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Abstract
1. Predicting animal movements and spatial distributions is crucial for our 

comprehension of ecological processes and provides key evidence for conserving 
and managing populations, species and ecosystems. Notwithstanding considerable 
progress in movement ecology in recent decades, developing robust predictions 
for rapidly changing environments remains challenging.

2. To accurately predict the effects of anthropogenic change, it is important to 
first identify the defining features of human- modified environments and their 
consequences on the drivers of animal movement. We review and discuss these 
features within the movement ecology framework, describing relationships 
between external environment, internal state, navigation and motion capacity.

3. Developing robust predictions under novel situations requires models moving 
beyond purely correlative approaches to a dynamical systems perspective. 
This requires increased mechanistic modelling, using functional parameters 
derived from first principles of animal movement and decision- making. Theory 
and empirical observations should be better integrated by using experimental 
approaches. Models should be fitted to new and historic data gathered across 
a wide range of contrasting environmental conditions. We need therefore a 
targeted and supervised approach to data collection, increasing the range of 
studied taxa and carefully considering issues of scale and bias, and mechanistic 
modelling. Thus, we caution against the indiscriminate non- supervised use of 
citizen science data, AI and machine learning models.
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1  |  INTRODUCTION

Humans have impacted Earth's systems globally (Cowie et al., 2022), 
affecting both climate (Calvin et al., 2023) and biodiversity (Pereira 
et al., 2024; Venter et al., 2016), including species distributions 
(Chan et al., 2024), local ecosystem structure and functioning 
(Davoli et al., 2024), and eco- evolutionary processes (Boughman 
et al., 2024). Collectively, these anthropogenic changes are pushing 
Earth's systems beyond sustainable function, with potentially cat-
astrophic impacts for humanity (Richardson et al., 2023). We must 
urgently develop strategies for mitigating these adverse effects. As 
ecosystems are complex and interrelated, and increasingly chang-
ing to a novel or emerging state under human influence (Svenning, 
Buitenwerf, et al., 2024), they cannot be protected with localised 
measures (Harris et al., 2024; Svenning, Buitenwerf, et al., 2024). As 
such, an increased focus on underlying processes is required to safe-
guard global ecosystem functioning.

A key process to inform policy and management decisions is 
animal movement, as animals connect ecotopes and ecosystems, 
move vast amounts of biomass, genes and energy across the globe, 
and maintain functional ecosystems (Gable et al., 2023; Schmitz 
et al., 2023). Under global change, animals are increasingly exposed 
to new and unfamiliar conditions and novel ecosystems (Doherty 
et al., 2021; Hobbs et al., 2006), including human- modified land-
scapes such as those created by forest conversion to agricultural or 
urban areas (Arroyo- Rodríguez et al., 2020) and new species assem-
blages due to invasive species (Harris et al., 2024). Movement is a key 
behavioural response to environmental change (Tucker et al., 2023; 
Tuomainen & Candolin, 2011) and is critical in determining larger- 
scale population- level spatial patterns (Matthiopoulos, 2003) and 
biodiversity patterns (Schlägel et al., 2019). Individuals move in 

response to their internal state and navigational capacity, modu-
lated by local environmental context, including anthropogenic activ-
ity (Nathan et al., 2008; Owen et al., 2017; Shaw, 2020). Together, 
these individual movement decisions scale up to shape species' 
spatial distributions. Individual and species- level movements are 
hence intrinsically linked, each providing an alternative approach to 
understanding the drivers of wild animal populations under human 
pressures. For example, movement often provides a useful frame-
work for biological questions concerning behaviour (i.e. a micro-
scopic view), while animal distributions are more appropriate for 
understanding population- based questions (i.e. a macroscopic view).

In recent decades, there has been a rapid increase in our ability to 
record, process and model animal movements (Hussey et al., 2015; 
Kays et al., 2015; Nathan et al., 2022) and behaviour (Williams 
et al., 2020). This has created exciting opportunities to develop pre-
dictive models of animal movements and distributions (e.g. Signer 
et al., 2024). In particular, predicting (changes in) animal movements 
would allow us to anticipate and mitigate human- modified impacts. 
This is notoriously difficult to achieve, however, especially under 
novel conditions. We thus urgently need practical methodological 
frameworks to understand the drivers of animal movement and 
distributions in human- modified landscapes, to improve policy and 
management decisions (Allen & Singh, 2016; Hays et al., 2019).

Here, we highlight the need to build a predictive framework of 
how animals move in changing environments. This should account 
for terrestrial, aerial, freshwater and marine species with global cov-
erage, while acknowledging the high degree of context dependence 
(Ma et al., 2024). Specifically, we aim to: (1) define human- modified 
environments and how they impact animal movements; (2) provide 
an overview of the current knowledge and challenges associated 
with predictive movement modelling; and (3) discuss approaches 

4. We highlight the challenges and opportunities of incorporating movement 
predictions into management actions and policy. Rewilding and translocation 
schemes offer exciting opportunities to collect data from novel environments, 
enabling tests of model predictions across varied contexts and scales. Adaptive 
management frameworks in particular, based on a stepwise iterative process, 
including predictions and refinements, provide exciting opportunities of mutual 
benefit to movement ecology and conservation.

5. In conclusion, movement ecology is on the verge of transforming from a descriptive 
to a predictive science. This is a timely progression, given that robust predictions 
under rapidly changing environmental conditions are now more urgently needed 
than ever for evidence- based management and policy decisions. Our key aim now 
is not to describe the existing data as well as possible, but rather to understand 
the underlying mechanisms and develop models with reliable predictive ability in 
novel situations.

K E Y WO RD S
biologging, conservation, human- modified landscapes, modelling, movement ecology
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to incorporate predictions of animal movements and distributions 
into management actions and policy. We believe that improved pre-
dictions of animal movements and distributions in human- modified 
environments will considerably enhance current strategies aiming to 
mitigate the biodiversity crisis.

2  | HUMAN-­MODIFIED­ENVIRONMENTS:­
DEFINING­FEATURES, ­DRIVERS­OF­
MOVEMENTS­AND­IMPACTS

Anthropogenic changes are profoundly affecting Earth's biosphere, 
leading to the emergence of novel, or highly altered, ecosystems. 
It is becoming increasingly important to understand and predict 
the dynamics of ecosystems under these unprecedented or novel 
conditions (Svenning, McGeoch, et al., 2024). Here, we present 
the defining features of human- modified environments and their 
consequences as drivers of animal movement.

2.1  | Defining­‘human-­modified­environments’

Natural environments can change drastically as a result of natural 
disturbance events, such as wildfires, storms or earthquakes, affecting 
the diversity, structure and dynamics of ecological communities 
(Levin & Paine, 1974). Human pressures have been accelerating the 
rate of such changes, challenging the ability of wildlife to adapt. We 
define ‘human- induced changes’ as environmental changes resulting 
from pressures created by human activities that often cause local 
and global impacts on natural environments (see the ‘human 
footprint framework’; Venter et al., 2016). These include changes 
in land use and cover, natural resource extraction, construction and 
sensory pollution. ‘Human- modified environments’ are products 
of these human- induced changes. It is essential to understand the 
features of natural and human- induced changes, how they interact 
and how they relate to the temporal and spatial scales on which 

animals usually function. Human- induced changes often exhibit 
distinctive temporal and spatial attributes compared with natural 
processes (e.g. higher intensity, increased frequency over time or 
broader spatial extents).

Different types of disturbance vary in their temporal traits 
(e.g. continuous versus discrete and acute versus chronic) and im-
pacts on wildlife and ecosystems, differentially affecting not only 
the equilibrium states but also the transient community dynamics 
(Inamine et al., 2022). Previous work on the environmental impacts 
of human activity distinguished between relatively ‘static’ landscape 
modifications (e.g. roads and buildings) and the ‘dynamic’ move-
ment of humans and their vehicles, and any associated by- products 
(‘human mobility’) (Ellis- Soto et al., 2023; Rutz, 2022b); see also ear-
lier work on the pulse and press disturbance framework (Bender 
et al., 1984). Here, we expand this framing, exploring a continuum 
from static to dynamic disturbances that are relevant across time 
scales (see Figure 1). Static disturbances are changes to the struc-
ture of the landscape—such as buildings, transportation lines, fences 
and dams—which often have longer- term impacts on the movements 
of individual animals, population dynamics and species distributions 
(Benítez- López et al., 2010; Rutz, 2022b). Aside from infrastructure 
development, established area- use changes caused by agriculture, 
mining, trawling and oil extraction can also be considered static, due 
to their complex structural impacts which are not easily or quickly 
reversed (Figure 1).

On the other hand, dynamic disturbances are temporary alter-
ations; they can affect animals immediately or after response lags. 
Many are determined by the movements of humans and their vehi-
cles across the environment, including the release of by- products, 
such as light, noise and pollutants (‘human mobility’, as defined in 
Rutz 2022b), but more generally can include dynamic changes such 
as modified wind speeds and turbulences caused by wind turbines 
(‘wake effect’) or pulses of pollution caused by wastewater dis-
charges. In addition, dynamic changes vary in intensity across time 
scales, and may be regular (e.g. increased human presence during 
holidays or the ‘weekend effect’) or unpredictable over time. For 

F I G U R E  1  Static and dynamic components of human- induced changes. Human- induced changes can be categorised along a static–
dynamic continuum where barriers and constructions can be defined as truly static and human outdoor activities can be defined as truly 
dynamic. In between, there are other human- induced changes where static and dynamic disturbances interact (e.g. roads—see main text).
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example, Berger et al. (2020) tracked hedgehogs (Erinaceus euro-
paeus) before, during and after a large music festival in a park, re-
porting substantial effects on movement, exceeding the impacts 
of existing habitat fragmentation. Similar effects have been doc-
umented following other social activities (see Kölzsch et al., 2023; 
Perona et al., 2019; Spelt et al., 2019), for example responses to 
New Year's Eve fireworks (Hoekstra et al., 2024). Dynamic distur-
bances also include human- caused disasters (e.g. oil spills), armed 
conflicts (Gaynor et al., 2016; Russell et al., 2024) and moving in-
frastructures such as wind or tidal turbines which can be switched 
on and off, or floating offshore wind turbines. COVID- 19 lockdowns 
resulted in a period of drastically reduced human mobility (an ‘an-
thropause’), creating unusual environment conditions for some 
animals that had adapted to normal human mobility rhythms (Rutz 
et al., 2020; Tucker et al., 2023); see also the related example of the 
Chernobyl Exclusion Zone (Dombrovski et al., 2022). Dynamic dis-
turbances also include the transitionary period from natural habitats 
to human- modified environments. Construction activities have been 
shown to impact animal movement routes (Leblond et al., 2013). In 
particular, Lesmerises et al. (2013) and Skarin et al. (2015) showed 
that active road construction work has greater effects on movement 
than just the presence of the road itself for wolves (Canis lupus) and 
reindeer (Rangifer tarandus), respectively. The noise and vibrations 
emitted during the construction process of offshore wind farms 
can also cause significant disruption to marine animals, including 
behavioural changes and disturbance (Brandt et al., 2011; Herbert- 
Read et al., 2017; Whyte et al., 2020), although after construction 
wind farm foundations may become attractive artificial reef systems 
(Werner et al., 2024).

Static and dynamic changes often interact, and this interplay is 
a key determinant of the degree of disturbance introduced to the 
environment (Figure 1). Roads, for example, are static features that 
alter the physical environment through soil compaction, increased 
surface temperature, and changes in surface- water flow (Trombulak 
& Frissell, 2000), and can act as major barriers to animal movement. 
This modification is further intensified by the dynamic elements, 
such as humans and vehicles, that use the road, causing disturbance 
and animal- vehicle collisions (see also Rutz, 2022b). Studying the 
impacts of human- modified environments on wildlife thus requires 
examination of both static and dynamic components, and their in-
teracting effects.

2.2  |  Features­of­human-­modified­environments­as­
drivers of animal movements

2.2.1  |  Redistribution of resources

Human- modified environments have led to drastic changes in 
resource distributions, limiting some natural resources while making 
novel resources available. Land- cover change may expose animals to 
novel conditions and is among the leading causes of biodiversity loss 
(e.g. IPBES, 2019; Newbold et al., 2015; Wacher et al., 2023).

In human- modified environments, resource distribution is 
shaped by novel resources, such as food waste or human infrastruc-
ture, which may lead to altered behavioural or movement choices 
by animals (Sih, 2013). Anthropogenic subsidies (e.g. landfill sites, 
fishery discards or domestic waste bins) tend to be predictable in 
space and time, leading to animals foraging in and around concen-
trated areas (Oro et al., 2013; e.g. spotted hyenas (Crocuta crocuta), 
Yirga et al., 2015; water monitor lizards (Varanus salvator), Uyeda 
et al., 2015; black- backed gulls (Larus fuscus), Spelt et al., 2019). 
Seabirds are known to show an impressive ability to adapt their diets 
to human- induced changes (Bicknell et al., 2013; Griffin et al., 2017; 
Guerra et al., 2022). Similarly, human infrastructure (e.g. roads, build-
ings, dams and street lamps) may also be perceived as a resource that 
functionally resembles natural physical structures, sometimes lead-
ing to unreliable cues for animals when determining habitat quality 
(Imlay et al., 2019; Nisi et al., 2022; Plummer et al., 2016; Sih, 2013). 
These predictable resources can also impact seasonal movements, as 
illustrated by generations of white storks (Ciconia ciconia) changing 
their migratory behaviour to optimally use human- made resources 
(Gilbert et al., 2016). Spatial reconfiguration of habitat patches can 
also alter animal distributions, even if the composition of the land-
scape itself does not change (Macdonald & Johnson, 2015).

2.2.2  |  Altered climate conditions and thermal 
landscapes

In addition to direct changes to the landscape, human activities 
are known to impact climate (Calvin et al., 2023). Consequently, 
new climatic and weather conditions can strongly shape species 
distributions, which is further compounded by changes to land 
cover and resource distributions. Maintaining body temperatures 
close to physiological optima is key for animal homeostasis 
and, to different degrees, all animals rely on their surrounding 
environment (‘microclimate’, see review in Kemppinen et al., 2024) 
for thermoregulation. Thus, under global warming, distributions of 
many species are expected to shift (Poloczanska et al., 2013; Sunday 
et al., 2012, but see also: Fuchs et al., 2024). For example, ocean 
warming is predicted to cause Arctic whales to move northward 
(Chambault et al., 2022) and reduce grey reef shark (Carcharhinus 
amblyrhynchos) residency to coral reefs (Williamson et al., 2024). 
Maximum dive depths of blue sharks (Prionace glauca) have been 
found to decrease with high sea temperatures and decreasing 
dissolved oxygen (Vedor et al., 2021). Many terrestrial mammals 
from arid environments are expected to expand their home ranges 
if precipitation decreases with climate change (Bennitt et al., 2018). 
Besides global shifts in temperatures, extreme weather and climatic 
events are increasing in frequency, including heat waves or strong 
storms associated with high- speed winds (Newman & Noy, 2023). 
These events have disruptive effects on abiotic and biotic ecosystem 
elements, with either immediate or long- term consequences. The 
abrupt and disruptive nature of extreme weather can strongly 
modify the distribution of resources (e.g. Amoroso et al., 2020; 
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1150  |    GOMEZ et al.

Soriano- Redondo et al., 2016) and trigger avoidance or attraction 
behaviours. This has been documented in white- tailed deer 
(Odocoileus virginianus) avoiding hurricanes (Abernathy et al., 2019), 
predators waiting for and catching fleeing prey (Nimmo et al., 2019) 
or seabirds flying into the eye of storms to reduce risk (Lempidakis 
et al., 2022). Where habitats are thermally heterogeneous, which is 
common for most terrestrial species, animals may choose between 
different available microclimatic conditions to buffer climate change 
impacts (Beever et al., 2017). Such behavioural thermoregulation 
can be observed for example in giant anteaters (Myrmecophaga 
tridactyla), where temperature- dependent adjustments in activity 
patterns and habitat preferences are evident (Giroux et al., 2023).

2.2.3  |  Amplified risk landscape

Humans can be viewed as super- predators that can strongly disturb 
animal movements and behaviour, for example top predators 
may avoid areas with humans (Serra- Medeiros et al., 2021; Suraci 
et al., 2019) and human voices may generate stronger fear responses 
than lion sounds across several taxa in the South African savanna 
(Zanette et al., 2023). Animals therefore have to face an activity- risk 
trade- off, similar to how prey species have to navigate the landscape 
of fear created by their predators. Examples include sounds that 
people generate during outdoor recreation activities which cause 
strong anti- predator responses (Zeller et al., 2024). Both real 
(e.g. hunting) and perceived (e.g. hiking) risks cause behavioural 
changes, leading to similar costs and potential maladaptation in 
wildlife populations (Courbin et al., 2022). More intense human 
activities or extreme anthropogenic disturbances such as armed 
conflicts (Russell et al., 2024), fireworks (Hoekstra et al., 2024) or 
other sporadic bursts of anthropogenic noise (Hastie et al., 2021) 
can impact movements and mortality risks, especially in cases of 
prolonged exposure. Conversely, drastic reductions in the number 
and distribution of humans, such as during the COVID anthropause 
(Rutz et al., 2020), have led to changes in the movement behaviour 
of various wildlife species worldwide, albeit with a high degree of 
context dependence (Bates et al., 2021; Tucker et al., 2023; see also 
Burton et al., 2024).

2.2.4  |  Effects on movement capacity and the 
energy landscape

Human- made structures, such as roads, fences, wind turbines, oil 
platforms, dams, buildings and bridges, can impact the capacity of 
animals to move. Linear structures such as roads, railways or fences 
act as barriers and contribute to habitat fragmentation (Forman 
& Alexander, 1998; van der Ree et al., 2015). For example, Jones 
et al. (2022) indicate that both fences and roads are affecting 
pronghorn (Antilocapra americana) movements and resource use. 
Vertical structures such as wind turbines, skyscrapers or towers 
(Loss et al., 2014) create disturbances that have been responsible 

for displacing animals (Masden et al., 2009) and increasing mortality 
through collisions (Loss et al., 2013). Human- made structures can 
also modify the energy landscape for movements by facilitating or 
preventing movements around structures. Human- built structures 
can, for example, change the space- use patterns of flying birds by 
altering the airflow around buildings and hence the profitability of 
the airscape (Shepard et al., 2016). Wolves (Canis lupus) have also 
been shown to preferentially move along linear tracks opened for oil 
and gas exploration (Dickie et al., 2017).

2.2.5  |  Sensory pollution and navigational capacity

Movement is guided by sensory cues that allow individuals to 
navigate (Dusenbery, 1992). Both human activities and infrastructure 
can create sensory pollution affecting animal movement (Dominoni 
et al., 2020). Many examples illustrate how human- induced 
changes can interfere with formerly adaptive and reliable natural 
cues guiding animal movement and habitat selection, which may 
no longer be associated with positive outcomes in novel human- 
modified environments (Schlaepfer et al., 2002). These are known as 
maladaptive responses. Artificial lights can attract insects that many 
species feed on, alter predator–prey dynamics (e.g. cougar [Puma 
concolor] and mule deer [Odocoileus hemionus]; Ditmer et al., 2021) 
and cause navigational problems by mimicking natural stimuli that 
guide movement in turtle hatchlings (Tuxbury & Salmon, 2005) 
and fledgling seabirds. Similarly, artificial sound, such as from 
sonar and traffic, can interfere with movement and navigation in 
aquatic (Barcelo- Serra et al., 2021) and terrestrial systems (Schaub 
et al., 2008), leading to sound pollution (te Velde et al., 2024). Beaked 
whales may react to naval sonar signals as they would to the sound 
of a predator, expending more energy in escape responses, risking 
stranding or decompression sickness (Simonis et al., 2020). Chemical 
pollution may also interfere with sensory perception and navigation 
in animals. The impacts of chemical pollution may be complex and 
multimodal, affecting multiple sensory domains used by animals for 
orientation (Halfwerk & Slabbekoorn, 2015). Plastic pollution, and its 
associated chemical pollutants, also shows complex and concerning 
impacts on wildlife, for example by altering the navigation capacity 
of animals (e.g. attracting marine turtles, Pfaller et al., 2020), or 
immobilising Daphnia species (Bucci et al., 2020). More generally, 
human activities and disturbances, and environmental conditions 
in human- dominated areas such as urban areas, can be stressful for 
animals, and evidence is accumulating that they may directly and/or 
indirectly affect cognitive performance (see Chow et al., 2024 and 
references therein).

2.2.6  |  Novel species interactions

Intra-  and inter- specific interactions fundamentally affect animal 
movements (Nathan et al., 2008), and their quantitative investigation 
promises significant advances in our understanding of spatial 
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and community ecology (reviewed in Costa- Pereira et al., 2022). 
The challenge in human- modified areas is that human actions are 
profoundly affecting biotic interactions, through the addition of non- 
indigenous species, the spread of invasive species (Rilov et al., 2024; 
Vilà et al., 2011), and the removal of native species (e.g. removal 
of large predators). Furthermore, key conservation actions such as 
rewilding are increasingly using functionally equivalent but non- 
native species (Svenning, Buitenwerf, et al., 2024). Thus, predicting 
animal movements in human- modified environments will require 
the inclusion of the effects of potentially new or non- native biotic 
interactions. In addition, a recent review by Gaynor et al. (2024) 
highlights that understanding the spatial- social mechanisms linking 
human disturbances to population outcomes is key to mitigating 
undesired consequences of human- related changes. The latter can 
trigger a cascade of process alterations that can impact numerous 
species and their inter- species interactions. Examples include the 
increased predation of migratory fish at river barriers (Mensinger 
et al., 2024), or human infrastructure attracting predators (e.g. 
common ravens Corvus corax) to previously marginal habitats, 
resulting in hyper- predation of sensitive prey species such as greater 
sage- grouse (Centrocercus urophasianus; Harju et al., 2021) and 
desert tortoises (Gopherus agassizii; Kristan & Boarman, 2007).

2.3  |  Impacts­of­human-­modified­environments

Tucker et al. (2018) showed that some aspects of the movement 
behaviour of terrestrial mammals are strongly associated with 
the human footprint index—a measurement of human pressure 
on landscapes, based on a combination of multiple anthropogenic 
variables, including human population density and infrastructure 
(Venter et al., 2016). Specifically, there was a general tendency 
towards reduced movements in human- dominated areas, albeit with 
very large variability within and between species. In this section, we 
briefly review the current knowledge (or lack thereof) on the impacts 
of these changes in movements in response to human influence.

2.3.1  |  Anthropocene winners and losers

The resilience and adaptation exhibited in the face of changing 
conditions in human- dominated environments diverge remarkably 
across species, yielding a wide variety of behavioural responses and 
fitness outcomes. For example, in response to human changes, ani-
mals may modify their movement behaviours, which can ultimately 
have positive, negative or neutral influences on individual fitness 
(Matthiopoulos, 2022). Understanding what makes a species a 
winner or a loser in the Anthropocene is currently a considerable 
and unsolved challenge. In general, individuals can be considered 
Anthropocene winners when responses caused by human distur-
bances yield improved survival and/or reproductive rates. Species 
with prior experience of similar cues or conditions (typically gen-
eralist species with a wide behavioural repertoire) tend to perform 

better in human- modified environments (Sarkar & Bhadra, 2022). 
This phenomenon is evident among numerous examples of gen-
eralists, such as coyotes, foxes, bears, leopards, omnivorous tetra 
fishes and gulls that are shifting into human- modified environments 
and adapting to human disturbances and infrastructure (Hody & 
Kays, 2018; Spelt et al., 2019). These species can actively colonise 
human- modified habitats because of the availability of valuable re-
sources (such as food or nest sites) or protection from threats such 
as predators. Predictable, high- calorie food sources can increase re-
production and therefore fitness of these species (Gutmann Roberts 
et al., 2019; Newsome et al., 2010; Strum, 2010)—though this often 
comes at the expense of other species, increasing competition and 
reducing community diversity (McKinney, 2006; Oro et al., 2013; 
Shochat et al., 2006). This process can alter community composi-
tion, as seen in agricultural areas and urban centres, often with bio-
diversity homogenisation dominated by ‘human- adaptable’ species 
(Clavel et al., 2011; Ducatez et al., 2018). Conversely, Anthropocene 
losers experience declines in survival and reproduction due to re-
sponses caused by human modifications and activities. Among them, 
some species change their movements, by avoiding areas dominated 
and disturbed by human activity or infrastructure, leading, for exam-
ple, to reduced home ranges (e.g. Perona et al., 2019) or changes in 
migration (Gilbert et al., 2016). This may negatively affect species fit-
ness at different spatial and temporal scales, for example, as a con-
sequence of increased movement costs. Similarly, species switching 
their distributions to human- modified areas can also experience 
negative consequences such as increased stress (Chow et al., 2024; 
Rolland et al., 2012), elevated mortality (e.g. due to collision, higher 
disease incidence) and impaired reproductive success (Romano 
et al., 2006). This can be understood through the concept of eco-
logical traps, where animals mistakenly prefer human- modified en-
vironments where their overall fitness is lower because of unreliable 
cues (Hale & Swearer, 2016). Linking ecological trap occurrence to 
population demography is a key step in improving our understanding 
of this phenomenon.

2.3.2  |  Delayed and cumulative effects

Human impacts on individuals and species may be spatially distant or 
temporally lagged from their causes. For example, for marine animals 
washed up on beaches, the location, time or cause of mortality may be 
distant in space and/or time. Similarly, migratory animals experience 
a wide range of habitats and disturbance regimes as they move over 
large distances and may display the consequences of such exposure 
at a different place and time, possibly having accumulated sub- lethal 
disturbances until the effects are manifested (Russell et al., 2024). 
These displaced effects warrant consideration because they may 
imply that the spatiotemporal zone of human impact is much greater 
than we assume (Niebuhr et al., 2022). Impacts of co- occurring 
disturbance sources can accumulate along different dimensions (e.g. 
multiple types of disturbance, multiple features of the same type, 
trophic accumulation and time accumulation) and lead to different 
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1152  |    GOMEZ et al.

synergies (e.g. additive, multiplicative and mitigative). Hence, 
studies have shown that understanding the cumulative impacts of 
human disturbance in space and time is key to mitigation (Ellis- Soto 
et al., 2023; Johnson & St- Laurent, 2011; Niebuhr et al., 2022; Oliver 
et al., 2024).

3  | MODELLING­AND­PREDICTING­
ANIMAL­MOVEMENTS­IN­
HUMAN-­MODIFIED­ENVIRONMENT—
CHALLENGES­AND­POTENTIAL­SOLUTIONS

Predicting future changes in animal movements and distribution 
is crucial for providing conservation solutions. Robust predictions 
allow any potential negative impacts of different land- use 
and conservation management scenarios on movements and 
distributions to be anticipated and mitigated against. However, 
predicting animal movement is notoriously difficult, even under 
static environmental conditions, let alone in rapidly changing human- 
influenced environments and novel ecosystems. We urgently need 
practical methodological frameworks to measure, model, predict and 
evaluate animal movements and distribution under human- modified 
environments (Fieberg et al., 2024). Here, we discuss how best to 
account for novel conditions in model predictions and address what 
is missing from current methodological tools.

In the presence of rapid environmental change, our models must 
make predictions outside the range of historically observed scenar-
ios. Predictive models must consider that future environmental and 
ecological contexts may be different from those in which the data 
were collected. To achieve this, we need a good understanding of 
animal decision- making, especially when animals operate across 
spatiotemporal scales, in response to multiple life- history priori-
ties, balancing demands for survival, reproduction and dispersal. 
Unlike inanimate objects, whose movement can be described by 
physical laws and mathematical models to a great degree of preci-
sion, animal movements are complex, varied, often hard to detect, 
and fundamentally characterised by agency and individual variation 
(Hawkes, 2009; Hertel et al., 2020; Shaw, 2020), posing a significant 
challenge to building predictive models (Chatterjee et al., 2024; Muff 
et al., 2020). This context dependence has to be carefully examined 
when we aim to construct generalisable models of movement and 
distribution (Matthiopoulos et al., 2011). Ultimately, predicting 
movement in human- modified environments requires mechanistic 
models that use functional relationships derived from first principles 
of movement and also utilise information from historically contrast-
ing environmental scenarios in different geographical regions and 
time periods.

Animal movement and distribution models are often based on 
approaches that correlate animal locations with different variables 
(e.g. fixed or changing environmental features or locations of other 
animals), potentially using the resulting models to predict similar 
correlations at a future time or in another system. Correlative exam-
ples include resource selection functions (RSFs, Manly et al., 2002) 

and species distribution models (SDMs) fitted by maximum entropy 
(Elith & Leathwick, 2009) or by likelihood (Manly et al., 2002). When 
using correlative approaches to make predictions, the assumption is 
that those correlations will be the same in the future or in different 
environmental contexts. Importantly, this assumption also underlies 
sophisticated predictive models built using machine learning and AI. 
However, this assumption rarely holds (Matthiopoulos et al., 2011; 
Yates et al., 2018), with organisms in different environmental con-
texts behaving in fundamentally different ways from what tradi-
tional correlative models predict. It may be useful to expand here on 
the difference between geographic and environmental space when 
fitting SDMs or RSFs (Matthiopoulos, 2022). If the novel (anthropo-
genic) environment contains a new combination of environmental 
covariates, or values beyond those used to fit the model, then these 
missing predictors can lead to biased estimators of causal effects 
and poor out- of- sample predictions (Rinella et al., 2020). However, 
if the new environment contains combinations of covariates within 
the bounds of the model fitting (even if they are in a new geographic 
area), then the predictions should be more robust. Importantly, the 
key aim is not to describe the existing data as well as possible, but 
rather to understand the underlying mechanisms and have models 
that can predict under novel situations.

A possible way to remedy this is to build mechanistic models of 
the movement decisions made by animals, ideally based on first prin-
ciples of movement and functional relationships, and then project 
them forwards to predict space- use patterns on a broader spatio-
temporal scale (e.g. Signer et al., 2024). However, this can cause a 
different problem, whereby models describing movement decisions 
on one time scale can become inaccurate if scaled up to a broader 
time scale (Potts & Börger, 2023). For example, models detailing 
the correlates of movement between successive 2- hourly location 
fixes may wildly mis- predict space use over an entire month (Potts 
et al., 2022). It is tempting for researchers only to assess predictions 
at the spatiotemporal scale on which models are fitted: In our exam-
ple of 2- hourly fixes, one could simply assess the model by looking at 
how well it predicts the next location fix (e.g. using methods outlined 
by Auger- Méthé et al., 2021; Fieberg et al., 2018). This might lead 
to ostensibly better results, but it hides the fact that any accurate 
description of movement ought to remain accurate when scaled up. 
The new line- up method presented by Fieberg et al. (2024) is an ex-
ample of how predictions over longer time scales can be evaluated. 
Moreover, ecosystems are dynamic, comprising many interacting 
and fluctuating animal populations. Dynamical systems often include 
feedback effects, making regression models (e.g. generalised linear 
models and their variants looking at the response of one species 
to another) insufficient (Riotte- Lambert & Matthiopoulos, 2020). 
Rather, each component affects, and is affected by, the oth-
ers in a dynamic network of interactions. As developed for intra- 
specific interactions (Milner et al., 2021; Niu et al., 2016; Potts & 
Schlägel, 2020; Schlägel et al., 2019), we must increasingly capture 
multi- way species interactions within predictive models.

Discrepancies between predictions and observations can reveal 
the biological features missing from the models (Potts et al., 2022). 
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The idea of building a model describing movement on one spatiotem-
poral scale, and then using it to predict spatial patterns on a broader 
scale, is called a process- based approach (Avgar et al., 2016; Malishev 
& Kramer- Schadt, 2021) or sometimes a mechanistic approach (Potts 
& Lewis, 2014). By increasing the mechanistic content of statistical 
models, we can move towards a situation where we can extrapolate 
the movement of animals to multiple scales and contexts. Progress 
on statistical techniques such as step- selection functions (SSF) (e.g. 
Klappstein et al., 2022, 2024; Potts & Börger, 2023) and state- space 
models (e.g. Newman et al., 2023; Patterson et al., 2008) allows these 
tools to be increasingly process- based. By modelling the decisions 
animals make whilst they move, process- based models can implic-
itly incorporate the timescale over which space- use patterns vary. 
If the underlying environment is changing faster than the space- use 
patterns emerge, then a process- based model could capture this 
perpetually transient animal space use. To account for movement 
decisions at different temporal scales, another approach attempts 
to model movement and utilisation distributions jointly (Michelot, 
Blackwell, et al., 2019). This method uses stochastic models derived 
from Markov Chain Monte Carlo methods in discrete time (Michelot 
et al., 2020; Michelot, Blackwell, et al., 2019) and continuous time 

(Michelot, Gloaguen, et al., 2019), allowing joint inference at multiple 
scales (Blackwell & Matthiopoulos, 2024).

It is important to mention that, within process- based models, 
the ‘process’ itself is generally fitted to empirical data using cor-
relative methods (Potts & Börger, 2023). For example, mechanistic 
(aka process- based) models of movement decisions are often fitted 
by correlating movement with environmental features, for exam-
ple using hidden Markov models (McClintock & Michelot, 2018) or 
step- selection analyses (Avgar et al., 2016; Potts & Lewis, 2014). A 
detailed consideration of the movement capacity of different spe-
cies in different energy landscapes (Shepard et al., 2013) can mark-
edly increase our predictive ability of where and when animals will 
move, as for example, in soaring birds under changing meteorologi-
cal conditions (Shepard & Lambertucci, 2013). Thus, explicitly add-
ing into the models how human- modified environments affect the 
drivers of animal movements (see Figure 2) will be fundamentally 
important. Likewise, there is increasing realisation that human mo-
bility (see Section 2.1) affects wildlife movements in ways that are 
not fully captured by land- cover data or compound indices alone 
(Ellis- Soto et al., 2023; Oliver et al., 2024). Such correlations (i.e. the 
features that drive movement decisions) are emergent features of 

F I G U R E  2  Human- induced changes have static and dynamic components that interact to create human- modified environments with 
features that may alter animal movements. Here, we represent the main features of human- modified environments upon the movement 
ecology framework (Nathan et al., 2008). A detailed description of each feature and more examples of its effects on animal movement are 
provided in the text (Section 2.1).
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some underlying process, such as physiological limitations or life- 
history needs. Thus, if we want to use mechanistic models to make 
better predictions for changing environments, we need sufficiently 
detailed descriptions of animal movement to capture space use 
with accuracy, which is often challenging but sometimes achievable 
(Merkle et al., 2017; Moorcroft et al., 2006).

To make this more generally possible requires drawing on the 
widest possible historical information gathered over the last 50+ 
years of wildlife tracking, providing a large range of data across 
varied environmental contexts and human- impact scenarios, in 
different geographical regions and at different times. We have to 
make the most of empirical data by extracting maximum informa-
tion from voluminous and multi- type data collected across different 
ecological contexts. Furthermore, we must better use experimen-
tal approaches to test mechanistic hypotheses and corroborate 
links between theoretical predictions and empirical observations 
(Lustenhouwer et al., 2023; Ranc et al., 2021). Finally, to remain 
useful in understanding animal movement in human- modified envi-
ronments, mechanistic models must be no more complicated than 
the available data can support. Yet, they also need to be expandable 
enough to admit more features as data accumulate and thus allow 
us to fit our models to a multiplicity of environmental contexts and 
diverse data sets, including positional (from GPS record, e.g. Berger 
et al., 2020 or citizen science, e.g. Rueda- Uribe et al., 2024), be-
havioural (e.g. Chakravarty et al., 2019) or energetic (e.g. Klappstein 
et al., 2022; Shepard et al., 2013).

Overall, models aiming to predict animal movements in changing, 
human- modified environments need to move beyond purely correl-
ative approaches towards a dynamical systems perspective, which is 
much closer to the reality of ecosystems. To achieve this, we need to: 
(1) increase the mechanistic content of our models based on empir-
ical movement data, (2) fit our models to a large range of integrated 
data sets, from historically contrasting environmental scenarios, and 
(3) better integrate theory and empirical observations through ex-
perimental approaches.

4  | GETTING­PRACTICAL—TURNING­
MOVEMENT­MODELS­AND­PREDICTIONS­
INTO­POLICY­AND­MANAGEMENT­
STRATEGIES

Predictions of where, when, how and why animals move can improve 
policy and management decisions (Allen & Singh, 2016; Hays 
et al., 2019; Yanco et al., 2025). For instance, using movement data 
to design wildlife corridors in the Yellowstone to Yukon region has 
significantly improved connectivity for migratory species, illustrating 
how robust predictions can translate into valuable conservation 
outcomes (Hebblewhite & Merrill, 2009). That said, the full potential 
of incorporating movement predictions into conservation actions is 
often not achieved (Fraser et al., 2018; Katzner & Arlettaz, 2020). To 
overcome this translation gap, studies have highlighted the necessity 
of movement scientists and practitioners to co- design projects 

and fix common aims and priorities (Kadykalo et al., 2021; Nuijten 
et al., 2023). In this section, we showcase opportunities to improve 
the practical application of movement predictions within novel 
human- modified environments. First, we highlight the importance of 
identifying the specific features of human disturbances (and hence 
also management actions) and the specific mechanisms through 
which they affect animal movements (e.g. by modifying the sensory 
or movement capacity of individuals; see Section 2, Figures 1 
and 2). Second, establishing these causal links and identifying the 
mechanisms is crucial, as developing effective predictive movement 
models requires using mechanistic dynamical system models instead 
of correlative approaches (see Section 3). Adopting this framework 
right at the start of the project, in joined meetings between modellers 
and practitioners, will allow co- development of specific management- 
relevant predictive movement models and turning model predictions 
into effective management strategies. Furthermore, we discuss 
here also three further challenges and opportunities to address 
to bridge the research to management implementation gap: the 
need to carefully consider the spatiotemporal scales of predictions 
and conservation decisions; the importance of understanding 
the presence of significant data gaps that can lead to erroneous 
inferences; and the use of management actions as opportunities to 
collect highly relevant data for building predictive models and/or for 
testing model predictions experimentally.

4.1  |  Considering­spatiotemporal­scales­in­
conservation decisions

Consideration of spatiotemporal scale is crucial when using 
movement models for conservation decisions. Indeed, positive 
effects of mitigating management decisions may only have an 
impact if implemented on a particular spatiotemporal scale because 
the effectiveness of management actions depends on their 
implementation at appropriate, biologically meaningful scales. For 
example, particular challenges may arise when animal movement 
extends beyond a spatially delimited management unit with planning 
and decision responsibilities (Bénard et al., 2024; Meisingset 
et al., 2018). Such mismatches may lead to mismanagement with 
detrimental effects on ecosystems (Delsink et al., 2013).

Second, model predictions not only need to fit well with ob-
servations, but must also connect well to the local context of 
management sites (Fortin et al., 2020) and be at the appropriate, 
management- relevant scale. For example, model predictions at daily 
or weekly temporal scales will likely be ineffective for management 
programmes operating at yearly or even multi- decadal time scales, 
as is the case for many rewilding projects. Likewise, significant 
changes to a population or ecosystem may only be detectable after 
a considerable time lag.

Failure to achieve this linkage risks creating misunderstandings, 
inefficiencies, and distrust between modellers and practitioners and 
can risk scientific recommendations not being fully incorporated into 
decision- making (Delsink et al., 2013; Selier et al., 2015). Whereas 

 13652656, 2025, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.70040 by U

K
 C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [09/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 1155GOMEZ et al.

predictive movement models can provide key information for man-
agement strategies, understanding and choosing relevant spatiotem-
poral scales to obtain effective model outcomes is often challenging 
in conservation contexts (Delsink et al., 2013). Thus, while we keep 
improving our models through increased process- based predictions 
(Potts et al., 2022), all these model development aspects must be 
communicated clearly to decision- makers and supported with ap-
propriate evidence to facilitate successful conservation decisions 
(see also Nuijten et al., 2023). Communication is also crucial as an 
important further challenge lies in the temporal mismatch between 
the time required for the development of good predictive movement 
models and the urgency of implementing management actions which 
managers and practitioners often face. To effectively overcome 
these issues of scales, it is hence crucial that ecological modellers 
and managers co- develop from the start the model aims and mod-
elling pipeline in parallel with the management/conservation aims, 
including timelines and procedures to jointly assess and refine model 
predictions and the effectiveness of management actions (e.g. fol-
lowing an adaptive management framework—see Section 4.3).

4.2  | Data­deficiencies

Whilst there has been an increase in our ability to collect large 
movement and other bio- logging data sets for an ever- expanding 
range of species (Holton et al., 2021; Kays et al., 2015; Nathan 
et al., 2022; Williams et al., 2020), when converting movement 
predictions to conservation actions, we must acknowledge that our 
current understanding of animal movements is highly incomplete 
(e.g. see fig. 1 in Tucker et al., 2018). In particular, the movements of 
some taxa are rarely studied (amphibians, reptiles and invertebrates) 
compared with others (birds and mammals). There are also temporal 
data deficiencies due to technological constraints (e.g. battery 
life) and practical challenges in attaching and retrieving tracking 
devices (Crane et al., 2021), often related to ethical considerations 
with tags being too big for species (e.g. Symons & Diamond, 2019). 
There are also many data- deficient habitats and regions, with a high 
concentration of movement ecology studies based in the Global 
North. To maximise the reliability of movement predictions, it is 
important to improve our data collection in the field, especially for 
the non- studied species. Novel technologies can help overcome 
these needs thanks to the miniaturisation of technologies for 
studying smaller species and the use of video/AI technology for 
movement of species too small to fit trackers (i.e. insects; van Klink 
et al., 2022; Ratnayake et al., 2022). Nevertheless, collecting such 
data involves large costs and the benefits of obtaining more data 
must be carefully evaluated (McGowan et al., 2017). Sampling bias 
should always be considered in bio- logging studies because tagged 
animals may not be fully representative of the wider populations 
for which we hope to draw inferences, as detailed in the STRANGE 
framework (‘Social background; Trappability and self- selection; 
Rearing history; Acclimation and habituation; Natural changes in 
responsiveness; Genetic make- up; and Experience’: Webster & 

Rutz, 2020; see Marshall et al., 2020 for an example on king cobra 
Ophiophagus hannah). Moreover, despite recent advances in data- 
sharing through the development of dedicated repositories for 
movement data, such as the Movebank repository (Kays et al., 2021), 
many movement datasets remain effectively hidden from further 
use (Crane et al., 2021; Davidson et al., 2025; Rutz, 2022a). Like 
animal movement data, key covariates are also usually missing to 
develop good predictive models; this concerns especially fine- scale 
human- related dynamic covariates (e.g. road or trail traffic, land- use 
change across years, mines and shipping activity). Recent efforts to 
understand the effects of human mobility on wildlife, for example, 
through analysing the impact of COVID- 19 lockdown measures 
(Rutz et al., 2020) on animal movements, have highlighted the crucial 
need for high- resolution human mobility data (Ellis- Soto et al., 2023; 
Oliver et al., 2024).

4.3  | Management­and­conservation­actions­as­
opportunities for new data and experimental tests of 
model predictions

Many conservation and management interventions markedly affect 
the distribution of resources (e.g. supplemental feeding and habitat 
conversion) or the conditions experienced by animals (e.g. transloca-
tions), hence offering quasi- experimental conditions to collect data 
that would otherwise be very difficult or expensive to collect. For 
example, Silovský et al. (2024) used translocations of GPS- tagged 
red deer (Cervus elaphus) to understand their homing behaviour 
and orientation. Similarly, Ranc et al. (2021) used supplementary 
winter feeding as experimental tests for memory- based foraging 
decisions. Translocations and experimental feeding often occur in 
highly human- modified environments and should be better used 
to design research and management actions. Such studies provide 
precisely the sort of data required for building mechanistic models 
(see Section 3) or for testing model predictions. Considerable effort 
is currently also directed towards restoration and trophic rewilding 
actions (Burak et al., 2024; Maes et al., 2024), involving extensive 
habitat modifications as well as the creation of new species interac-
tions (Svenning, Buitenwerf, et al., 2024), offering opportunities to 
collect key data to observe and predict animal movements in novel 
environments, as well as to test model predictions.

Another exciting opportunity is offered by current approaches 
used to manage ecosystems under climate change, namely RAD 
(resist the climate transformation; accept the transformation and 
manage the current state; direct the system towards a novel state; 
Williams & Brown, 2024) and adaptive management frameworks in 
general (Månsson et al., 2023). These approaches are stepwise it-
erative processes which focus particularly on mechanisms and pre-
dictions, with prediction, monitoring and assessment of predictions 
being the basis for management. Hence, we suggest that these offer 
an excellent framework for integrating predictions of animal move-
ments in novel environments. They offer a coherent management 
approach whereby management interventions are planned, their 
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effects predicted into the future, the effects are monitored and 
evaluated, and the subsequent intervention is adapted based on the 
knowledge gained from assessing the predictive ability of the previ-
ous intervention. Such an iterative approach mirrors very well the 
iterative approach proposed by recent research to develop improved 
predictive movement models (Potts & Börger, 2023). Nevertheless, 
current research has highlighted that adaptive management ap-
proaches face critical challenges in rapidly changing environments, 
such as those caused by land- use and climate change (Månsson 
et al., 2023). Hence, the inclusion of mechanistic predictive move-
ment models, derived from first principles of animal movement, into 
adaptive management approaches promises to be of mutual benefit 
to movement ecology and conservation.

5  |  CONCLUSIONS

Understanding and predicting animal movements is of crucial 
importance for our comprehension of ecological and evolutionary 
processes and provides key evidence for conserving and managing 
species and ecosystems, especially in the current era of rapid 
human- caused environmental change. There has been tremendous 
progress in our ability to collect large animal movement and bio- 
logging datasets at rapidly increasing resolution and in modelling 
large and complex datasets, thanks to progress in technology and 
mathematical modelling, similar to wider trends in ecological research 
(McCrea et al., 2023). Notwithstanding this progress, predicting 
animal movements and distributions, especially in rapidly changing, 
human- modified or novel environments, remains challenging and is 
an active area of research.

To progress, in this review we first discussed the defining fea-
tures of human- modified environments and the resulting conse-
quences on the drivers of movement. We then posited that, to be 
able to incorporate robust predictions into management and policy, 
models aiming to predict animal movements in human- modified 
landscapes need to be able to make predictions for novel contexts, 
outside the range of existing data.

First, we argued for a thoughtful and focused approach to data 
collection. We need to integrate different types of data at appropri-
ate scales, creating nested hierarchies of data. Careful and targeted 
data collection must also acknowledge biases in observations, with 
implications regarding the indiscriminate use of citizen science data, 
for example. Such data offer extraordinary potential for ecological 
research and are rapidly increasing in availability and use (Dennhardt 
et al., 2015; Fuentes et al., 2023; Rueda- Uribe et al., 2024; Yun 
et al., 2024), but their use in developing predictive movement models 
will require careful scientific supervision and calibration. We must 
also put more effort into increasing the number of different species 
studied and increasing the number of studies in human- dominated 
or novel environments—such data are critically lacking. Furthermore, 
current research systems tend to favour isolated, short- term studies 
usually focused on a single study system. Instead, we need fund-
ing for coordinated multi- system projects with multiple principal 

investigators (including modellers and statisticians alongside field 
experts on each study system) recording data of multiple types (see 
also the call for data integration by McCrea et al., 2023).

Second, we argued for a careful and meticulous incorporation 
of biological mechanisms in predictive movement and distribution 
models, by using functional relationships derived from first princi-
ples of movement. This requirement leads to a second cautionary 
note, against the indiscriminate use of machine learning for the anal-
ysis and predictive modelling of movement data. Notwithstanding 
the enormous potential and advantages of machine learning, also 
for movement studies (e.g. Rieber et al., 2024; Schoen et al., 2025; 
Sueur, 2023; Wijeyakulasuriya et al., 2020), we have to be able to 
supervise the models that are constructed to generate robust pre-
dictions (see also McCrea et al., 2023; on the importance of having 
a methodological driver underpinning the use of machine learning 
and AI models, and Tuia et al. (2022) on the importance to integrate 
ecological knowledge into machine learning models). Our key aim 
moving forward should not be to describe the existing data as well 
as possible, but rather to understand the underlying mechanisms 
driving movement patterns. This is crucial in developing models with 
robust predictive ability for novel future change scenarios.

In conclusion, we provide a framework to better understand and 
predict animal movements and distributions in dynamic and often 
novel environments. Robust predictions are crucial to produce re-
liable management and policy- relevant evidence and predictions in 
the Anthropocene. The recommendations presented here, coupled 
with the impressive technological and methodological developments 
in the field, highlight the exciting opportunities now available to ad-
vance the field of movement ecology into a more predictive science.
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