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Background: Tick-borne encephalitis virus (TBEV) is 
expanding its range in Europe, with increasing human 
cases reported. Since the first detection of TBEV in 
ticks in the United Kingdom in 2019, one possible, two 
probable and two confirmed autochthonous cases in 
humans have been reported. Aim: We aimed to under-
stand the environmental and ecological factors limit-
ing TBEV foci at their range edge and predict suitable 
areas for TBEV establishment across Great Britain (GB) 
by modelling patterns of exposure to TBEV in deer. 
Methods: We developed spatial risk models for TBEV 
by integrating data between 2018 and 2021 on anti-
bodies against tick-borne flavivirus in fallow, muntjac, 
red and roe deer with data on potential risk factors, 
including climate, land use, forest connectivity and 
distributions of bank voles and yellow-necked mice. 
We overlayed modelled suitability for TBEV exposure 
across GB with estimations on number of visitors to 
predict areas of high human exposure risk. Results: 
Models for fallow, muntjac and roe deer performed 
well in independent validation (Boyce index > 0.92). 
Probable exposure to TBEV was more likely to occur 
in sites with a greater percentage cover of coniferous 
woodland, with multiple deer species, higher winter 
temperatures and rates of spring warming. Conclusion: 
The resulting TBEV suitability maps can be used by 
public health bodies in GB to tailor surveillance and 
identify probable high-risk areas for human exposure 
to guide awareness raising and vaccination policy. 
Combining animal surveillance and iterative spatial 
risk modelling can enhance preparedness in areas of 
tick-borne disease emergence.

Introduction
Tick-borne encephalitis (TBE) is a severe acute neuro-
infection of humans, caused by a tick-borne flavivirus 
(tick-borne encephalitis virus, TBEV), with over 50,000 
human cases reported in Europe in the last decade [1].
Tick-borne encephalitis is seasonally linked to host-
seeking activity of  Ixodes  tick vector species (mostly 
nymphs) with humans usually becoming infected via a 
bite from an infected tick but also through consumption 
of infected raw milk products [2,3].

Tick-borne encephalitis virus is widely distributed 
across Europe and Asia, but its presence is highly focal, 
even within the distribution of its competent tick vec-
tors Ixodes ricinus and Ixodes persulcatus in Europe and 
Asia. The complex ecology and focal distribution make 
TBEV very difficult to control. Patients with TBE mainly 
receive supportive treatment. Preventive measures 
include vaccination, community awareness raising 
and tick-bite prevention measures [4]. An improved 
understanding and mapping of the conditions favour-
ing TBEV foci is essential for spatial targeting of these 
available TBE preventative measures, especially public 
awareness [5,6]. This is even more imperative given 
the increased incidence of TBE across Europe and 
emergence of new TBEV foci in previously unaffected 
countries [7-10]. In 2019, TBEV was detected in England 
[6,11,12] and since then, five possible, probable or con-
firmed human cases of TBEV that were acquired in the 
United Kingdom (UK) have been reported [13,14].
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Natural cycles of TBEV in Europe occur within forest and 
adjoining meadow biotypes, and small mammals such 
as bank voles (Myodes glareolus) and yellow-necked 
mice (Apodemus flavicollis) have been implicated in 
the maintenance of transmission [15,16]. Deer species 
may also play an important role in the TBEV cycle as a 
key reproduction host for I. ricinus, contributing to the 
maintenance of tick populations. Moreover, multiple 
transmission mechanisms are involved, including sys-
temic transmission between viraemic small mammal 
hosts and ticks, and co-feeding transmission between 
nymphs and larvae feeding in close proximity on the 
same hosts [17]. An additional mechanism, trans-ovar-
ial transmission, is often disregarded, with its contribu-
tion to the maintenance of TBEV being unclear [17,18]. 
Humans are accidental dead-end hosts.

The factors driving the highly focal distribution of 
TBEV are not well understood, especially in new areas 
of emergence. The presence of the tick vector, reser-
voir and reproduction hosts are not sufficient for the 
maintenance of TBEV. Wide-ranging climate, land-
scape and host factors have been linked to patterns 
in transmission and emergence in different parts of 
Europe [19]. These include variation in temperature, 
humidity, precipitation as well changes in land cover 
such as forest and wildlife host densities, in addition 
to human behaviours in and around forests under-
pinning exposure. Most studies of patterns in TBEV 
have leveraged human case data and as such capture 
human exposure, which is likely to represent only the 
tip of the iceberg in terms of the conditions in which 
transmission occurs. Integrating data on exposure of 
wildlife sentinels and ticks into surveillance systems, 

alongside human surveillance, may provide a more 
complete picture of the factors limiting TBEV distribu-
tion and risk areas. Since 2018, the UK Health Security 
Agency (UKHSA) has conducted large-scale monitoring 
of tick-borne flaviviruses in four deer species and ticks 
from varying habitats [11,20] to capture a wide range 
of conditions that favour transmission. This scheme 
indicated that exposure of deer to TBEV is highly focal 
and limited to few areas in Great Britain (GB). Genomic 
sequence analysis revealed existence of two European 
TBEV strains, that are mostly closely related to strains 
from Norway and the Netherlands [6,11,12].

Despite effort in modelling TBEV risk [19], as is com-
monly noted across zoonotic diseases, the feedthrough 
of these models and maps into disease control policy 
has been rather limited [21,22]. To address this dis-
connect for TBEV in the GB context, our partnership 
involves key actors and networks in surveillance and 
preparedness for tick-borne diseases, to help frame 
and tailor model outputs for decision making as part 
of a participatory co-production process [23,24] of the 
TickSolve project (https://ticksolve.ceh.ac.uk/).

In this study, we combined UKHSA national surveil-
lance data on patterns in exposure of four deer spe-
cies to tick-borne flaviviruses, with abiotic and biotic 
environmental data, to model and map the conditions 
restricting current TBEV foci in GB. We aimed to (i) 
quantify the role of climate, landscape and host fac-
tors in restricting TBEV foci in GB compared with other 
areas of TBEV circulation in Europe, (ii) develop maps 
of TBEV hazard across GB and integrate patterns in 
human recreational use to understand where human 

What did you want to address in this study and why?
Tick-borne encephalitis virus (TBEV) was first detected in the United Kingdom (UK) in 2019. Deer have been 
exposed to the virus, and it has been found in ticks. Human cases have also been reported. We aimed 
to identify and map conditions favouring this virus by relating locations of past TBEV infection in deer to 
different habitats and climates in Great Britain (GB).

What have we learnt from this study?
We found that TBEV infections were more likely in areas of GB with more coniferous woodland, more deer 
species present, higher winter temperatures and faster temperature rises in spring. We identified suitable 
areas for TBEV across GB, which will help us better understand current risk and how these risks may change 
in the future. To better understand risk there is a need for improved tests to differentiate between TBEV and 
other closely related viruses.

What are the implications of your findings for public health?
We produced maps to identify the overlap of areas suitable for TBEV and for people to visit. This provided 
information on where people may be at higher risk of contracting TBEV. This is important to guide public 
health planning and awareness and to target further surveillance for TBEV in GB, within ticks, animals and 
humans. This work can inform national policy groups that assess the risk of new and emerging infections in 
GB and other countries.

KEY PUBLIC HEALTH MESSAGE
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exposure risk may be highest with key actors in public 
health responses, (iii) validate the potential impact of 
these risk maps, as well as linkage of tick and wildlife 
surveillance with modelling, on decision-making for 
TBEV mitigation.

Methods

Epidemiological and environmental data
We used geolocated results from ELISA testing of 3,348 
blood samples from 1,307 sites from fallow deer (Dama 
dama), muntjac deer (Muntjac reevesi), red deer (Cervus 
elaphus) and roe deer (Capreolus capreolus) in England 
and Scotland [11]. These samples were collected from 
wild culled deer by deer managers, who were culling 
as part of routine management practice. They also 
recorded associated information about the deer spe-
cies and location, between February 2018 and March 
2021. The serum samples were tested for antibodies 
to TBEV using Immunozym FSME IgG All Species ELISA 
(PROGEN Biotechnik GmbH, Heidelberg, Germany), 
following manufacturer’s instructions and cut-offs. 
Positive test results indicate exposure to the TBEV-
serocomplex. Due to close genetic homology between 
TBEV and louping ill virus (LIV), previous testing was 
carried out on 1,309 samples with titres ≥ 20 using a 
LIV hemagglutination inhibition test for discriminatory 

testing [11]. Cohen’s κ indicated substantial agreement 
(0.61) between the methods, therefore, it was not pos-
sible to use these methods to discriminate between 
TBEV and LIV [6,11,12]. Given this diagnostic limita-
tion, we refer throughout to probable TBEV exposure to 
reflect the uncertainty in serological specificity.

The data were summarised, per deer species, as pres-
ence or absence of ELISA-positive deer at a 1 × 1 km res-
olution across England and Scotland and used as the 
response variable in models. To identify environmen-
tal drivers of exposure to TBEV in deer, environmental 
predictors previously related to tick dynamics, tick and 
TBEV hazard and host distribution were selected a pri-
ori and included humidity and temperature [25], terrain 
roughness [26], land cover [27], woodland connectivity 
within a 1 km and 2 km buffer around each 1 km grid 
cell, as well as presence of suitable habitat for poten-
tial TBEV hosts, bank voles, yellow-necked mice and 
deer [20,28]. The latter layers were the probability of 
multiple small mammals or multiple deer being pre-
sent, calculated by summing across probability of pres-
ence outputs for each individual species from [20,28]. 
Further information about these predictors such as 
sources, biological rational for inclusion and process-
ing can be found in Supplementary Material S1.

Figure 1
Mean relative influence of environmental variables included in the model on tick-borne encephalitis virus with standard 
deviation across model runs, Great Britain, 2018–2021
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Dotted line shows upper standard deviation of relative influence values for a randomly generated variable. Variables to the right of the dotted 
line had greater influence than a randomly generated variable.
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Predicting hotspots of deer exposure to 
tick-borne encephalitis virus and associated 
environmental factors

To predict the probability of TBEV presence or estab-
lishment, we used a boosted regression tree (BRT) 
approach. Boosted regression trees have performed 
well when compared with other methods used to fit 
species distribution models, which is likely due to their 
ability to fit complex nonlinear relationships [29]. On 
the assumption that TBEV has recently emerged in GB, 
it may not have filled all the suitable habitats or niches 
for transmission, as is often assumed for the applica-
tion of species distribution models (SDM). However, 
given that TBEV transmission is occurring across vari-
ous parts of GB [11], describing the current realised 
niche of TBEV using an SDM will still provide a con-
servative estimate of the current conditions favouring 
transmission to inform risk assessments.

Given that deer species differ in their behaviour, habitat 
associations and range across GB, we fitted separate 
sets of BRTs to understand drivers of TBEV exposure 
for each deer species. The models were fitted with tree 
complexity of 4 and learning rate adjusted to ensure 
the number of trees exceeds 1,000 for all deer species 
[30]. We fitted 100 models for each deer species keep-
ing a 1:1 ratio of absences and presences as recom-
mended [31]. For each model, we resampled absence 

data to obtain the same number of absences as posi-
tives. The sampling of absences was weighted by the 
number of samples taken from the focal site, leading 
to preferential selection of absence sites with greater 
number of samples available.

We performed a comparison of different BRTs to deal 
with collinearity between variables and to select the 
most appropriate buffer size for woodland connec-
tivity. To select a buffer for woodland connectivity in 
the model, we ran two sets of models for each deer 
species, one set of models with a 1 km buffer and 
another set with a 2 km buffer and selected the model 
with the greatest percentage of deviance explained. 
Furthermore, we did not fit any models where two 
explanatory variables had a Pearson’s correlation coef-
ficient > 0.7 to avoid issues with multicollinearity [32]. 
Mean woodland patch area within a cell and percentage 
of coniferous woodland cover were highly correlated 
for all deer species (r = 0.68–0.89). We opted to use 
percentage of coniferous woodland cover in all models 
alongside percentage of deciduous woodland cover to 
allow us to determine the influence of different wood-
land types on exposure to TBEV. For the sites in the roe 
deer and red deer datasets, there was also a high cor-
relation between small mammal occupancy and spring 
warming rate. We thus ran four sets of models for 
these deer species - two models to select buffer size 
excluding small mammal occupancy and two models 

Figure 2
Modelled relationship between probability of exposure of fallow deer, muntjac deer and roe deer to tick-borne encephalitis 
virus and coniferous woodland cover, temperature-related variables and deer occupancy, Great Britain, 2018–2021
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to select buffer size excluding spring warming rate. For 
all models, we checked for spatial autocorrelation in 
the residuals using Moran’s I correlograms. We then 
selected a final model based on % deviance explained 
and the mean area under the curve (AUC) from using 
a 10-fold cross-validation approach [30]. Independent 
validation of prediction maps was also carried out with 
124 additional positive samples using the Boyce index 
(fallow = 71, muntjac = 22, roe = 31) that were independ-
ent from the data used in the models. The Boyce index 
evaluates how well habitat suitability values from the 
model predict evaluation data using a precited-to-
expected ratio (P/E ratio). This index ranges from -1 to 
1 and a positive estimate, with a monotonic increase 
in P/E ratio in relation to increasing habitat suitability, 
indicates that model predictions are consistent with 
the distribution of presences in the evaluation dataset 
[33].

The ELISA also detected exposure to LIV, has resulted 
in seropositivity in deer being detected in areas with 
known LIV, and therefore probable seroconversions 
to LIV in these circumstances. We addressed this by 
down-weighting the contribution of those presence 
sites falling into areas where LIV has been recorded, 
using site level weights. We obtained data on 556 LIV 
diagnoses recorded in cattle and sheep at the post-
code level from the UK Animal and Plant Health Agency 
(APHA) across 145 postcode districts from 2001 to 
2023. To maintain confidentiality in this dataset, cases 
from postcode districts that contained < 5 holdings 
were assigned to the closest postcode district with 
> 5 holdings. This meant that some postcode districts 
may have had LIV cases but were listed as having no 

cases. Overall, there were 47 instances where this 
occurred and a total of 11 postcode districts had cases 
assigned to them from unknown nearby postcode dis-
tricts. None of the positive deer samples fell into these 
11 postcode districts. To account for anonymisation of 
the data and for potential variation in reporting effort 
across postcodes, we interpolated across postcodes 
by assigning each postcode with no cases the mean 
number of reported cases of LIV in all neighbouring 
postcode districts. This spatial interpolation was used 
to calculate the site weights in the model. For details 
on calculation of number of reported LIV cases and site 
weights please see Supplementary Material S2.

We used model predicted probability of presence out-
puts to produce GB scale predictions of the relative 
likelihood of TBEV occurrence or establishment (as 
estimated from probable TBEV exposure in deer). As 
each deer species has a different distribution across 
GB and cannot be exposed to TBEV where they are 
absent, we restricted geographical predictions of expo-
sure to TBEV based on predicted probability of occur-
rence for each deer species from Croft et al. [20]. Any 
site with a relative probability of presence of < 0.1 for a 
focal deer species was masked. This limits predictions 
of TBEV suitability to the approximate range of differ-
ent deer species by excluding areas with extremely low 
probability of occurrence but we note that some pre-
dictions may be in areas outside of the existing range 
of focal deer species. To generate a prediction of TBEV 
suitability incorporating modelled exposure for all deer 
species, we calculated the mean probability of TBEV 
exposure at each site across predictions for all deer 
species.

Table 
Areas with suitable sites for transmission of tick-borne encephalitis virus to humans, Great Britain

Area Highly suitable sitesa
Predicted number of visits

Weekly Annuallyb

Hampshire 297 6,797 6,445,666
Dorset 178 2,166 973,402
Norfolk 92 593 569,006
Suffolk 60 409 469,091
Highland 60 7 8,417
Neath Port Talbot 46 836 243,728
Bridgend 35 740 225,906
Surrey 30 1,444 937,206
Bournemouth, Christchurch and Poolec 24 504 396,306
Bracknell Forest 18 574 664,484
Swansea 18 463 122,179
Devon 17 234 77,455
Moray 13 1 476
Wiltshire 11 239 112,443

a A highly suitable site was defined as sites with a suitability of > 0.75. Areas with > 10 highly suitable sites were included.
b The weekly and annual numbers represent mutually exclusive visit types and therefore will not correspond to each other in this way. The 

weekly type of visit measures frequency per week of people visiting their local areas for recreation. The annual type of visit measures the 
number of people that visit an area once a year e.g. for holidays.

c Bournemouth, Christchurch and Poole is considered a separate unitary authority.
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Identifying areas of potential human exposure
To highlight areas where human recreation overlaps 
with areas where TBEV is likely to be present or estab-
lish, we used model outputs from Hooftman et al. 
[34] that predict recreational demand across GB. This 
modelling framework incorporates travel distance and 
the predicted frequency with which people are likely 
to visit a site to estimate the recreational demand in 
each site. Sites that people visit once a week captures 
estimated demand in sites that people use for local 
general recreation whereas sites that people visit once 
a year captures areas that people visit less frequently 
and travel further to reach. We used these two visit fre-
quencies as they represent different types of recreation 
and different at-risk groups within GB that could be tar-
geted with human surveillance and risk communication 
efforts. We used bivariate maps to plot the relationship 
between recreation demand and likelihood of TBEV 
occurrence or establishment.

To outline the areas with highly suitable sites in GB, 
we summed the number of highly suitable sites and 
estimated number of visits within Counties and Unitary 
Authorities across GB [35].

Results
Blood samples were received from 361 sites for fal-
low deer (52 positive), 228 sites for muntjac deer (38 

positive), 822 sites for roe deer (56 positive) and 352 
sites for red deer (38 positive). Positives were detected 
in both England and Scotland and most positives (66%) 
were located in Norfolk, Hampshire and Suffolk.

Across all model sets, performance of models was 
relatively similar, and all models selected performed 
well in cross-validation (AUC > 0.8) and independent 
validation (Boyce index > 0.92), apart from the red deer 
model which had a relatively poor predictive perfor-
mance (AUC = 0.64), presented in Supplementary Table 
S3.1. As such, we present results for predicted TBEV 
exposure of muntjac, fallow and roe deer and interpret 
these in relation to patterns in human recreation and 
provide results for red deer in  Supplementary Figures 
S4.1, S4.2 and S4.3.

Using BRTs means the relative influence of predictors 
on the response, probable TBEV exposure, can be quan-
tified. Temperature-related variables such as mean 
annual surface temperature and rate of spring warming 
(February to April in GB) had a high mean relative influ-
ence on the likelihood that deer are exposed to TBEV 
compared to other predictors (Figure 1). Percentage 
area of coniferous woodland was also an important 
factor influencing TBEV exposure, relative to other fac-
tors (Figure 1). Deer occupancy was also influential in 
the models fitted for roe and fallow deer (Figure 1A,1C). 

Figure 3
Predicted probability of occurrence or establishment of tick-borne encephalitis virus, based on probable exposure to TBEV 
in fallow, muntjac and roe deer, Great Britain

A. Roe deer B. Muntjac deer C. Fallow deer D. Combined

TBEV: tick-borne encephalitis virus.

The legend shows relative suitability, probability of presence or establishment, for TBEV across Great Britain. Dark blue areas are predicted to 
have the lowest suitability and dark red areas the highest suitability.
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Overall, deer were more likely to have ELISA-positive 
test results with probable TBEV exposure in sites with 
high percentage cover of coniferous woodland, higher 
rate of spring warming or mean annual surface tem-
perature and, in the case of fallow and roe deer, areas 
with higher probability of multiple deer species being 
present (Figure 2).

Using these models, we predicted the probability of 
TBEV occurrence or establishment based on deer with 
probable exposure to TBEV within GB and overlaid this 
with recreational demand in sites across GB based on 
estimations of weekly and yearly visits to identify areas 
where TBEV exposure risk and recreational demand is 
high across GB. Building on the current known distribu-
tion of deer exposure, our models identified additional 
highly suitable sites (> 0.75) in the south and east of 
England and south Wales (Table 1  and  Figure 3). We 
also identified areas within these regions that have 
relatively high recreational demand and high suitability 
(Table 1 and Figure 4).

Tests for spatial autocorrelation did show lower level 
but significant correlation in model residuals at dis-
tances up to 10 km (Moran’s I ≤ 0.34), as presented 

in  Supplementary Table S3.3. We do not expect this 
level of spatial autocorrelation to impact the inferred 
relative role of environmental predictors in driving 
TBEV patterns. Since the Boyce index values from our 
independent validation are high (> 0.92), indicative of 
high out-of-fit predictive performance of the model, we 
also conclude that the low-level spatial autocorrelation 
is having minimal impact.

Discussion
Given that TBEV is expanding into new foci in north-
western Europe [6,11,12] and causing human infections 
at its range edge in Europe, it is critical to identify the 
environmental and ecological conditions that promote 
transmission and human exposure, to guide surveil-
lance and interventions. For a highly focal pathogen 
like TBEV in a new area of emergence, modelling human 
cases may underestimate the suitable conditions and 
geographical area at risk of transmission. Human cases 
of TBE are likely a limited representation of the enzo-
otic circulation of the virus, where wildlife cycles can 
go undetected [36]. This was demonstrated in Thetford 
Forest, GB, where no human cases have so far been 
reported, despite Holding et al. [11] finding 47% of deer 
had been exposed. Additionally, in areas where the 

Figure 4
Bivariate maps showing overlap of predicted weekly and annual recreational demand (normalised between 0 and 1) and 
areas suitable for presence or emergence of tick-borne encephalitis virus, Great Britain

A. Weekly B. Annual

TBEV: tick-borne encephalitis virus.

Light blue areas have higher recreational demand and lower TBEV suitability. Pink areas have higher TBEV suitability and lower recreational 
demand. Dark blue areas have both high recreational demand and high TBEV suitability.
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virus is considered absent, TBE may not be identified 
as a differential diagnosis so cases may be missed. We 
therefore combined serological surveillance of expo-
sure in four ecologically diverse wild deer species, 
with spatial risk models integrating wide-ranging cli-
mate, host and land use factors, to identify conditions 
favouring TBEV foci in GB and possible hotspots of risk 
to people.

Climate is known to strongly affect I. ricinus population 
dynamics and activity, and TBE incidence, with variable 
effects in different parts of Europe [19]. Our finding 
that higher spring warming rates, faster increase in 
temperature from February to April, underpin current 
GB TBEV foci is consistent with studies from other 
European countries, like Norway [37], Sweden [38,39], 
Switzerland [40], Latvia, Estonia and Lithuania [7]. A 
higher rate of spring warming is thought to stimulate 
larvae and nymphs to quest for a host simultaneously in 
spring and increase the rate of co-feeding transmission 

from nymphs to larvae, in addition to increasing num-
bers encountering viraemic rodents, amplifying TBEV 
[7]. Though some European studies have identified 
TBEV foci in areas with low January temperatures 
(−4.4°C–4°C) [7,37], long exposure to cold tempera-
tures can be detrimental to survival of overwintering I. 
ricinus, particularly, where there is limited snow cover, 
which may provide insulation and increased humidity 
[41,42]. Suitability for TBEV in GB increased in areas 
with higher mean temperatures in January (4.8–8.1°C), 
which could contribute to TBEV persistence by increas-
ing overwintering survival of nymphs.

Human TBE incidence and tick hazard have been 
linked to the presence and densities of both TBEV 
transmission hosts, particularly forest rodent species, 
yellow-necked mouse and bank vole, and ungulate 
reproductive hosts that support and amplify tick popu-
lations [43,44]. Our models indicated that in areas pre-
dicted to be highly suitable for multiple deer species 

Box
Anticipated value of risk models of tick-borne encephalitis virus to guide interventions by key actors and agencies at 
different spatial or temporal scales, Great Britain

Model functionality:

• Combined deer exposure risk maps (Figure 3),

• Overlay of hotspots of TBEV exposure with areas of high recreation (Figure 4).

Epidemiological interpretation and temporal scale in the next 1-5 years:

• Relative risk of wildlife and human exposure to TBEV,

• Population level relative risk of exposure to TBEV through recreation.

Interventions that could be informed:

• National scale:

o Identify hotspots of risk outside the current known distribution to be targeted for deer and tick surveillance,

o Inform vaccination policy.

o Key agencies:

- Public health bodies,

- Government advisory groups,

- Deer Management groups/Forestry Commission.

• Local scale:

o Inform localities (> 5–10 km2), in which people work or recreate within natural habitats at higher relative risk of human TBEV 
exposure to guide awareness raising (public, occupational groups, local general practitioners).

o Key agencies:

- Local health authorities,

- National Park authorities and national landscapes,

- Land managers,

- Large environmental land and forest managers (e.g. National Trust, Woodland Trust, Wildlife Trusts, Forestry Commission, 
Scottish Forestry).

TBEV: tick-borne encephalitis virus.
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in GB, a larger proportion of roe and fallow deer were 
exposed to TBEV, suggesting there could be stronger 
amplification of  I. ricinus  tick populations in areas 
with diverse, overlapping deer populations. However, 
the modelled occurrence of yellow-necked mice and 
bank voles had a minor influence on whether deer were 
exposed to TBEV, possibly due to the uncertainties 
associated with small mammal distribution models 
and perhaps the widespread distribution of bank voles 
in GB. Finer scale empirical data on the heterogeneity 
of densities and habitat use of these small mammals 
is probably required to detect an association between 
TBEV foci and small mammal populations [45].

Forests may provide suitable habitat for reproductive 
hosts like deer, small mammal transmission hosts and 
tick populations, and therefore increase their encounter 
rate, amplifying TBEV transmission [19]. We found that 
increased cover of coniferous forest was associated 
with increased likelihood of probable deer exposure 
to TBEV in GB, aligning with two studies in Germany 
linking coniferous forest cover and human TBE cases 
[46,47] but in contrast to studies in Sweden and Latvia 
linking broad-leaved or mixed forest with TBEV with 
cases in humans [48,49]. The ecological mechanisms 
underpinning the association between TBEV foci and 
coniferous forest cover in GB are not yet fully under-
stood and would be best examined empirically with 
finer scale field studies of links between ungulate 
and small mammal community composition and forest 
structure and knock on impacts on tick abundance and 
TBEV prevalence in ticks and hosts [50]. Understanding 
habitat use by different deer species at finer scales 
would also aid in understanding whether exposure 
is likely to occur in coniferous woodlands. Key trans-
mission hosts such as yellow-necked mice require 
mature broadleaved woodlands to thrive but data from 
Thetford Forest has shown bank voles are able to sus-
tain the same densities in mature coniferous wood-
lands as in the nearby broadleaved forests [51]. It may 
also be that the mammal and avian biodiversity (and 
hence tick hosts) in coniferous forests in GB is lower 
than in deciduous forests, and so larval and nymphal 
feeding is more concentrated towards these rodent 
species and deer.

Due to its recent detection in GB and therefore likely 
quite recent introduction, TBEV may not have yet filled 
all suitable habitat for transmission in GB. However, the 
low levels of spatial autocorrelation in model residu-
als and the high performance of models (Boyce indices 
exceeding 0.92) when validated with independent data 
from subsequent surveillance years, gives confidence 
that the risk maps can be used as a (conservative) 
baseline estimate of current hotspots for exposure 
within the UK.

Aligning with best practice [24,52], it is critical to 
identify with stakeholders how models can inform 
decision-making linked to interventions, for which key 
agencies and actors, and over which key temporal and 

geographical scales. Box outlines the anticipated value 
of the model outputs identified during our co-production 
process by GB decision-makers and actors working 
in public health. In addition, it is imperative to be 
transparent about model limitations and ensure that 
models represent a concrete benefit over information 
already used to guide decision-making (beneficence) 
[52]. These risk models are correlative and relatively 
static (TBEV may not be in equilibrium in GB) and show 
considerable uncertainty at grid square level. The risk 
maps should be interpreted as indicating short-term 
(1–5 years) population level risks of TBEV exposure 
over broader areas (≥ 5 km), not individual or site-level 
risks at finer scales (≥ 1 km). The maps predict areas 
that are potentially suitable for TBEV exposure, but 
TBEV is not necessarily present in areas that are pre-
dicted to be highly suitable. The range of roe, fallow 
and muntjac does not cover the whole of GB and as 
such our results may not identify any TBEV hotspots 
outside of these ranges. Nevertheless, following the 
precautionary principle, areas predicted to be highly 
suitable by these outputs can be used at national scale 
by public health bodies to tailor future deer, tick and 
human surveillance and provide a more detailed pic-
ture of the current extent of TBEV enzootic transmis-
sion, particularly given the wide distribution of the tick 
vector [53]. This future surveillance could have implica-
tions in informing at a national and local level, likely 
risk areas where there may be a need for increased 
awareness among the public and physicians, and feed 
into decision-making on vaccination guidance. Given 
that the GB niche of TBEV transmission is expected 
to evolve over the coming decades, the risk maps will 
be updated and validated iteratively with new surveil-
lance data (every 1–2 years) and risk factors in discus-
sion with stakeholders. Whilst our current approach 
aims to reduce the influence of ELISA-positive deer 
in LIV areas, it does not fully resolve the limitations 
posed by serological cross-reactivity. There remains an 
urgent need to develop and validate diagnostic tools, 
preferably incorporating molecular confirmation, that 
can accurately discriminate TBEV from LIV and other 
flaviviruses within the TBEV-serocomplex. This is par-
ticularly important in regions like GB where multiple 
flaviviruses co-circulate and diagnostic ambiguity may 
compromise surveillance accuracy.

Integrating data on TBEV occurrence in other compart-
ments such as ticks and reproductive hosts into spatial 
risk models and including social drivers of exposure 
[54,55], will be beneficial in identifying which condi-
tions favour human exposure among those that favour 
tick hazard. The mapping of the coincidence of recrea-
tional activities and TBEV exposure risk may be more 
valuable for local public health authorities and indi-
viduals by understanding from where people travel to 
reach different recreational sites, and how awareness 
and adaptive actions against ticks and ultimately tick 
encounter rates [56] vary among recreational groups. 
Long-term, multi-decadal assessment of the evolving 
risk of TBEV exposure as woodland is expanded (under 
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national environmental policies) and climate changes, 
required for national adaptation planning, will require 
mechanistic modelling approaches and empirical sur-
veys that explicitly capture links between tick, host and 
pathogen demography and interactions and land use 
and environmental drivers [57]. As part of our co-pro-
duction process, over the next 1–2 transmission sea-
sons, the value of correlative risk mapping vs dynamic 
transmission models for tick-borne disease mitigation 
will be interrogated further with cross-sectoral stake-
holders [24].

Surveillance, monitoring and prevention of TBE in 
areas of suspected TBEV emergence requires an inte-
grated One Health approach. We suggest the follow-
ing key components to this approach: (i) detection of 
possible unidentified foci of TBEV circulation through 
sentinel deer, or potentially small mammals [58], tar-
geted in predicted high-risk areas which subsequently 
updates spatial risk modelling and mapping to identify 
other potential areas of circulation; (ii) utilisation of 
molecular and genomic confirmation in the tick vec-
tor or rodent reservoir in suspected foci, identified 
through sentinel surveillance and mapping of prob-
able TBE cases; (iii) targeted human surveillance in 
locations of confirmed circulation including measures 
raising awareness among clinicians and public tick 
awareness campaigns; (iv) reviewing and, where nec-
essary, updating clinical criteria for testing of patients 
with a history of tick bite.
 

Conclusion
This study highlights the value of combining wildlife 
surveillance data and spatial risk modelling for map-
ping hotspots of TBEV in new areas of emergence to 
guide interventions. Our approach provides insights 
into the climate, land use and host drivers of TBEV 
occurrence on its north-western range margin and 
highlights areas in which high predicted risks of TBEV 
exposure coincide with high rates of recreational habi-
tat use. To foster the uptake of tick-borne disease mod-
els into policy and as a model for future tick-borne 
disease modelling efforts, we carefully delineate the 
key actors and interventions that could be informed by 
these risk maps at national and local scales.
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