). Aardvark made predictions at spatial locations 
observed during training on temporally held-out data, but it can also generate 
predictions at any arbitrary station location. We compared Aardvark’s forecasts 
with two state-of-the-art NWP baselines: NDFD36 for CONUS. We also compared 
it against a version of HRES33 that we post-processed using a separate scale and 
bias term for each station. We report the mean performance of each system 

together with 98% confidence intervals in our estimate of the mean performance. 
k, Illustration of the definition of different geographic regions and the 
distribution of land stations we consider. l,m, Improvements from fine-tuning. 
We compared the predictions of Aardvark for lead time t = 1 day to those of its 
end-to-end fine-tuned counterpart for T2M and 10-m wind speed. We report the 
mean percentage of improvement in each variable by region (k) with 98% 
confidence intervals. ‘Global’ includes all stations (black and coloured). We 
emphasize that Aardvark produced its predictions entirely from raw remote 
sensing40–45 and in situ46–48 observations without any NWP products as input 
during the test time.
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on NWP products at deployment time. Generating a full forecast from 
observational data takes approximately 1 s on four NVIDIA A100 GPUs 
compared to the approximately 1,000 node hours required by HRES to 
perform data assimilation and forecasting38 alone, before accounting 
for downstream local models and processing. In downstream tasks 
generating station forecasts of 2-m temperature and 10-m wind speed, 
Aardvark shows strong performance against operational NWP systems. 
Learning an end-to-end model offers the extra capability of optimiz-
ing the system to maximize performance over an arbitrary variable or 
region of interest, opening the door for the creation of inexpensive, 
individually tailored models for any region globally, in an automated 
and streamlined fashion.

End-to-end forecasting has significant potential for real-world effect. 
Compared with conventional NWP systems, machine learning systems 
are not only faster and computationally cheaper but are also signifi-
cantly easier to improve and maintain. In conventional NWP, a new 
module, such as for a new parameterization or microphysics scheme, 
may take a team considerable time to build and integrate into the model. 
End-to-end data-driven systems, such as Aardvark, elegantly bypass 
this issue using a single model in place of this complex pipeline. The 
simplicity of this system makes it easier to deploy and maintain for users 
already running NWP and also opens the potential for wider access 
to running bespoke forecasts in areas of the developing world where 
agencies often lack the resources and expertise to run conventional 
systems. There is also significant potential in the demonstrated ability 
to fine-tune bespoke models to maximize predictive skill for specific 
regions and variables. This capability is of interest to many end users in 
areas as diverse as agriculture, renewable energy, insurance and finance.

To envisage how an end-to-end data-driven model such as Aardvark 
could be deployed operationally, it is necessary to consider the limita-
tions of the current model and the concrete set of steps required to 
turn it into a fully fledged system. As with all current AIWP systems1,6, 
Aardvark does not yet run at the resolution of IFS. Further studies are 
required to increase the grid resolution and produce forecast ensem-
bles through, for example, diffusion2. Other limitations centre around 
the use of observations. Further observational modalities will probably 
increase forecast skill. It is also important to consider how data from 
new instruments for which there are no training data available can be 
usefully integrated into the system. This can be accomplished by, for 
example, training on simulated data39. A further consideration is dealing 
with observation drift and other changes in data over time, which can 
be mitigated by regularly fine-tuning all modules with the most recent 
few months of data to adapt to changes in instrument characteristics.

The results presented in this study only scratched the surface of the 
potential of Aardvark Weather and end-to-end data-driven weather 
forecasting systems more broadly. Further capabilities can also be 
added by extending Aardvark to support several other forecast vari-
ables, both in its gridded forecasts and through its decoder module. 
For example, Aardvark can support a diverse range of decoder modules 
to provide different types of end user forecasts, such as hurricanes, 
floods, severe convection, fire weather and other extreme weather 
warnings. A further exciting avenue for future research is to use 
end-to-end systems at longer lead times to generate seasonal forecast 
products. More observational modalities would allow for the model-
ling of other components of the Earth system, such as atmospheric 
chemistry for air quality forecasts and ocean parameters for marine 
forecasts. We envision that Aardvark Weather will be a pioneer of a 
new generation of end-to-end weather forecasting systems to tackle 
these diverse tasks.
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Methods

State estimation inputs
We selected several remote sensing and in situ observations as inputs 
to the atmospheric state estimation module. To ensure that no NWP 
system is required for the operational deployment of Aardvark, we 
selected only data that were available at either level 1B or 1C process-
ing level50. Level 1B satellite data are calibrated and geolocated data, 
which means that the raw sensor measurements have been processed 
to correct for sensor and instrument biases but are still in the form of 
physical measurements, whereas level 1C satellite data are further 
processed to include radiometric and geometric corrections, making 
them ready for analysis with accurate geolocation and radiance values50. 
Other requirements for the inclusion of datasets are that they are avail-
able from 2007 to 2020 and in near real time to facilitate anticipated 
operational deployment. Where available for remote sensing products, 
we used fundamental climate data records, in which data from earlier 
generation sensors were homogenized to match the characteristics of 
current sensors, creating a consistent data record for training. Extended 
Data Table 1 provides a summary of all datasets that were used as inputs 
to the encoder module, including the type of instrument, orbit and 
platform (if applicable), as well as the data provider and data selection 
window that we used. For satellite instruments in LEO, it was necessary 
to include a longer window of observations to attain full global cover-
age. By contrast, station observations for all locations were available 
at t = 0 h. Therefore, adding data would be useful but is not necessary 
to achieve global coverage. As the data record was relatively short and 
overfitting is a concern, we decided to limit the data to the shortest 
window possible while retaining global coverage.

In situ observations from land stations, marine platforms and radio-
sondes were included. In situ land station observations measuring 
surface temperature (8,719 stations), pressure (8,016 stations), wind 
(8,721 stations) and dew point temperature (8,617 stations) at six hourly 
intervals were taken from the HadISD dataset51,52, provided by the UK 
Met Office. Marine in situ observations were taken from the Interna-
tional Comprehensive Ocean-Atmosphere Data Set53 provided by the 
National Oceanic and Atmospheric Administration. This dataset con-
sists of observations from ships and buoys globally, from which five vari-
ables were included, namely 2-m air temperature, 10-m northward and 
eastward winds, sea surface temperature and mean sea level pressure. 
As observations were not taken precisely on the hour, all observations 
from t = −1 h to t = 0 h were included in the input. Upper-atmosphere 
observations of humidity, wind, geopotential and temperature were 
obtained from the Integrated Global Radiosonde Archive54, provided 
by the National Centers for Environmental Information. This dataset 
consists of radiosonde observations from 1,375 sites globally. Each 
record contained observations at several levels, of which we selected 
observations at the surface and at 200-, 500-, 700- and 850-hPa pres-
sure levels. All profiles retrieved within the past 6 h, from t = −6 h to 
t = 0 h, were included in the input.

Because in situ observations were limited in geographic coverage, 
remote sensing observations from scatterometers and microwave 
and infrared sounders were included. Input data from satellites were 
ingested in the form of level 1 granules, each containing a 6-min slice 
of observations or orbits. Although, in principle, the Aardvark Weather 
system can handle these data in their raw form, for simplicity, data were 
first transferred to a regular 1° grid by nearest-neighbour interpolation, 
in which the most recent observation is maintained in cases where 
several observations are available for the same grid point.

Several scatterometers are currently operational worldwide, of which 
we used the ASCAT55 instrument aboard Metop-A, -B and -C. Data for 
this instrument are provided by the European Organisation for the 
Exploitation of Meteorological Satellites. ASCAT provides a triplet of 
three measurements of backscatter (σ0) from which operational cen-
tres retrieve the wind speed and direction, using a geophysical model 

function that solves for the two unknowns as a function of the σ0 triplet 
together with satellite metadata56. By contrast to this approach, we 
opted to simply include the raw σ0 values together with the metadata 
as channels to the encoder module, eliminating the complexity of the 
retrieval process. As all Metop satellites are in LEO, with a revisit time of 
approximately 24 h, the input to the state estimation module comprises 
the latest ASCAT observations available within the grid box from any 
of the three platforms on a regular 1.50° longitude–latitude grid from 
t = −1 day to t = 0 days.

In operational NWP, temperature and humidity profiles in the upper 
atmosphere are retrieved using infrared and microwave sounder 
instruments57. For this purpose, we included the Advanced Microwave 
Sounding Units A and B, Microwave Humidity Sounder instruments for 
microwave observations and the High-Resolution Infrared Radiation 
Sounder (HIRS)/4 for infrared observations. Together, these instru-
ments comprise the Advanced TIROS Operational Vertical Sounder 
system that is used operationally to retrieve temperature and moisture 
profiles58. Data for these instruments are provided by the National 
Centers for Environmental Information. Observations for Advanced 
Microwave Sounding Units A and B, Microwave Humidity Sounder and 
HIRS are taken from the National Oceanic and Atmospheric Administra-
tion 15–19, Aqua and Metop-A satellites. In operational NWP systems, 
both the retrieved profiles and raw radiances are assimilated. Similar to 
ASCAT, profiles of the target variable were retrieved using a geophysical 
model function, taking in the raw radiances and satellite metadata and 
solving for the desired observational profiles. Again, we opted to input 
the raw radiances together with the satellite metadata directly into the 
state estimation module without relying on higher-level retrievals. As for 
ASCAT, the dataset consisted of the latest observations from t = −1 day 
to t = 0 days, taken within a grid box of a regular 1.50° longitude– 
latitude grid.

We augmented the Advanced TIROS Operational Vertical Sounder 
observations with data from the Infrared Atmospheric Sounding 
Interferometer (IASI)59, a hyperspectral infrared sounder. Data for this 
instrument were provided by the National Centers for Environmental 
Information. IASI captured data at a much higher spectral resolution 
than HIRS/4, with a total of 8,461 channels across three bands. To limit 
the input data volume, we took the leading 15 principal components 
across these channels, a technique demonstrated to lead to limited 
performance degradation in operational NWP systems. Data from IASI 
were available from October 2007 as opposed to January 2007 for the 
rest of the training set.

Although platforms carrying scatterometers and passive microwave 
sounder instruments in LEO provide HRES observations, they have the 
disadvantage of a lower temporal resolution. By contrast, geostation-
ary satellites provide a very high temporal resolution although with 
more limited instrumentation. As the available channels on geosta-
tionary satellites vary geographically and with time, we opted to use 
a composite product, the Gridded Satellite dataset60, which provides 
homogenized retrievals of infrared and vapour window channels over 
standard geostationary platforms. Data for this instrument were pro-
vided by the National Climatic Data Center. For this data source, we 
included the image taken at t = 0 h.

To account for diurnal, seasonal and longer-term variations in  
the data, we included temporal information as input to both the 
encoder and forecasting modules. These channels consisted of 

( ) ( ) ( )sin , cos , sind d h2π
366

2π
366

2π
24  and ( )cos h2π

24 , where d is the day of the 

year and h is the hour of the day. The absolute year was also included 
to account for any changes in data characteristics over the training 
record. To account for the effects of orography on the weather system, 
we included several sources of orographic information taken from the 
ERA5 dataset34 as static fields. The data were provided by the ECMWF. 
These were the geopotential at surface level, angle of sub-grid-scale 
orography, anisotropy of sub-grid-scale orography, slope of sub-grid-
scale orography and standard deviation of orography.
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Pretraining
The modular structure of Aardvark leveraged ERA5 reanalysis data 
during the training phase to increase the length of the available data 
record. ERA5, or the fifth generation of the ECMWF reanalysis34, is a 
state-of-the-art global atmospheric reanalysis dataset. It provides com-
prehensive information on various meteorological parameters, such 
as temperature, humidity, wind and geopotential, covering the period 
from 1940 to the present. These data are provided by the ECMWF. 
From this, we elected to train on data from 1979 onwards, coinciding 
with the beginning of widely available remote sensing observations, 
which significantly improve the quality of the atmospheric reanalysis 
product.

Baselines
For the global gridded forecast experiments, we compared the per-
formance of Aardvark with four baselines: persistence, climatology, 
HRES and GFS. Persistence and climatology provide simple baselines 
for assessing whether a forecasting system is skilful. In persistence 
forecasting, it was assumed that the weather remains unchanged from 
t = 0 at all future lead times. For the climatology baseline, we used the 
climatology product from WeatherBench 2 (ref. 33). The predicted 
state was obtained by taking the mean value of all ERA5 observations 
from 1990 to 2017 for a given day of the year and hour using a sliding 
window length of 61 days.

The IFS and GFS are the two most widely used global operational NWP 
systems. As the focus of this study was on deterministic forecasting, 
we chose to compare our results with the HRES and GFS, deterministic 
runs at resolutions of 0.10° and 0.25°, respectively. These constitute 
challenging baselines for comparison with Aardvark Weather, which 
operates at a 1.50° resolution with just five vertical levels. For com-
parison with Aardvark, the HRES and GFS outputs were conservatively 
re-gridded to 1.50° resolution. In particular, we used HRES forecast data 
and ERA5 target data as provided by WeatherBench 2 (ref. 33), in which 
both datasets were coarsened to 1.50° resolution using first-order con-
servative re-gridding61. This procedure reduces the effects of aliasing, 
ensuring that Aardvark does not get an unfair competitive advantage 
because of distortions in the power spectrum that would occur from 
naive subsampling. To ensure that the GFS forecasts are compared fairly 
against Aardvark and HRES, we also applied conservative re-gridding 
to GFS. See Supplementary Information for further details on aliasing 
and its effects on signal spectra.

We considered four baselines for station forecasts. Persistence and 
climatology were calculated on the basis of station observations. For 
2-m temperature, we calculated the daily climatology and for 10-m wind 
speed monthly. We further considered two more challenging baselines: 
station-corrected HRES and NDFD over the CONUS. As HRES is a gridded 
product, sub-grid-scale processes were not resolved. Therefore, we 
learned a bias correction individually for each station in the 2007–2017 
training set and used this to correct the station forecasts on the 2018 
test set. NDFD is produced by the National Weather Service in the USA 
and is a state-of-the-art local forecasting system62. Forecasts in the 
NDFD are created from an ensemble of more than 30 models63, includ-
ing the IFS and GFS, together with HRES regional models at shorter lead 
times. The data from these systems are shown to human forecasters at 
different National Weather Service offices that create the final forecast. 
Our station forecasts were taken as the nearest-grid-box forecast from 
the final NDFD forecast, which was at approximately 2-km resolution. 
Therefore, NDFD constitutes an extremely challenging baseline, captur-
ing the full complexity of operational forecasting pipeline.

Evaluation metrics
For the global gridded forecasting experiments, we compared models 
on LW-RMSE. Given arrays of gridded target forecasts y and gridded 
target predictions ŷ, the LW-RMSE of variable v is calculated as

∑ ∑ ∑y y v
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1 1
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where b indexes over B batch elements, v indexes over V atmospheric 
variables, h and w are the index latitude and longitude coordinates over 
a grid with H points latitude-wise and W points longitude-wise, and αh 
are the latitude weights, defined as
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where θh is the latitude along the latitude-wise index h, so that their 
average is equal to 1. In machine learning, a (mini-)batch refers to a 
subset of the training dataset, typically used to compute a stochastic 
estimate of a model’s parameter gradients when performing 
gradient-based optimization. For the station forecasting experiments, 
we compared methods on MAE. Given arrays of station target tem-
peratures y and predictions ŷ, MAE is calculated as

∑ ∑y y
BN

y yMAE( , ˆ) =
1

| − ˆ | (3)
b

B

n

N

bn bn
=1 =1

where b indexes batch elements and n indexes the N stations in the 
forecast.

Training objectives
Separate training objectives were used for each of the three modules. 
For all three modules, we normalized the targets by calculating the 
mean and standard deviation for each variable and level, aggregating 
across all grid points. In the encoder and processor modules, which 
involve several target variables, this normalization had an effect of 
implicitly weighting the variables, owing to the scaling applied during 
normalization. For the encoder module, we determined an extra weight-
ing by first training the model using an LW-RMSE objective of the form

∑y y
V

y y vSUM-LW-RMSE( , ^) =
1

LW-RMSE( , ^, ) (4)
v

V

=1

Therefore, in the initial run, all variables were weighted equally. Next, 
weights βv were produced for each variable by taking the reciprocal of 
the LW-RMSE for each variable multiplied by a factor of 3 to generate 
weights within the range of approximately 0 to 1. The training objective 
for the encoder used these weights, giving the variable and LW-RMSE

∑y y
V

β y y vVLW-RMSE( , ^) =
1

LW-RMSE( , ^, ) (5)
v

V

v
=1

For the processor module, the training objective was SUM-LW-RMSE 
(equation (4)). However, the processor module was trained to predict 
residuals (see ‘Processor module’ below). We found that the implicit 
weighting that was applied through normalization worked well, and 
we did not further weight the variables individually. Finally, for the 
decoder module, the training objective was the same as for evaluation, 
that is, equation (3).

Model architecture
Aardvark Weather is a neural process model64. Neural processes are 
a family of deep learning models that provide a flexible framework 
capable of learning with off the grid data, as well as missing and sparse 
data, and providing probabilistic predictions at arbitrary locations 
at test time. These characteristics are ideally suited to working with 
complex environmental data, such as in climate downscaling and sen-
sor placement65–69.

Our specific architecture is a new member of the neural process 
family combining SetConv layers developed for the convolutional 



conditional neural process24, which handles off the grid and sparse 
data modalities and produces off the grid predictions, together with a 
vision transformer backbone that is currently used in state-of-the-art 
AIWP forecasting systems70. This provides scalability not currently 
attainable with standard transformer neural process models with 
attention-based encoders71 while still retaining the flexibility to handle 
diverse data modalities. Here we give details on the architectures of 
these modules, how they are trained and fine-tuned and how they 
are deployed. In the discussion that follows, note that the encoder, 
processor and decoder modules all receive auxiliary channels, such 
as temporal embeddings and orographic information, as input. For 
simplicity, we suppressed these channels in our exposition, but it 
should be understood that all three modules received them as inputs. 
We provide a complete list of all inputs and outputs to our models in 
Extended Data Table 2.

Encoder module
The encoder module E takes raw observations as input, and outputs 
a gridded estimate of the initial state of each variable for the processor 
module. Let o o o= { , …, }τ τ τ N,1 ,  be the set of observations correspond-
ing to time τ, where each o ,τ n,  corresponds to the observations and the 
corresponding metadata (such as viewing angle, solar elevation angle 
and observation time) of a single data modality. Each o x y= ( , )τ n τ n τ n, , ,

 
consists of a set of observations yτ n,

 and their corresponding longitude 
and latitude coordinates xτ n, . Each data modality is either on the grid 
or off the grid and has a corresponding function ψn to transform oτ n,  
into a gridded representation of fixed dimensionality. For gridded 
observations, ψn consists of the addition of a masking channel to dis-
tinguish the missing data from the observed data in the grid. For 
off the grid observations, each ψn consists of a SetConv layer24 with a 
learnable length scale. The SetConv layer produces a gridded repre-
sentation of the data, as well as an accompanying density channel that 
carries information about the presence or absence of data, to handle 
irregularly sampled observations. The regular gridded representations 
of the modalities are concatenated to give a single gridded represen-
tation of dimension C × H × W, where C is the number of resulting chan-
nels, H is the number of latitude points and W is the number of 
longitude points. This representation of the input data is fed into the 
backbone of the module, consisting of a vision transformer Ve with a 
patch size of three, eight transformer blocks and a latent dimension 
of 512. Embeddings for each patch use a multi-layer perceptron fol-
lowing a previous study27. The encoder outputs the initial state estimate 
ŝτ,0 at time τ with dimensions of 24 × W × H, where 24 is the number of 
variables modelled in the forecasting module. Putting this together, 
we have

̂ ⊙s E o V ψ o= ( ) = ( ( )) (6)τ τ n
N

n τ n,0 e =1 ,

where ŝτ,0 is the estimated initial state corresponding to time τ, and ⊙ 
denotes concatenation. The encoder module is trained to predict ERA5 
reanalysis targets using the VLW-RMSE (equation (5)) as its loss func-
tion. We trained the module for 150 epochs using AdamW with early 
stopping and a cosine learning rate scheduler starting at an initial learn-
ing rate of 5 × 10−4 and decaying to zero at the final epoch.

Processor module
The processor module P takes the initial state estimate ŝτ, 0 as input 
and outputs forecasts for lead times of 1–10 days. This module consists 
of ten separate vision transformers, V V, …,p

(1)
p
(10), which were composed 

to produce gridded global forecasts at each of the ten lead times  
we considered. Here each V i

p
( ) was designed to provide a 1-day fore-

cast conditioned on the forecast of V i
p
( −1). This 24-h time step is a com-

mon configuration in AIWP models71,72 and was used here to avoid 
inconsistencies in assimilation procedures at the 06:00 and 18:00 UTC 
runs of IFS, which may disadvantage this baseline in the comparison2, 

and for computational tractability. All vision transformers have a patch 
size 5, latent dimension of 512 and 16 transformer blocks. To improve 
the modelling of interactions between variables, we added cross-
attention between variables at the start of the network, as suggested 
in a previous study73. The processor is trained using a pretraining phase 
followed by a fine-tuning phase. Let ŝτ t,  be the ERA5 state correspond-
ing to time t and lead time τ. During pretraining, the first vision trans-
former, Vp

(1), is trained to ingest sτ,0 as input and predict the residual 
s s−τ τ,1 ,0 using the SUM-LW-RMSE loss (equation (4)). We pretrained 
Vp

(1) for 100 epochs using AdamW with a cosine learning rate scheduler 
starting at an initial learning rate of 5 × 10−4 and decaying to zero at 
100 epochs. During the fine-tuning phase, we trained each vision trans-
former V i

p
( ) to work with the estimated state produced by the previous 

transformer V i
p
( −1) as follows. Recall that ŝτ,0 is the estimated state pro-

duced by the encoder module. We started by training V (1) to predict 
s s− ˆτ τ,1 ,0 using the initial state ŝτ,0 as input. Once Vp

(1) has been fine-
tuned, we computed s s V sˆ = ˆ + (ˆ )τ τ τ,1 ,0

(1)
,0  and initialized the network 

Vp
(2) using the weights of Vp

(1). We then fine-tuned Vp
(2) to predict s s− ˆτ τ,2 ,1 

using ŝτ,1 the previously estimated initial state as input. We proceeded 
sequentially in this fashion until all networks have been initialized and 
fine-tuned. This procedure can be regarded as an instance of the push-
forward trick74. At deployment time, we composed the transformers 
to obtain a forecast for the desired lead time, that is

∘ ∘∼ ∼
s P s t V V s= ( , ) = … ( ) (7)τ t τ

t
τ, ,0 p

( )
p
(1)

,0

where V V(⋅) = ⋅ + (⋅)
t t

p
( )

p
( )∼ , and s E o= ( )τ τ,0  is the initial state produced  

by the encoder.

Decoder module
The final step in the forecasting pipeline is the decoder module. For 
each lead time t, we trained a lightweight convolutional station fore-
casting module Dt, which takes the gridded estimated state sτ t, , the 
target’s longitude–latitude coordinates x and auxiliary orographic 
information as inputs and produces predictions for the corresponding 
station temperature measurements yτ t,

. Each Dt  consists of a U-Net 
architecture75, followed by a SetConv layer that maps on-grid predic-
tions to predictions at arbitrary station locations, followed by 
a multi-layer perceptron which incorporates the auxiliary orographic 
information, to produce local forecasts ŷτ t,

. The U-Net consists of four 
encoder blocks (which consist of two-dimensional convolutions, Batch-
Norm layers, ReLU activations and MaxPool operations), followed by 
four decoder blocks (which consist of transpose two-dimensional 
convolutions, BatchNorm layers, ReLU activations and MaxPool oper-
ations). The encoder and decoder blocks have skip connections and 
channel dimensions (16, 32, 64, 128, 64, 32, 16, 1). We trained each Dt 
for 10 epochs using AdamW, with a learning rate of 1 × 10−3 and RMSE 
loss (equation (3)). To produce local forecasts at coordinates x, we 
computed

̂y D s x= ( , ) (8)τ t t τ t, ,

where sτ t,  is the global forecast defined in equation (7).

End-to-end deployment
At deployment time, no ERA5 input is required to run the system. To 
obtain global forecasts, we composed the encoder and processor 
together and computed

s P E o= ( ) (9)τ t t τ,̂ ∘

where P P t(⋅) = (⋅, )t . If we want to produce local station forecasts, we 
compose the encoder, processor and decoder modules and compute

̂ ∘y D P E o x= ( ( ), ) (10)τ t t t τ,
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Station forecasting baselines
We compared Aardvark against per-station persistence and climatol-
ogy, as well as against two challenging baselines. The first of these is a 
station-corrected version of HRES: for each station, we selected the 
nearest grid point from the HRES 0.25° forecast and learned an affine cor-
rection (a scale and a constant bias) on a per-station basis to correct for 
systematic biases, which is a common and highly effective downscaling 
method76. Further, region-specific downscaling refinements are possi-
ble, for example, using a local nested NWP. These could potentially fur-
ther improve the performance of NWP systems, so the station-corrected 
HRES results we presented should not necessarily be interpreted as the 
state-of-the-art in downscaling performance, but rather as a strong 
and globally applicable baseline. Second, over CONUS, we also com-
pared against a full operational end-to-end baseline, the NDFD from the 
National Weather Service. NDFD forecasts are an archive of data from the 
National Weather Service offices produced by combining the output of 
several global and regional forecasting models, post-processing these 
and incorporating input from human forecasters36.

End-to-end fine-tuning
To perform end-to-end fine-tuning, we composed the encoder together 
with the lead time t = 1 day processor and decoder modules, producing 
local station forecasts for lead time t = 1 day given by

y D P E o xˆ = ( ( ), ) (11)τ τ,1 1 1 ∘

This composition produces a single machine learning model with 
inputs that consist of all raw observational sources of the encoder 
module and outputs that consist of the predictions of the decoder 
module. We then fine-tuned this composite mode, that is, all three 
networks, jointly with either 2-m temperature or 10-m wind speed 
station observations yt ,1

 as the only targets, using the RMSE loss. Spe-
cifically, the fine-tuning procedure consists of loading the pretrained 
weights of the encoder, processor and decoder modules and perform-
ing stochastic gradient descent on the parameters of the three modules 
E, P1 and D to minimize the RMSE loss between the station forecast ŷτ,1

 
and its corresponding target yt ,1

. We used AdamW and optimized all 
the parameters of the modules for 25,000 gradient steps with a constant 
learning rate of 5 × 10−5 and early stopping, as described by the follow-
ing procedure.

During training, we stored checkpoints of our models to perform 
region-based model selection during evaluation. Specifically, every 
1,000 fine-tuning gradient steps, we stored a copy of the model weights 
at that point in training, commonly referred to as a checkpoint. We 
then used the checkpoints to perform model selection on the basis of 
performance on a held-out validation set. Specifically, we evaluated 
each of the model checkpoints generated during fine-tuning on the 
validation data on the data from each of the regions we considered, 
namely global, CONUS, Europe, West Africa and the Pacific. For each 
region, we then selected the best checkpoint, as measured by perfor-
mance on the validation set for that region, and evaluated this on the 
test data corresponding to the given region.

Model size and training costs
All model training in this study was performed on a single virtual 
machine with four NVIDIA A100 GPUs. The encoder module contains 
approximately 31 million parameters and requires 13 h to train. The 
processor module contains approximately 54 million parameters and 
requires 8 h to train on ERA5 and 3 h to fine-tune using the output of 
the encoder module as the input. Each of the 11 decoder modules con-
tains approximately 2 million parameters and takes approximately 
30 min to train. End-to-end fine-tuning of the encoder, processor and 
decoder modules takes 2 h. Therefore, the total time to train the model 
is approximately 100 GPU hours.

Further details
Further details on several aspects of this study, including supplemen-
tary figures and further discussion, are available in the Supplementary 
Information and rely on supplementary references77–82.

Data availability
The dataset to run Aardvark Weather will be made available at https://
huggingface.co/datasets/av555/aardvark-weather. All figures have been 
generated using a combination of the LaTeX TikZ package and the Mat-
plotlib Python package83. All coastlines and borders drawn in the spatial 
plots in the main text (Figs. 1a, 3 and 5k) and Supplementary Information 
use the border and coastline functionality of the Matplotlib package.

Code availability
The code used for training the models, the trained models, example 
test data and notebook examples for how to apply the models to make 
predictions will be made available on GitHub (https://github.com/
annavaughan/aardvark-weather-public)84.
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Article
Extended Data Table 1 | Listing of the inputs and outputs of each module

Raw data are passed to the encoder module which outputs predictions of the 24 prognostic variables on a global 1.50° grid at t = 0. This initial state is then input to the processor module to 
produce predictions for each of the prognostic variables at lead times of one to ten days on the same grid. Finally, the decoder module takes these global predictions to local predictions at 
station locations.



Extended Data Table 2 | Summary of the observational datasets used to train Aardvark

Summary of the datasets, including the temporal window used in Aardvark. The acronyms “IR” and “MW” stand for infrared and microwave respectively.
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