Journal Pre-proof

Accounting for the uncertainty in nitrogen deposition estimates in support of policy

Huw Woodward, Elizabeth Ramos Fonseca, Tim Oxley, Ed C. Rowe, Massimo Vieno, Eiko Nemitz, Helen ApSimon

PII: S0013-9351(25)00770-4

DOI: https://doi.org/10.1016/j.envres.2025.121519

Reference: YENRS 121519

- To appear in: Environmental Research
- Received Date: 7 February 2025

Revised Date: 21 March 2025

Accepted Date: 30 March 2025

Please cite this article as: Woodward, H., Fonseca, E.R., Oxley, T., Rowe, E.C, Vieno, M., Nemitz, E., ApSimon, H., Accounting for the uncertainty in nitrogen deposition estimates in support of policy, *Environmental Research*, https://doi.org/10.1016/j.envres.2025.121519.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc.

- 1 Accounting for the uncertainty in nitrogen deposition estimates in support of policy
- 2 Huw Woodward^{1*}, Elizabeth Ramos Fonseca¹, Tim Oxley¹, Ed C Rowe², Massimo Vieno³, Eiko Nemitz³,
- 3 Helen ApSimon¹
- 4 ¹Centre for Environmental Policy, Imperial College London, London, UK
- 5 ²UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, UK
- 6 ³UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, United Kingdom
- 7 *<u>huw.woodward@imperial.ac.uk</u>

8 Abstract

9 Deposition of reactive nitrogen (Nr) onto sensitive habitats in exceedance of Critical Load (CL)

thresholds can drive biodiversity loss and affect ecosystem function. Nr deposition is a highly complex
 process that is difficult to measure and model, leading to large uncertainties.

We assess the implications for policy development and target setting of the large range in estimatesprovided by different modelling approaches.

We considered three UK models (UKIAM, EMEP4UK, CBED), used to inform national policy and responses to the UN-ECE Air Convention. We used a scaling method to project the range in current estimates to future scenarios, and a risk-based approach to provide a probabilistic assessment of exceedances. We considered two future scenarios, a 2040 baseline and a 2040 high ambition technological measures scenario, in relation to a 2018 baseline.

- The 2018 baseline CL exceedances are highly dependent on the model used Average Accumulated Exceedance of 1.3-9.1 kg.N.ha⁻¹.yr⁻¹ across all habitats. The relative reduction in exceedances for future scenarios also depends on the model, with a range of 30-66% achieved by 2040 for the high ambition scenario, posing a challenge for target setting. Despite this, it's clear that a much greater level of ambition is required to protect the majority of habitat areas. Our risk-based approach shows that implementing only technological measures is likely to leave most areas in exceedance in 2040.
- This uncertainty in the assessment of N_r deposition and the benefits of abatement measures poses a challenge for policy development that is not unique to the UK.
- 27 Keywords: nitrogen, deposition, air pollution, critical load, habitat, biodiversity, policy

28 **1. Introduction**

29 The deposition of reactive nitrogen (N_r) in its various forms (e.g. NO_3^- , NH_4^+ , NH_3 , HNO_3 , NO_x) on 30 nitrogen-sensitive habitats is a major driver of global biodiversity loss (e.g. Stevens et al. 2011, Bobbink 31 et al. 2010, van der Plas et al. 2024). High rates of Nr deposition lead to the eutrophication of soils and 32 freshwaters, resulting in the loss of species that are outcompeted when Nr availability is increased. 33 High N_r deposition rates also potentially lead to acidification, causing nutrient deficiencies and reduced 34 plant productivity, and the loss of acid-sensitive species. These impacts on sensitive habitats can 35 induce changes in the flora (e.g. Dise et al., 2011; Stevens et al., 2016) and fauna (Nijssen et al. 2017) 36 associated with these habitats and habitat function, which in turn can affect ecosystem services 37 provided by the habitat. Atmospheric N_r deposition can have positive and negative impacts on the 38 ability of an ecosystem to sequester carbon from the atmosphere (e.g. Bragazza et al., 2006; de Vries 39 et al., 2009, Laudon et al. 2024) which may have implications for Net Zero targets.

40 Critical Loads (CLs) are estimates of the annual deposition rate below which a habitat is not considered
41 to be significantly harmed (Nilsson and Grennfelt, 1988). Vast areas of nitrogen sensitive habitat are
42 estimated to be in exceedance of their CLs in many developed countries such as the United States
43 (Clark et al., 2018) and most European Union countries (European Commission, 2022a). In the UK, the

vast majority of all nitrogen sensitive habitat areas are estimated to be in exceedance of their CLs(Rowe et al., 2024).

46 The biggest source of deposited atmospheric N_r in the UK is NH_3 from agriculture (Woodward et al., 47 2022), followed by NO_x emissions from road transport, the power sector and shipping. Emissions of 48 NO_x are projected to decrease considerably with electrification of road transport and power sectors 49 (e.g. Mehlig et al., 2021). Future emissions from shipping are more uncertain. Ammonia has been 50 proposed as a low-carbon replacement for fossil fuels (e.g. UK Net Zero Strategy BEIS (2021)), which is 51 likely to result in sustained NO_x emissions, combined with additional fugitive NH_3 emissions. 52 Agricultural NH₃ has proven to be particularly difficult to abate, with the majority of agricultural NH₃ 53 emissions associated with livestock production (Defra 2024). Despite some efforts to reduce these 54 emissions through technological solutions (e.g. low emission spreading of fertiliser and improved 55 manure management; Defra 2018), total NH₃ emissions have remained fairly steady in the UK since 56 2010 (Defra 2024). Since 2010, some success in abatement, coupled with a gradual reduction in cattle 57 numbers, has been countered by increasing emissions in certain sectors such as non-manure digestate 58 (increasing from 1.6kt NH₃ in 2005 to 13.1kt NH₃ in 2021 (Carswell et al. 2024)). Other countries have 59 demonstrated that significant reductions in total agriculture NH₃ are possible using technological 60 measures, for example the Netherlands saw a reduction in total NH₃ of 64% between 1990 and 2014 61 (Wichink Kruit et al. 2017). Unless total NH₃ emissions in the UK are reduced substantially, CL 62 exceedances are likely to remain high (Woodward et al. 2022).

63 Large uncertainties are associated with both measured and modelled values (Dore et al., 2015; Cowan 64 et al., 2022; Williams et al. 2017, Walker et al. 2019)). We discuss the underlying reasons for these 65 uncertainties in the Section 4. The uncertainty in deposition estimates is reflected in the range given 66 by different models that have been applied to the UK (RoTAP 2012, Dore et al. 2015, Woodward et al. 67 2022). Here we used three models to illustrate the significance of this range in estimates on the 68 assessment of CL exceedances in the UK. There is also uncertainty in the CL values assigned to N-69 sensitive habitats (e.g. Bobbink and Hettelingh, 2011; Bobbink et al. 2022). For Nr deposition, a range 70 in CL is determined for each habitat following review of empirical evidence by an expert group, with 71 the exception of managed coniferous woodland for which CL is set using a mass balance approach. The 72 range assigned to each habitat represent both the uncertainty in the derivation of the CL and the 73 ecosystem response, but also the variation in sensitivity within a habitat. When evaluating CL 74 exceedances at national level without a local assessment of a habitat area, the variation within a given 75 habitat contributes to the uncertainty in the assessment. While these CLs have proven useful as a 76 measure of the varying degrees of resilience of different habitats to excess Nr, and to inform 77 international negotiations under the Convention on Long-Range Transboundary Air Pollution (CLRTAP), 78 they are an additional source of uncertainty in the assessment of Nr deposition impacts (Jones et al., 79 2016).

These uncertainties pose a challenge to the use of modelled N_r deposition and CL exceedances in support of policy. Here we used the risk-based approach described in Woodward et al. (2022) to illustrate the significance of uncertainty in N_r deposition estimates when assessing impacts on sensitive habitats at a national scale. Policymakers often require projections of the degree of improvement achieved by a future date as a result of proposed interventions, to inform their decisions. We therefore assessed the difference between models in the predicted decrease in deposition and exceedances relative to the 2018 baseline year.

We considered the implications of the range in forecast deposition for policy development aimed at reducing the harmful impacts of N_r deposition, such as the target to reduce N_r deposition onto sensitive habitats in England by 17%, set in the UK Clean Air Strategy (Defra 2019), i.e. all areas of priority habitat including those not within protected sites (Rowe et al. 2024). Implications for broader habitat restoration targets were also considered both in the UK, in the European Union and consideration for the Gothenburg Protocol revision.

93 **2. Method**

94 Three models are used for our analysis, each of which are each used in support of UK policy 95 development. The Concentration Based Estimated Deposition (CBED) is a semi-empirical inferential 96 model used for CL exceedance reporting in the UK (Rowe et al., 2024) and for UK reporting under 97 CLTRAP. The UK Integrated Assessment Model (UKIAM) is used in support of UK air policy development 98 and was a key tool providing evidence in support of the targets set in England's Environment Act 2021 99 (ApSimon et al., 2022). The EMEP4UK model is also a key model used in support of these targets and is a UK high resolution implementation of the European EMEP MSC-W model (Simpson et al., 2012). 100 101 The European EMEP model is used extensively in support of policy development under the CLRTAP.

102 The CBED model is calibrated using measurement data and therefore a meaningful validation 103 challenging. The validation of CBED in the literature is limited to the validation of the models used to 104 interpolate between measurement points, such as the seeder-feeder model. Even in this case, 105 validation is limited (e.g. Beswick et al. 2003, Dore et al. 2006).

106 Dore et al. (2015) performed a model intercomparison a "fitness for purpose" analysis which includes 107 EMEP4UK and FRAME. FRAME is a Lagrangian ACTM which underpins UKIAM. Both models are 108 deemed fit for purpose based on the criteria used by Dore et al. (2015). Despite this, the paper also 109 highlights clear differences between these two models, with EMEP4UK typically giving lower estimates of concentrations and concentrations in precipitation than FRAME. A statistical comparison of UKIAM 110 111 and CBED is given in Woodward et al. (2022). The EMEP MSC-W model is routinely and extensively 112 compared with observations across Europe, including the UK (MSC-W & CCC, 2020), and Ge et al. 113 (2021) undertook a global study demonstrating acceptable performance.

114 **2.1. The UK Integrated Assessment Model**

115 The UKIAM models atmospheric concentrations and human population exposure to harmful air 116 pollutants (ApSimon et al., 2021, 2023; Oxley et al., 2023), and also evaluates the impact of air 117 pollutants on sensitive habitats (Woodward et al. 2022). The model combines UK emissions of NH₃, 118 SO₂, NO_x and PM_{2.5} with transboundary contributions from other countries and international shipping, 119 allowing the sources of deposition to be apportioned across different sectors. UKIAM estimates 120 deposition for future scenarios by scaling Source-Receptor (S-R) footprints of deposition, generated by 121 an ACTM, to reflect the change in emissions relative to a base case. The Fine Resolution Atmospheric 122 Multi-pollutant Exchange (FRAME) model (Dore et al. 2007, Vieno et al. 2010, Hallsworth et al. 2007, 123 Aleksankina et al. 2018) was used to generate these S-R footprints using average meteorology over a 124 number of years. FRAME includes a simple enhancement term for areas of higher altitude and 125 precipitation which attempts to capture the additional deposition due to the seeder-feeder effect 126 (Dore et al., 1992; Smith & Fowler, 2000) (see Discussion for explanation of seeder-feeder effect).

127 The scaling of S-R footprints means that a linear relationship is assumed between the change in 128 deposition due to a change in emissions from a source. This linear assumption has been shown to be 129 acceptable for variations in emissions of ±40% (Aleksankina et al., 2018), i.e. within this range the 130 effect of non-linearity is acceptable relative to other uncertainties.

Different deposition velocities are assumed for short semi-natural habitats, such as grasses and dwarf shrub heath, than for taller habitats, such as woodlands. Fertilised habitats are not considered in this study. Separate maps are generated for deposition onto short habitats, referred to as "moorland", and onto woodland. A detailed description of the UKIAM is provided by ApSimon et al. (2021) and Oxley et al. (2023).

136 **2.2.CBED**

137 CBED is based on measurements collected at sites in the UK Eutrophying and Acidifying Pollutants 138 (UKEAP) network (Conolly et al., 2023). To smooth the concentration fields of secondary pollutants

- 139 (e.g. NO_3^- and NH_4^+ aerosols and HNO_3 gas) CBED uses interpolated maps of the measured values. For 140 the primary pollutants NH₃ and NO₂, concentrations are predicted with EMEP4UK and the Pollution Climate Mapping model (Defra n.d.), respectively, and scaled with the measurement data, before being 141 142 combined with data on landcover and meteorology to generate a 5 x 5 km² map of deposition values
- 143 across the UK. The CBED model estimates dry deposition using a "big leaf" approach (Smith et al.,
- 144 2000), combining gas and particulate concentration maps, constrained to measurements, with maps
- 145 of vegetation cover and average meteorology. The model accounts for vegetation-specific deposition
- velocities and includes a simple model of bidirectional exchange of ammonia that allows for stomatal 146
- 147 emission.

148 Wet deposition is estimated by combining spatially distributed measurements of concentrations in 149 precipitation with annual precipitation maps from the UK Meteorological Office. An enhancement 150 term is included to account for the seeder-feeder effect (Dore et al. 1992; Smith & Fowler, 2000). A 151 parameterisation of occult deposition is also included. CBED was designed to be independent of the 152 uncertainty in emission inventories, and is driven by measured concentrations, so is not mass-153 conserved. In CBED a doubling in the deposition velocity results in a doubling in deposition. By 154 contrast, in an ACTM, increased deposition depletes the air resulting in less deposition later on or 155 downwind.

- 156 CBED predicts the average deposition over three years, rather than a single year.
- As with UKIAM, CBED applies "moorland" deposition rates to short unfertilised vegetation and 157 158 "woodland" deposition rates for taller, woodland habitats.

159 2.3. EMEP4UK

160 EMEP4UK is a full Eulerian atmospheric chemistry transport model (ACTM). EMEP4UK simulates emissions, transport, chemical transformations and deposition of a wide range of pollutants with 161 hourly outputs (e.g. Vieno et al., 2014). The model resolves deposition rates for the UK at 162 approximately 3 x 3 km² resolution nested within a European domain with a resolution of 27 x 27 km². 163 164 The Weather Research and Forecasting (WRF) model (Skamarock et. al. 2019) provides the 165 meteorological input data. EMEP4UK uses a tiled deposition approach and for each grid cell calculates 166 separately the deposition received by each of coniferous woodland, deciduous woodland, crops, short 167 seminatural vegetation and water land-cover types (Simpson et al., 2012).

168 2.4. Habitats and critical loads

169 The nitrogen-sensitive habitats that were considered for analysis are shown in Table 1, along with the range of CL values assumed. CL values were based on the ranges proposed in the latest CLRTAP review 170 171 (Bobbink et al., 2022). Exceedances were calculated using the lower end of the proposed CL range for each habitat, which is the value used for UK exceedance reporting (Rowe et al., 2024). These habitat 172 173 areas and CLs were mapped at 1 x 1 km² resolution across the UK, with a proportion of each grid square 174 assigned to each habitat. Exceedance of CL were calculated for each grid square where a habitat is 175 present, using deposition calculated by each of the three atmospheric models. The habitat type 176 specified in Table 1 determined whether the moorland (short) or woodland (tall) deposition map were 177 used.

178 As a metric of exceedance across a region the Average Accumulated Exceedance (AAE) is often used:

179
$$AAE = \frac{1}{A_T} \sum_{h=1}^{H} \sum_{i=1}^{N} E_i \times A_i$$

180 Where E_i and A_i are the exceedance and area of a habitat in grid square i, respectively. H and N are the total number of habitats (13) and grid squares, respectively, and A_T is the total area of all habitats 181

- 182 $A_T = \sum_{h=1}^{H} A_i$. The exceedance was calculated as $E_i = \max(0, D_i CL_{rec_i})$ where D_i is the land cover 183 specific deposition of N_r for grid square *i*, and CL_{rec_i} is the recommended CL.
- 184 The recommended CL lies within the range agreed upon in international workshops under CLRTAP and
- is chosen by UK experts to reflect UK-specific factors such as soil pH and annual precipitation. Since
- 186 the latest review, CL_{rec} has been set to equal the minimum value for the CL range, CL_{min} .
- 187 Another often reported metric is the percentage of habitat area in exceedance.
- 188 Table 1: Nitrogen deposition habitat areas and critical loads.

Habitat	Area in the UK (km²)	EUNIS habitat class	Habitat type for deposi tion	CL _{min} -CL _{max} range (kg N ha ⁻¹ yr ⁻¹)	CL _{rec} (kg N ha ⁻¹ yr ⁻¹)
Acid grassland dry & wet	20365	R372 & R1M (E1.7 & E3.52)	Short	6-10 & 10-20	6 & 10
Calcareous grassland	1012	(R1A)E 1.26	Short	10-20	10
Dwarf shrub heath (wet & dry)	21846	S411 & S42 (F4.11 & F4.2)	Short	5-15	5
Montane	4915	E4.2 ¹	Short	5-10	5
Bog	9118	Q1 (D1)	Short	5-10	5
Managed coniferous woodland	14450	T31 (G3)	Tall	10-15	10
Broadleaved woodland	8706	T1 (G1)	Tall	10-15	10
Beech woodland (unmanaged)	2059	T17 (G1.6)	Tall	10-15	10
Acidophilous oak woodland (unmanaged)	6958	T1B (G1.8)	Tall	10-15	10
Scots Pine woodland (unmanaged)	1485	T35 (G3.4)	Tall	5-15	5
Mixed woodland	1422	G4	Tall	10-15	10
Dune grassland	631	N15 (B1.4)	Short	5-15	5
Saltmarsh	808	MA223 /MA22 4/MA2 25 (A2.53/ 54/55)	Short	10-20 & 20-30	10 & 20

¹The 2023 revision of EUNIS codes does not include a class for montane habitats (formerly moss summits) hence the critical load for E4.2 has been retained.

189

190 **2.5. Exceedance score**

191 In recognition of the high uncertainty in deposition estimates and the uncertainty and variability in 192 CLs, we developed a probabilistic approach for the evaluation of N_r deposition exceedances 193 (Woodward et al., 2022). The method, which is based on the UK Nitrogen Decision Framework (NDF) 194 (Jones et al., 2016), uses lower and upper estimates of deposition and the CL_{min} and CL_{max} values 195 from Bobbink et al. (2022) for the CL range.

To obtain these lower and upper estimates across the UK we follow the scaling method described in Woodward et al. (2022). We first calculate a map of the ratio of CBED and EMEP4UK deposition values for the base year 2018. We use EMEP4UK here instead of UKIAM, which is used in Woodward et al. (2022), because EMEP4UK typically gives lower estimates (see Section 3.1) and therefore will provide a better estimate of the lower bound. We then use this map to scale our EMEP4UK deposition estimates for all future scenarios to produce a second set of deposition estimates, E4UK-Scaled, as follows:

203
$$N_{E4UK-Scaled}^{i} = N_{E4UK}^{i} \times \left(\frac{N_{CBED}^{2018}}{N_{E4UK}^{2018}}\right)^{i} \text{ for each grid square } i.$$

204 We then take the lower and upper deposition estimate in each grid square to derive our lower and 205 upper maps of deposition as follows

206
$$N_{min}^{i} = min(N_{E4UK}^{i}, N_{E4UK-Scaled}^{i}),$$

207 $N_{max}^{i} = max(N_{E4UK}^{i}, N_{E4UK-Scaled}^{i}).$

CBED suggests higher deposition than EMEP4UK across the vast majority of grid squares in 2018 and
 so the map of upper estimates, N_{max}, closely resembles the E4UK-Scaled map, while N_{min} resembles
 EMEP4UK.

This scaling method is not mass-conservative as it artificially enhances deposition rates. In reality, higher deposition rates would mean lower pollutant concentrations in the air, or higher emissions than that assumed in the simulation. The method is not intended to replicate the complex physics of atmospheric deposition, rather it is intended as a policy tool which communicates the degree of uncertainty in deposition estimates to policymakers.

In reality there is also an uncertainty range associated with the estimates of each model and actual
deposition may lie outside this range. However, they are intended to represent a proportion of range
of possible deposition values and cover the range of predictions used to inform policy.

We combine this range with the range in CL estimates that are allocated to each N-sensitive habitat (Table 1). This range reflects the variation in the level at which damaging impacts can occur from one site to another (for example, because of differences in rainfall, soil pH, management, nutrient limitation) and uncertainty in the empirical data on which the critical load is set. While the NDF adjusts the range in CL values defined by the European Nature Information System (EUNIS) to reflect the confidence in their suitability for UK specific habitat areas, here we use the unadjusted ranges given in Table 1.

Figure 1 is an illustration of how the exceedance score is derived. In the case that the full range of deposition estimates is less than the minimum critical load, then exceedance is considered to be very unlikely (P0). The probability then increases until we reach the very likely case (P5) where the entire deposition range exceeds the maximum CL.

230

Figure 1: Illustration of exceedance scores. The distributions represent the true uncertainty distribution. We assume that our values for N_{min} and N_{max} derived from the range in model estimates represent points near either end of the distribution. CL_{rec} is shaded because this is not used for the derivation of the score. We show it here in aid of the discussion.

235

236 2.6 Emissions scenarios

We consider three scenarios for the analyses reported here, which are consistent with the scenarios
 considered for a model intercomparison focussed on PM_{2.5} air quality (Oxley et al., 2023):

239 **B2018** – The baseline in 2018. The UK baseline emissions are taken from the UK's National Atmospheric 240 Emission Inventory (NAEI) (Churchill et al., 2022; Carswell et al., 2024). Emissions of other countries 241 reflect scenarios developed by the International Institute for Applied Systems Analysis for the EU's 2nd 242 Clean Air Outlook, with additional measures. The EMEP4UK shipping emissions are derived from the 243 EMEP CEIP emissions inventoried and may be different to the shipping emission uses in the UKIAM, 244 where the emissions from shipping are modelled based on Ricardo Automatic Identification System 245 tracking data for the domestic and international fleets around the UK. 2018 is chosen as a year as this 246 is the base year for many air pollution targets set by the UK government in the Environment Act 2021.

B2040 – baseline 2040 emissions assuming existing interventions and policies with a natural
 technology turnover. This does not include the electrification of road transport and the power sector.
 The contribution from other countries is assumed to have reduced by 13%, and by 18% for
 international shipping.

H2040 – This represents a high ambition scenario with technological measures applied to the baseline
 to abate air pollutants. This includes the electrification of road transport and the power sector, leading
 to substantial reductions in NO_x emissions. It also includes very high ambition technological measures
 applied to agricultural NH₃, with a total abatement of 44 ktonnes NH₃ from this sector. These measures
 include low emission spreading, rapid incorporation, slurry tank covers and the use of urease
 inhibitors. Given the challenge in reducing NH₃ from agriculture this is likely to be close to the

Journal Pre-proof

257 maximum feasible reduction from technical measures. Despite this large NH₃ abatement for

agriculture, the total NH₃ reduction is lower due to increases for other sectors. These are mostly small other than a large increase in emissions (15 kt) from anaerobic digestion (AD) and digestate spreading.

AD is expected to grow substantially in the UK and forms part of the UK's Net Zero (BEIS 2021) and

261 Biomass strategies (DESNZ 2023). NH_3 emissions from this process and the spreading of digestate is an

- area of growing concern. The same assumptions as B2040 are taken for other countries and
- 263 international shipping.
- 264 The total UK emissions for each scenario are provided in Table 2.
- Table 2: Total UK air pollutant emissions (in kt yr⁻¹) for each scenario.

Scenario	NH₃	NO _x
B2018	274	788
B2040	274	461
H2040	245	385

266

267 **3. Results**

268 3.1 Comparison of models

269 Figure 2 shows the N_r deposition estimates for all three models in 2018 (CBED estimates the average

over 3 years, in this case 2017-2019) and Figure 3 shows the resulting AAE maps. There are clear

271 differences between each model, with EMEP4UK providing the lowest estimates and CBED the highest.

272 The total UK deposition budgets are shown in Figure S1 and split between wet and dry deposition of

273 NH_x and NO_x for EMEP4UK and UKIAM, and total NH_x and NO_x for CBED.

274

275 Figure 2: Total reactive N deposition across the UK in 2018 by different models.

Journal Pre-proof

277 Figure 3: Average accumulated exceedance for all habitats for B2018 for each model.

276

While the models provide a range of deposition estimates across the country, the greatest differences
occur in areas of higher altitude and precipitation (e.g. much of Wales, the Peak District, Pennines and
Lake District in England).

281 Deposition is complex in these areas and can occur through different complex processes as discussed 282 in Section 1.1. The use of bulk rather than wet-only deposition measurements in the mapping of wet 283 deposition is one reason for the higher deposition estimates given by CBED. Bulk deposition 284 measurements are known to overestimate wet deposition due to contamination by dry deposition sources (Cape et al., 2009). Wet-only deposition sensors are designed to solve this issue however have 285 286 not been as widely used. Another factor is that CBED includes occult deposition not currently 287 accounted for in ACTMs like EMEP4UK or FRAME (which underpins UKIAM). Additional uncertainties 288 in CBED arise from the combination of annual average concentrations with annual average 289 meteorology (e.g. Schrader et al., 2018).

The seeder-feeder enhancement, which is in a simplified form accounted for in the FRAME sourcereceptor relationships, is the main reason why UKIAM estimates are higher than EMEP4UK in these areas. However, the magnitude of the enhancement is both highly uncertain (Cowan et al. 2022) and in reality the concentration enhancement in the rained out orographic cloud is likely to vary significantly in time and space depending on local topography and rainfall, and upwind emissions.

295 While there is better agreement between the models in lowland areas, the uncertainty here is still 296 significant. This partly reflects the uncertainty and associated variability in dry deposition schemes 297 (e.g. Flechard et al., 2011).

The range in deposition has an impact on the evaluation of exceedances of CLs. Table 3 shows the AAE and percentage area in exceedance for each model. The AAE varies by an order of magnitude, from 1.2 to 9.1 kg ha⁻¹ yr⁻¹, while the percentage area of in exceedance varies by a factor of 2.5, from 36.8% to 88.8%.

Figure S2 shows the AAE and percentage area in exceedance for B2018 for each UK nation. Different conclusions can be drawn regarding the comparable scale of the problem between each region depending on which model is used.

Table 3 also includes EMEP4UK predictions using 2018 emissions but 2003 meteorology data. We use 2003 as an example of a year when meteorology conditions were different to those in 2018, with the 307 contribution from other countries on mainland Europe particularly high. This comparison with

308 EMEP4UK using 2018 meteorology suggests that while meteorology is a factor in predicting deposition 309 rates and the resulting exceedances, it is significantly less than the difference between models.

Table 3: N_r deposition budget, Average Accumulated Exceedance (AAE) and % area of N-sensitive habitat in exceedance of critical load for B2018 as predicted by each model for the UK.

	EMEP4UK (2018 met)	EMEP4UK (2003 met)	UKIAM	CBED 17-19
N _r deposition (ktonnes)	182.6	172.3	212.3	273.9
N _r deposition on habitats (ktonnes)	66.9	68.9	104.2	156.1
AAE (kg.ha ⁻¹ yr ⁻¹)	1.3	1.2	4.5	9.1
% area in exceedance	36.8%	38.2%	60.9%	88.8%

312

313 **3.2 Projected change in deposition and exceedances**

The range of deposition estimates between models leads to a range in the estimated benefit achieved by different emission reduction scenarios. This is illustrated in Table 4 where we show the change in total deposited N_r (a) across the UK and (b) on sensitive habitat areas only, and also the associated changes in AAE and percentage area in exceedance. Maps of the AAE for the B2040 and H2040 scenarios are shown in Figures S2 and S3.

For the B2040 scenario, EMEP4UK predicts a reduction of 9.6 ktonnes of N_r on sensitive habitats, compared to 9.2 and 16.2 ktonnes for UKIAM and E4UK-Scaled, respectively. For the H2040 scenario the reduction predicted by EMEP4UK, UKIAM and E4UK-Scaled is 14.0, 16.8 and 27.3 ktonnes respectively.

The differences in deposition estimates result in differences in both exceedance metrics (AAE and percentage area) but also the change relative to the baseline. For the B2040, the AAE is 0.7 kg ha yr⁻¹ for EMEP4UK compared to 3.75 and 7.47 kg ha yr⁻¹ for UKIAM and CBED, respectively, while for the H2040 these values are 0.45, 3.07 and 6.34, respectively. Therefore there is an order-of-magnitude range for the AAE predicted for these scenarios. The range of around a factor 3 is seen for the percentage area in exceedance.

Table 4: N_r deposition budget, Average Accumulated Exceedance (AAE) and % area of N-sensitive

habitat in exceedance of critical load by 2040 and change relative to 2018 for the 2040 baseline and
 High scenario for the UK. The percentages given in parentheses for the change in deposition and AAE

332 is the % reduction relative to B2018.

		EMEP4UK (2018 met)	UKIAM	E4UK-Scaled*
B2040	N _r deposition (ktonnes)	164.2	180.8	233.5
	ΔN _r deposition (ktonnes)	-28.7	-31.5	-40.4
	As NH _x (ktonnes)	-3.9	-2.3	-5.5
	As NO _x (ktonnes)	-24.9	-29.2	-34.9
	N _r deposition on habitats	57.3	95.0	139.9
	(ktonnes)			
	ΔN_r deposition on habitats	-9.6 (-14%)	-9.2 (-9%)	-16.2 (-10%)
	(ktonnes)			
	AAE (kg ha ⁻¹ yr ⁻¹)	0.7	3.75	7.47
	ΔAAE (kg ha ⁻¹ yr ⁻¹)	-0.60 (-46%)	-0.75 (-17%)	-1.63 (-18%)
	% area in exceedance	29.8%	54.9%	83.8%

	Δ% area in exceedance	-7%	-6%	-5%
H2040	N _r deposition (ktonnes)	151.7	165.7	214.8
	ΔN _r deposition (ktonnes)	-41.2	-46.6	-59.1
	As NH _x (ktonnes)	-12.6	-12.2	-19.3
	As NO _x (ktonnes)	28.6	-34.5	-39.8
	N _r deposition on habitats	52.9	87.4	128.8
	(ktonnes)			
	ΔN_r deposition on habitats	-14.0 (-21%)	-16.8 (-16%)	-27.3 (-17%)
	(ktonnes)			
	AAE (kg ha ⁻¹ yr ⁻¹)	0.45	3.07	6.34
	ΔAAE (kg ha ⁻¹ yr ⁻¹)	-0.85 (-66%)	-1.43 (-32%)	-2.76 (-30%)
	% area in exceedance	25.8%	51.9%	80.8%
	Δ% area in exceedance	-11%	-9%	-8%

333 ***E4UK-Scaled is used as a proxy for CBED for the future scenarios.**

334 **3.3 Path towards zero exceedance in England**

We now focus on England in order to relate these results to the England N_r deposition and habitat protection targets. Our most ambitious scenario, the H2040, still leaves large areas of habitat in exceedance according to all models. We explore the degree of reduction in deposition required to eliminate all exceedance, and what the path to this point looks like, by reducing the B2018 deposition map by a uniform scaler across the UK until we reach zero deposition. Figure 5 shows how the percentage area of habitat in exceedance of CL_{rec} changes in England as deposition is reduced uniformly. Figure S6 shows the equivalent plots for the UK.

342 In reality the spatial distribution of deposition will change in future and does so for our future scenarios 343 (B2040 and H2040). However, these plots provide a meaningful illustration of the degree of change 344 required in order to significantly reduce the exceeded area of each habitat. The markers on each plot 345 indicate the outputs of each scenario. In most cases these markers lie on the line of the corresponding 346 model, showing that the plots are representative of the change in exceedance as deposition is reduced, 347 at least for the scenarios assessed here. The EMEP4UK scenario markers for B2040 and H2040 are 348 further along the x-axis than those for UKIAM and E4UK-Scaled, indicating a greater sensitivity to the 349 emission reductions in the scenarios.

The shaded area indicates the range in model outputs. This range is large for all habitats, only converging where exceedances start at or near 100% or tend to zero where the deposition has been reduced substantially.

The rate at which the area in exceedance decreases varies between habitats. Woodland habitats such as managed deciduous, oak, beech and unmanaged mixed woodlands require greater reductions in deposition before significant gains are made in reducing the exceeded area, due to the enhanced dry deposition to forest compared to less aerodynamically rough vegetation.

357 The figure shows how the percent reduction in deposition predicted by one model can provide a 358 significantly different estimate of the change in area of exceedance compared to what is predicted by 359 a different model with the same percentage reduction in deposition. Despite the uncertainty in 360 deposition, it is clear that in order to protect the majority of habitat areas a greater reduction in 361 deposition is needed than the 17% target set in the Clean Air Strategy (Defra 2019) indicated by the 362 black dashed line. For all habitat areas (lower right plot in Figure 5), with a reduction of 17% in deposition the area in exceedance is predicted to be 66%, 90% or 99% for EMEP4UK, UKIAM and E4UK-363 364 Scaled, respectively.

Both EMEP4UK and E4UK-Scaled predict that the H2040 achieves a reduction in deposition equal to or greater than 17% on these habitats, with UKIAM just short at 16% (Table 4). There are also protected sites on priority habitats which can benefit from local measures to further decrease Nr deposition
 (Dragosits et al., 2020), however this is not the case for broader habitats which cover large areas.

369 The percentage reduction in deposition needed to remove all exceedances of CLs varies between 50%

for EMEP4UK and 90% for E4UK-Scaled, with UKIAM on 80%. The ambitious technological scenario,
H2040, achieves a range of 16 to 22% reduction.

372

Journal Pre-proof

373

Figure 5: Percentage area in exceedance of CL_{rec} in England against percentage reduction in N_r deposition for each habitat and for all habitats. The plotted lines are derived by reducing N_r deposition evenly across England a percentage point at a time and recording the percentage area in exceedance. The shaded area is an indication of the degree of uncertainty as estimated by the range in model estimates. The markers indicate the position of each scenario on the plot for each model. The Scots pine plot is empty for England as it exists in Scotland only.

380 **3.4 Taking a risk-based approach**

Using the risk-based approach (Woodward et al., 2022) described in Section 2.5 provides an evaluation
 that is not solely dependent on one model and accounts for the range in estimates for both deposition
 and CLs.

384 Figure 6 shows the exceedance score areas for each habitat in the England for each scenario. There is 385 considerable variation between habitats with woodland habitats in particular trouble. Scots Pine is 386 entirely in Scotland and therefore no values are shown for England. The vast majority of area of these 387 habitats are either marginal, likely or very likely in exceedance of its CL even for the H2040 scenario, 388 with the plots on the far right showing the average across all habitats. Despite this, a steady 389 improvement is seen for all habitats in terms of the proportion of habitat that is deemed likely (orange) 390 or very likely (red) in exceedance, with the vast majority of the very likely category removed for H2040. 391 Habitat area assigned to either the very unlikely (dark green) or unlikely (light green) in exceedance 392 categories also see a steady progress for grasslands, dwarf shrub heath, salt marsh and dune grass. 393 However not much progress is seen for these areas for woodland habitats, again reflecting the higher 394 deposition rates to these habitats.

For England, the B2018 scenario has 12% of habitat area either very unlikely or likely in exceedance, and 72% likely or very likely in exceedance, with the remainder being marginal cases. This improves for B2040 and H2040, for which the proportion of habitat very unlikely or unlikely in exceedance is 18% and 21%, respectively. The proportion either likely or very likely in exceedance is 66% and 59%, respectively, with the very likely category down to 1% for H2040.

Figure S7 shows the equivalent plot for the entire UK where a greater proportion of habitat area is either very unlikely or unlikely in exceedance. This is due to lower exceedances in Scotland where Nr deposition is lower and a large proportion of habitat area exists. In the UK, the B2018 scenario has 46% of habitat area either very unlikely or likely in exceedance, and 32% likely or very likely in exceedance, with the remainder being marginal cases. This improves for B2040 and H2040, for which the proportion of habitat very unlikely or unlikely in exceedance is 52% and 55%, respectively. The proportion either likely or very likely in exceedance is 26% and 23%, respectively.

407

410

411 **4. Discussion**

412 The analysis presented here illustrates the wide range of deposition estimates that can be obtained 413 from different UK models, EMEP4UK, UKIAM and CBED. The range in model estimates reflects the high 414 uncertainty that exists both in modelled and measured deposition rates. This poses a problem when 415 validating models and attempting to inform policy development and in particular target setting. Model 416 estimates of current and future CL exceedances are used to guide policy development, however the 417 range in deposition estimates between models often results in a range in exceedance estimates. This 418 is true whether an area-based metric (e.g. percentage area in exceedance) or an exceedance-based 419 metric (e.g. accumulated exceedance) is used (see Tables 3 and 4). While CBED is a semi-empirical 420 model and therefore is not capable of future projections (the scaling method from Woodward et al. 421 (2022) is used here to illustrate how CBED predictions could look like in 2040, denoted as E4UK-Scaled), both EMEP4UK and UKIAM are used to model future scenarios in support of policy and target setting. 422

423 Uncertainties in Nr deposition

424 CBED was designed specifically to be independent of emission estimates as it is based on the 425 interpolation of measured concentrations in air and rain. By contrast, both EMEP4UK and UKIAM use 426 emission estimates. For NH₃, the NAEI estimates an uncertainty of 16% (Elliot et al. 2025) for the UK 427 total, larger for the spatial attribution. Constraints based of earth observation have suggested that 428 emissions may be underestimated by 30% (Marais et al., 2021), but this approach itself is subject to 429 similar uncertainties. On the other hand, CBED-specific uncertainties arise from the combination of 430 annual average meteorology with annual average concentrations to derive deposition (e.g. Schrader 431 et al., 2018).

432 Significant uncertainties exist in the parameterisation of dry and wet deposition in complex terrain
433 (Cowan et al. 2022) and this accounts for much of the differences in the model estimates as orographic
434 impacts on wet deposition are treated differently in the models.

435 Areas of higher altitude and precipitation are subject to additional atmospheric processes, such as the 436 seeder-feeder effect in which rain from high level cloud falls through lower "feeder" clouds which 437 typically contain higher concentrations of pollutants (Dore et al., 1992; Smith & Fowler, 2000). Accurate 438 modelled prediction of deposition in complex terrain requires a quantitative understanding of occult 439 deposition, orographic enhancement, the seeder-feeder effect, and highly localised rainfall. Model 440 resolution is a key factor for resolving orographic effects, since greater resolutions tend to obscure 441 topography. Cowan et al. (2022) estimate that the areas of complex terrain receive 1.4 and 2.5 times 442 greater deposition than areas of simple terrain – that is, deposition rates are likely 1.4 to 2.5 higher 443 than ACTMs currently predict. This enhancement is reflected to different levels in the different 444 measurement approaches and it is challenging to conclusively judge which is closer to the truth 445 because reliable measurements at high altitude are lacking. Wet deposition estimates are particularly 446 variable and uncertain for mountainous areas, where it is often challenging to maintain equipment to 447 monitor meteorology and the chemical composition of precipitation. High winds reduce capture efficiency of deposition gauges. Until very recently, only two sites in the UK currently provided daily 448 449 measurements of wet-only deposition. At other sites, wet deposition must be estimated from long-450 term bulk deposition measurements, which can overestimate wet deposition by 20-40% (Cape et al., 451 2009), but current understanding is deemed too uncertain to apply correction procedures. Large 452 uncertainties also exist in dry deposition quantification in areas of complex terrain (i.e. turbulence 453 variability associated with irregular topographic features, such as mountains, coastlines, steep slopes, 454 cliffs or heterogenous vegetation cover). Particular measurement techniques must be applied, for 455 example measurement of occult deposition, i.e. the interception of cloud droplets by vegetation.

456 Model resolution is also a problem for dry deposition hotspots, which can occur at sub-grid scales of 457 tens of metres near point sources such as poultry farms. Lower resolution models may infer that the average concentration of a large grid cell is too small to cause exceedances of CLs, whilst a higherresolution model might identify areas of CL exceedance within that grid cell.

460 It should also be noted that organic forms of nitrogen are not currently included in any of the 461 deposition estimates (measured or modelled), but can contribute 20-40% to wet deposition (Cape et 462 al., 2005, 2012). The contribution of the organic component varies significantly between countries and 463 regions across the globe (Cornell, 2011), more research is needed to understand the spatial variation 464 within countries (Cape et al., 2011). While we have crude estimates for dissolved organic nitrogen, the 465 dry deposition of organic nitrogen compounds in the aerosol, though ubiquitous (Kiendler-Scharr et 466 al., 2016) is even less well estimated.

467 The case for more ambitious targets

Despite the uncertainty in our estimates, it is possible to conclude from the analysis that a greater level of ambition is needed than the UK government's current 17% reduction in deposition target if the vast majority of habitat area is to be protected in England. Our analysis suggests that achieving this target (here represented by the H2040 scenario) would result in only 1-34% of habitat area below their CL (Figure 5). While the risk-based approach (Figure 6) predicts that only 21% is very unlikely or at least unlikely to be in exceedance, with the remaining area either marginal, likely or very likely in exceedance.

475 Despite this, habitats can benefit from any reduction in deposition even when CLs remain in 476 exceedance (e.g. Stevens et al., 2011; Armitage et al., 2014). Therefore, reaching the 17% target will 477 still deliver some benefit in reducing the pressure on sensitive habitats. This is reflected in the 478 reduction in the accumulated exceedance (Table 4) and the proportion of area at greatest risk of 479 continued high exceedance (Figure 6) for the H2040 scenario. It should also be noted that ambitions 480 that go beyond the Clean Air Strategy have been expressed. Through Target 7 of the Kunming-Montreal 481 Global Biodiversity Framework (CBD 2022) the UK, together with >180 other governments, declared 482 its intention to reduce "pollution from all sources by 2030, to levels that are not harmful to biodiversity 483 and ecosystem functions and services". Taken literally, this would imply completely eliminating CL 484 exceedances by 2030.

485 To achieve a more ambitious target will require additional measures. In the UK, NH₃ emissions from 486 agriculture is the main contributor to Nr deposition and CL exceedances (Woodward et al., 2022). The 487 majority of these emissions is attributed to meat and dairy production (Defra, 2024), therefore 488 reducing meat and dairy production could lead to significant reductions in NH₃ emissions (Leip et al., 489 2024). A reduction in meat and dairy is recommended in the UK's National Food Strategy (Dimbleby, 490 2021) to provide healthier diets, meet climate targets and reduce the impact on nature. The UK's 491 Climate Change Committee also advise that a reduction in meat and dairy production is necessary to 492 meet the UK's Net Zero target (CCC, 2020). Further exploration is needed of the synergies that exist 493 between reducing the impact of NH₃ emissions, climate ambitions and healthy diets, for example see 494 Leip et al. (2023).

A reduction in deposition of between 60-90% would be required to eliminate all exceedances. This
 would require a significant increase in ambition. A significant reduction in the contribution from non UK sources would also likely be necessary. UKIAM estimates the contribution from other countries and
 international shipping to the UK total Nr deposition in 2018 as 26% and 6%, respectively.

Finally, it is worth noting the limitations of CL exceedances as a metric when used to assess the harm caused by N_r deposition. Critical Loads are typically derived from experiments which are not able to capture the impact of long-term accumulation of N in the soil. Eliminating CL exceedances would not by any means guarantee that habitats recover from changes and have already occurred. Similarly, there is strong evidence that per kg of N_r deposited, gaseous NH_3 dry deposition is more detrimental than wet deposition (Sheppard, 2011), which is not reflected in the current CL methodology. However, CLs remain a useful metric of the varying resilience of habitats to N_r deposition and are therefore helpful
 guiding policy.

507 Implications for broader habitat protection targets

508 Consideration is needed regarding the condition assigned to habitat areas that are in exceedance of 509 their CLs within the context of broader targets. For example, England's "30 by 30" target (Defra 2023), 510 also derived from the UNEP's Convention on Biological Diversity's Global Biodiversity Framework (CBD 511 2022). This target sets out to protect 30% of land in England from "loss or damage to important 512 biodiversity values" by 2030. Another example is England's target to restore or create more than 513 500,000 hectares of a range of wildlife-rich habitats outside of protected sites by 2042 (Environment

514 Act 2021 (https://www.legislation.gov.uk/ukpga/2021/30/)).

We have not accounted for the increase in habitat area in our future scenarios, i.e. the area of each 515 516 habitat remains the same from 2018 onwards. In reality we expect an increase in these habitat areas 517 resulting from these targets and from climate mitigation measures such as woodland creation and 518 peatland restoration. However, given the widespread exceedances across the UK, we expect that the 519 majority of habitat area considered by these targets will continue to be under pressure from 520 eutrophication and as a result continue to experience gradual changes in flora and fauna. This poses 521 the question as to whether these areas can reasonably be considered "restored" or "protected" in the 522 long term without significant progress in reducing the impact of Nr deposition.

522 long term without significant progress in reducing the impact of N_r deposition.

It may also be necessary to consider habitat-specific targets. There is a clear and significant variation
 in CL exceedance for each N-sensitive habitat considered here (e.g. Figure S5 and Figure 6). Woodland

- 525 species are particularly under pressure and will require greater policy ambition than, for example, acid
- 526 and calcareous grasslands to achieve significant increases in areas no longer harmed by Nr deposition.
- 527 If the impact of N_r deposition was to be considered within the evaluation of broader targets, a habitat-
- 528 specific approach would be necessary to ensure progress is made across all habitat types.

529 Relevance to other countries and regions

530 These uncertainties in deposition measurements and modelled predictions are not unique to the UK 531 (e.g. Williams et al 2018, Walker et al. 2019). International negotiations to reduce air pollution impacts 532 depend on model estimates to inform national targets. There is recently an increased emphasis on NH₃ 533 by the UNECE's CLRTAP due to the limited progress in abating these emissions. New targets are being 534 developed for ecosystem protection from Nr deposition under the convention, making the accuracy of 535 the assessment of Nr deposition and CL exceedances an issue of international concern. Our analysis 536 for the UK and each UK nation demonstrates the importance of considering the uncertainty in 537 estimates and the range of predictions available from different models. This also applies to existing 538 international targets such as the European Commission's target of a reduction of 25% in CL 539 exceedances by 2030 relative to 2005 levels (European Commission, 2022b). While considerations are 540 ongoing regarding a 50% reduction target for accumulated exceedances for the Gothenburg protocol 541 revision (TFIAM, 2024).

542 Using the exceedance score approach

543 By using the exceedance score approach outlined in Woodward et al (2022) we are able to 544 demonstrate that our scenarios make steady progress towards reducing the risk of the harm caused 545 by N_r deposition for each habitat, despite the significant range of estimates between models. The 546 method could be used to derive targets for policy development. Our scenario analysis suggests that 547 eliminating the proportion of habitat area at greatest risk (very likely in exceedance) may be an 548 achievable target for the UK and England only, with only a small proportion of habitat area assigned 549 this category for the H2040 scenario. Targets within each nation could also be set for the proportion 550 of habitat area very unlikely or unlikely to be in exceedance. Together these would provide targets 551 which reduce the proportion of habitat area at greatest risk of harm, while also increasing the 552 proportion unlikely to be caused harm.

553 5. Conclusions

554 There is large uncertainty in estimates of reactive nitrogen (N_r) deposition in the UK. This was reflected in the large range in model predictions, illustrated here by comparing three models used to inform 555 556 policy in the UK: EMEP4UK, UKIAM and CBED. This range in predictions makes a big difference for 557 future scenario assessment, where the impact of different policy measures was assessed by predicting 558 their impact on deposition rates. Scenario modelling is a key element of informed policy development 559 in the UK (e.g. ApSimon et al., 2023), and also plays an important role in international negotiations of 560 national air pollution emission ceilings, e.g. the Gothenburg Protocol. While we have assessed the UK 561 here, with a particular focus on England, the conclusions of this paper are likely relevant for other 562 countries. The UKIAM model uses the same approach as the GAINS model, while EMEP4UK is a high 563 resolution implementation of the EMEP model, both of which are used to inform CLRTAP negotiations.

564 We show that the range of model predictions results in a large range in predicted critical load (CL) exceedances. A significant range was also seen for the degree of improvement predicted for future 565 566 scenarios, with the rate of improvement often of most interest to policymakers. This range in 567 predictions poses a challenge for developing sensible targets to reduce the harmful impacts of 568 eutrophication driven by deposition of atmospheric air pollutants. Despite this, our results show that 569 a greater level of ambition is required to reduce these harmful impacts if the majority of habitat area 570 is to be protected. For example, England's Clean Air Strategy target of a 17% reduction in Nr deposition 571 on sensitive habitats would leave 66 to 99% of N sensitive habitat area in exceedance according to the 572 modelled range considered here.

Removing all exceedance in England and the UK as a whole would require a 60-90% reduction in N_r deposition on these habitats. Achieving a reduction of this order would require a step-change in ambition, both within the UK and for other countries which contribute a significant proportion, regarding NH₃ abatement. Further reductions are possible by considering non-technical measures such as reductions in livestock production. Such an approach has clear synergies with Net Zero policy which is an area of ongoing research.

579 Our risk-based approach provides a means to assess current and projected CL exceedances while 580 accounting for the range in deposition estimates and uncertainty in CL assessment. The approach could 581 be used to develop more robust targets, rather than depending on a single, highly uncertain estimate 582 of CL exceedance.

583 Glossary

- 584 Anaerobic digestion (AD)
- 585 Average Accumulated Exceedance (AAE)
- 586 Atmospheric Chemistry Transport Model (ACTM)
- 587 Convention on Long-range Transboundary Air Pollution (CLRTAP)
- 588 Concentration Based Estimated Deposition (CBED)
- 589 Critical Loads (CLs)
- 590 European Monitoring and Evaluation Programme (EMEP)
- 591 European Nature Information System (EUNIS)
- 592 Weather Research and Forecasting (WRF)
- 593 Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME)
- 594 Joint Nature Conservation Committee's (JNCC)
- 595 National Atmospheric Emission Inventory (NAEI)
- 596 Nitrogen Decision Framework (NDF)
- 597 UK Eutrophying and Acidifying Pollutants (UKEAP)

598 UK Integrated Assessment Model (UKIAM)

599 Funding

This work has been supported by the Department of Environment, Food and Rural Affairs (Defra) under

601 Contact: ECM-62041: Support for National Air Pollution Control Strategies (SNAPCS)

602 Acknowledgements

This work reflects the personal views of the authors. Although the modelling work has been supported
 by the UK Department of Environment, Food and Rural Affairs, the findings and recommendations
 discussed here are those of the authors and do not necessarily represent the views of Defra.

This research was partially supported by NERC, through the UKCEH National Capability for UK Challenges Programme NE/Y006208/1

608 <u>References</u>

Aleksankina K, Heal MR, Dore AJ, Van Oijen M, Reis S, 2018. Global sensitivity and uncertainty analysis

of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study.
 Geoscientific Model Development, 11, 1653-1664. <u>https://doi.org/10.5194/gmd-11-1653-2018</u>

612 APIS n.d., CBED - Concentration Based Estimated Deposition, Air Pollution Information System,

613 <u>https://www.apis.ac.uk/cbed-concentration-based-estimated-deposition. (Accessed 06 November</u> 614 <u>2024).</u>

ApSimon H, Oxley T, Woodward H, Mehlig D, Dore A, Holland M, 2021. The UKIAM model for source
apportionment and air pollution policy applications to PM2.5. Environment International, 153,
106515, <u>https://doi.org/10.1016/j.envint.2021.106515</u>.

ApSimon H, Oxley T, Woodward H, Mehlig D, 2022, Analysis of abatement options to reduce PM2.5
 concentrations, Defra contract report: SNAPCS project, Support for National Air Pollution Control
 Strategies, February 2022 https://uk-

 621
 air.defra.gov.uk/assets/documents/reports/cat09/2302091626
 Analysis_of_abatement_options_to

 622
 reduce_PM2.5.pdf

- ApSimon H, Oxley T, Woodward H, Mehlig D, Holland M, Reeves S, 2023. Integrated assessment
 modelling of future air quality in the UK to 2050, and synergies with net zero strategies. Atmosphere,
 14(3):525, <u>https://doi.org/10.3390/atmos14030525</u>
- Armitage HF, Britton AJ, van der Wal R, Woodin SJ, 2014. The relative importance of nitrogen
 deposition as a driver of Racomitrium heath species composition and richness across Europe,
 Biological Conservation, 171, 224-231, <u>https://doi.org/10.1016/j.biocon.2014.01.039</u>
- BEIS 2021. Net Zero Strategy: Build Back Greener. Department for Business, UK government.
 <u>https://www.gov.uk/government/publications/net-zero-strategy</u>
- Beswick KM, Choularton TW, Inglis DWF, Dore AJ, Fowler D, 2003. Influences on long-term trends in
 ion concentration and deposition at Holme Moss. Atmospheric Environment, 37, 1927-1940.
 <u>https://doi.org/10.1016/S1352-2310(03)00046-3</u>
- 634 Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S,
- Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W, 2010.
- Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological
- 637 Applications 20, 30-59, <u>https://doi.org/10.1890/08-1140.1</u>

- Bobbink R, Hettelingh J, 2011. Review and revision of empirical critical loads and dose-response
 relationships: Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. Rijksinstituut
 voor Volksgezondheid en Milieu RIVM.
- 641 Bobbink R, Loran C, Tomassen H, 2022. Review and revision of empirical critical loads of nitrogen for 642 Europe. German Environment Agency (UBA)

Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Hajek T, Iacumin
P, Kutnar L, Tahvanainen T, Toberman H, 2006. Atmospheric nitrogen deposition promotes carbon loss
from peat bogs, Proceedings of the National Academy of Sciences, 103, 51, 19386-19389,
<u>https://doi.org/10.1073/pnas.0606629104</u>

- Clark CM, Phelan J, Doraiswamy P, Buckley J, Cajika JC, Dennis RL, Lynch J, Nolte CG, Spero TL, 2018.
 Atmospheric deposition and exceedances of critical loads from 1800–2025 for the conterminous
 United States, Ecological Applications, 28, 4, 978-1002, <u>https://doi.org/10.1002/eap.1703</u>
- Cape JN, Anderson M, Rowland AP et al. 2005. Organic nitrogen in precipitation across the United
 Kingdom. Water Air Soil Pollut: Focus 4, 25–35. <u>https://doi.org/10.1007/s11267-005-3010-3</u>
- 652 Cape JN, van Dijk N, Tang YS, 2009. Measurement of dry deposition to bulk precipitation collectors 653 using a novel flushing sampler, J. Environ. Monit., 11, 2, 353-358, <u>http://dx.doi.org/10.1039/B813812E</u>
- Cape JN, Cornell SE, Jickells T.D, Nemitz E, 2011. Organic nitrogen in the atmosphere—Where does it
 come from? A review of sources and methods. Atmospheric Research, 102(1-2), 30-48,
 <u>https://doi.org/10.1016/j.atmosres.2011.07.009</u>
- Cape JN, Tang YS, González-Beníez J M, Mitošinková M, Makkonen U, Jocher M, Stolk A, 2012. Organic
 nitrogen in precipitation across Europe, Biogeosciences, 9, 4401–4409, <u>https://doi.org/10.5194/bg-9-</u>
 4401-2012
- 660 Carswell AM, Gilhespy SL, Cardenas LM, Anthony SG, 2024. Inventory of Ammonia Emissions from UK
 661 Agriculture 2022, Inventory submission report Defra contract C21258
- 662 CBD 2022. Conference of the Parties to the Convention on Biological Diversity, Montreal Canada,
 663 Agenda item 9A. <u>https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf</u>
- 664 CCC 2020. The Sixth Carbon Budget: The UK's Path to Net Zero. 665 <u>https://www.theccc.org.uk/publication/sixth-carbon-budget/</u>
- 666 Churchill S, Richmond B, MacCarthy J, Broomfield M, Brown P, Del Vento S, Galatioto F, Gorji S,
 667 Karagianni E, Misra A, Murrels T, Passant N, Pearson B, Richardson J, Stewart R, Thistlethwaite G,
 668 Travasso N, Tsagatakis I, Wakeling D, Walker C, Wiltshire J, Wong J, Yardley Y, Hobson M, Gibbs M, Dore
- 669 C, Misselbrook T, Dragosits U, 2022. UK Informative Inventory Report (1990 to 2020), Ricardo Energy
 670 & Environment. <u>https://naei.beis.gov.uk/reports/</u>
- 671 Conolly C, Vincent K, Sanocka A, Richie S, Knight D, Donovan B, Jackson T, Dyer M, Osbourne E, Twigg 672 MM, Braban CF, Stephens ACM, Tang YS, Leeson SR, Jones MR, Simmons I, Harvey D, Yeung K, van Dijk
- 673 N, Iwanicka A, Durate F, Nemitz E, Leaver D, Andrews C, Thacker S, Keenan PO, Pereira MG, Guyatt H,
- Hunt A, Salisbury E, Chetiu N, Grant H, Warwick A, Rylett D, Teagle S, Lord W, Bannister G, Sutton MA,
- 675 2023. UKEAP 2022 Annual report. Prepared for the Environment Agency & Defra and the devolved
- administration by the UK Centre for Ecology & Hydrology & Ricardo Environment and Energy,
- 677 https://uk-
- 678 air.defra.gov.uk/assets/documents/reports/cat09/2309281200_UKEAP_2022_annual_report.pdf
- 679 Cornell SE, 2011. Atmospheric nitrogen deposition: Revisiting the question of the importance of the 680 organic component, 159, 10, 2214-222, <u>https://doi.org/10.1016/j.envpol.2010.11.014</u>

Journal Pre-proof

- 681 Cowan N, Nemitz E, Walker JT, Fowler D, Finnigan JJ, Webster HN, Levy P, Twigg M, Tang SY, Bachiller-
- Jareno N, Trembath P, Kinnersley RP, Braban CF, 2022. Review of methods for assessing deposition for
 reactive nitrogen pollutants across complex terrain with focus on the UK, Environmental Science:
 Atmospheres, 2, 5, 829-851, http://dx.doi.org/10.1039/D2EA00012A

685Defra 2018. Code of Good Agricultural Practice (COGAP) for Reducing Ammonia Emissions, UK686DepartmentforEnvironment,FarmingandRuralAffairs.687https://assets.publishing.service.gov.uk/media/66a8cf3ece1fd0da7b592f6c/Environmental ImprovementPlanannualprogressreport2023 to2024.pdf

Defra, 2019. Clean Air Strategy. <u>UK Department for Environment, Farming and Rural Affairs.</u>
 <u>https://www.gov.uk/government/publications/clean-air-strategy-2019</u>

691 Defra 2023. Delivering 30by30 on land in England. UK Department for Environment, Farming and Rural692 Affairs.

693 <u>https://assets.publishing.service.gov.uk/media/65807a5e23b70a000d234b5d/Delivering_30by30_on</u> 694 <u>land_in_England.pdf</u>

Defra 2024. Emissions of air pollutants in the UK – Ammonia (NH3), UK Department for Environment,
 Farming and Rural Affairs. <u>https://www.gov.uk/government/statistics/emissions-of-air-</u>
 pollutants/emissions-of-air-pollutants-in-the-uk-ammonia-nh3, accessed 12/08/2024

698 Defra n.d, Air modelling for Defra, UK AIR Air Information Resource. Available at: <u>https://uk-</u> 699 <u>air.defra.gov.uk/research/air-quality-modelling?view=modelling (Accessed: 06 November 2024).</u>

DESNZ 2023. Biomass Strategy, UK Department for Energy Security and Net Zero.
 <u>https://assets.publishing.service.gov.uk/media/64dc8d3960d123000d32c602/biomass-strategy-</u>
 <u>2023.pdf</u>

de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J,
Wamelink GWW, Reinds GJ, Sutton MA, 2009. The impact of nitrogen deposition on carbon
sequestration by European forests and heathlands, Forest Ecology and Management, 258, 8, 18141823, https://doi.org/10.1016/j.foreco.2009.02.034

- Dimbleby H, 2021. National Food Strategy Independent Review: The Plan, National Food Strategy,
 <u>https://go.nature.com/3bC2cwg</u>
- Dise NB, Ashmore M, Belyazid S, et al. Nitrogen as a threat to European terrestrial biodiversity. In:
 Sutton MA, Howard CM, Erisman JW, et al., eds. The European Nitrogen Assessment: Sources, Effects
 and Policy Perspectives. Cambridge University Press; 2011:463-494.
- Dore AJ, Choularton TW, Brown R, Blackall RM, 1992. Orographic rainfall enhancement in the
 mountains of the Lake District and Snowdonia, Atmos. Environ., 26A (3), 357–371,
 <u>https://doi.org/10.1016/0960-1686(92)90322-C</u>
- Dore AJ, Mousavi-Baygi M, Smith RI, Hall J, Fowler D, Choularton TW, 2006. A model of annual
 orographic precipitation and acid deposition and its application to Snowdonia. Atmospheric
 Environment, 40, 3316-3326. <u>https://doi.org/10.1016/j.atmosenv.2006.01.043</u>

Dore AJ, Vieno M, Tang YS, Dragosits U, Dosio A, Weston KJ, Sutton MA, 2007. Modelling the
atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and
assessment of the influence of SO2 emissions from international shipping, Atmospheric Environment,
41, 2355-2367, DOI 10.1016/j.atmosenv.2006.11.013

Dore AJ, Carslaw DC, Braban C, Cain M, Chemel C, Conolly C, Derwent RG, Griffiths SJ, Hall J, Hayman
G, Lawrence S, Metcalfe SE, Redington A, Simpson D, Sutton MA, Sutton P, Tang YS, Vieno M, Werner
M, Whyatt JD, 2015. Evaluation of the performance of different atmospheric chemical transport

- models and inter-comparison of nitrogen and sulphur deposition estimates for the UK, Atmospheric
 Environment, 119, 131-143, 10.1016/j.atmosenv.2015.08.008
- 727 Dragosits, U, Carnell EJ, Tomlinson SJ, Misselbrook TH, Rowe EC, Mitchell Z, Thomas IN, Dore AJ, Levy
- P, Zwagerman T, Jones L, Dore C, Hampshire K, Raoult J, German R, Pridmore A, Williamson T, Marner
 B, Hodgins L, Laxen D, Wilkins K, Stevens C, Zappala S, Field C, Caporn SJM, 2020. Nitrogen Futures.
 JNCC Report No. 665. JNCC, Peterborough. ISSN 0963-8091.
- 731 Elliott M, Ingledew D, Richmond B, Del Vento S, Gorji S, Hows S, Karagianni E, Kelsall A, Pang Y, Passant
- N, Pearson B, Richardson J, Stewart R, Thistlethwaite G, Tsagatakis I, Wakeling D, Wiltshire J, Wong J,
 Hobson M, Gibbs M, Dore C, Thornton A, Anthony S, Carswell A, Gilhespy S, Cardenas L Dragosits U,
 Tomlinson S, UK Informative Inventory Report (1990 to 2023), Ricardo Energy & Environment.
 https://naei.beis.gov.uk/reports/
- Furopean Commission, 2022a. The Third Clean Air Outlook, Report from the commission to the
 European Parliament, the Council and the European Economic and Social Committee and the
 Committee of the Regions. COM(2022) 673 final. https://eur-lex.europa.eu/legal-
 content/EN/TXT/PDF/?uri=CELEX:52022DC0673
- European Commission, 2022b. First 'zero pollution' monitoring and outlook. 'Pathways towards cleaner air, water and soil for Europe'. Report from the commission to the European Parliament, the Council and the European Economic and Social Committee and the Committee of the Regions. COM(2022) 674 final. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022DC0674
- Flechard CR, Nemitz E, Smith RI, Fowler D, Vermeulen AT, Bleeker A, Erisman JW, Simpson D, Zhang L,
 Tang YS, Sutton MA, 2011. Dry deposition of reactive nitrogen to European ecosystems: a comparison
 of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728,
 <u>https://doi.org/10.5194/acp-11-2703-2011</u>
- Ge Y, Heal MR, Stevenson DS, Wind P, Vieno M, 2021. Evaluation of global EMEP MSC-W (rv4.34) WRF
 (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements,
 Geosci. Model Dev., 14, 7021-7046, <u>https://doi.org/10.5194/gmd-14-7021-2021</u>
- Gu B, Zhang L, Van Dingenen R, Vieno M, Van Grinsven HJ, Zhang X, Zhang S, Chen Y, Wang S, Ren C,
 Rao S, Holland M, Winiwarter W, Chen D, Xu J, Sutton, MA, 2021. Abating ammonia is more costeffective than nitrogen oxides for mitigating PM(2.5) air pollution, Science, 374, 758-762,
 10.1126/science.abf8623
- Hall R, Jones R, Hurford L, Edwards J, 2024. Environment Act Habitat Target Definitions and
 Descriptions, Natural England Technical Information Note TIN219, 2024,
 <u>https://publications.naturalengland.org.uk/publication/6427187599900672</u>
- Hallsworth S, Dore AJ, Bealey WJ, Dragosits U, Vieno M, Hellsten S, Tang YS, Sutton MA, 2010. The role
 of indicator choice in quantifying the threat of atmospheric ammonia to the 'Natura 2000' network,
 Environmental Science & Policy, 13, 671-687, <u>https://doi.org/10.1016/j.envsci.2010.09.010</u>
- Jones L, Hall J, Strachan I, Field C, Rowe E, Stevens CJ, Caporn SJM, Mitchell R, Britton A, Smith R, Bealey
 B, Masante D, Hewison R, Hicks K, Whitfield C, Mountford E, 2016. A decision framework to attribute
 atmospheric nitrogen deposition as a threat to or cause of unfavourable habitat condition on protected
 sites. JNCC Report No. 579. JNCC, Peterborough.
- Kiendler-Scharr A, et al. (2016), Ubiquity of organic nitrates from nighttime chemistry in the European
 submicron aerosol, Geophys. Res. Lett., 43, 7735–7744, <u>https://doi.org/10.1002/2016GL069239</u>

Leip A, Wollgast J, Kugelberg S, Costa Leite J, Maas RJM, Mason KE, Sutton MA (eds.), 2023. Appetite
 for Change: Food system options for nitrogen, environment & health. 2nd European Nitrogen
 Assessment Special Report on Nitrogen & Food. UK Centre for Ecology and Hydrology, Edinburgh, UK

Marais EA, Pandey AK, Van Damme M, Clarisse L, Coheur PF, Shephard MW, et al. (2021). UK ammonia
emissions estimated with satellite observations and GEOS-Chem. Journal of Geophysical Research:
Atmospheres, 126, e2021JD035237. <u>https://doi.org/10.1029/2021JD035237</u>

773 Mehlig D, Woodward H, Oxley T, Holland M, ApSimon H, 2021. Electrification of Road Transport and
774 the Impacts on Air Quality and Health in the UK. Atmosphere, 12, 1491.
775 <u>https://doi.org/10.3390/atmos12111491</u>

- MSC-W & CCC, 2020. EMEP MSC-W model performance for acidifying and eutrophying components,
 photo-oxidants and particulate matter in 2018, Supplementary material to EMEP Status Report
 1/2020, <u>https://emep.int/publ/reports/2020/sup_Status_Report_1_2020.pdf</u>
- Nijssen ME, WallisDeVries MF, Siepel H, 2017. Pathways for the effects of increased nitrogen deposition
 on fauna. Biological Conservation 212, 423-431, <u>https://doi.org/10.1016/j.biocon.2017.02.022</u>
- 781 Nilsson J, Grennfelt P, 1988:15. Critical loads for sulphur and nitrogen. Miljoerapport. Denmark

Laudon H, Mensah AA, Fridman J, Nasholm T, Jamtgard S, 2024. Swedish forest growth decline: A
 consequence of climate warming?, Forest Ecology and Management 565, 122052,
 <u>https://doi.org/10.1016/j.foreco.2024.122052</u>

Oxley T, Valiantis M, Elshkaki A, ApSimon H, 2009. Background, Road and Urban Transport modelling
 of Air quality Limit values (The BRUTAL model). Environmental Modelling & Software, 24, 1036-1050.

Oxley T, Vieno M, Woodward H, ApSimon H, Mehlig D, Beck R, Nemitz E, Reis S, 2023, Reduced-form
 and complex ACTM modelling for air quality policy development: A model inter-comparison,
 Environment International, 171, 107676, <u>https://doi.org/10.1016/j.envint.2022.107676</u>

RoTAP, 2012. Review of Transboundary Air Pollution: Acidification, Eutrophication, Ground Level Ozone
 and Heavy Metals in the UK. Contract Report to the Department for Environment, Food and Rural
 Affairs. Centre for Ecology & Hydrology.

- Rowe EC, Sawicka K, Carnell E, Bealey B, Martín Hernandez C, Vieno M, Vigier A, Scheffler J, Tomlinson
 S & Jones L, 2024. Air Pollution Trends Report 2024: Critical load and critical level exceedances in the
 UK. Report to Defra under Contract AQ0849, UKCEH project 07617. <u>https://uk-</u>
 <u>air.defra.gov.uk/library/reports?report_id=1157</u>
- Schrader F, Schaap M, Zöll U, Kranenburg R, Brümmer C, 2018. The hidden cost of using low-resolution
 concentration data in the estimation of NH₃ dry deposition fluxes, Scientific Reports, 8, 969.
 <u>https://doi.org/10.1038/s41598-017-18021-6</u>
- Sheppard LJ, Leith ID, Mizunuma T, Cape JN, Crossley A, Leeson S, Sutton MA, van Dijk N, Fowler D,
 2011. Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium
 ions: evidence from a long-term field manipulation, Global Change Biology, 17, 12, 3589-3607,
 <u>https://doi.org/10.1111/j.1365-2486.2011.02478.x</u>
- Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD,
 Gauss M, Jonson JE, Jenkin ME, Nyíri A, Richter C, Semeena VS, Tsyro S, Tuovinen JP, Valdebenito Á,
 Wind P, 2012. The EMEP MSC-W chemical transport model technical description, Atmos. Chem.
 Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012

- Skamarock WC, Klemp JB, Dudhia J, Gill DO, Liu Z, Berner J, Wang W, Powers JG, Duda MG, Barker DM,
 Huang XY, 2019. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN556+STR, 145 pp, doi:10.5065/1dfh-6p97
- Smith RI, Fowler, D, 2000. Uncertainty in estimation of wet deposition of sulphur. Water Air Soil Pollut.
 Focus 1, 341–354.

Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M, 2000. Regional estimation of pollutant gas
deposition in the UK: model description, sensitivity analyses and outputs. Atmos. Environ. 34, 3757–
3777, <u>https://doi.org/10.1016/S1352-2310(99)00517-8</u>

- Stevens, C.J., Smart, S.M., Henrys, P., Maskell, L.C., Walker, K.J., Preston, C.D., Crowe, A., Rowe, E.,
 Gowing, D.J. & Emmett, B.A. 2011. Collation of evidence of nitrogen impacts on vegetation in relation
 to UK biodiversity objectives. JNCC Report, No. 447
- Stevens CJ, Payne RJ, Kimberley A, Smart SM, 2016. How will the semi-natural vegetation of the UK
 have changed by 2030 given likely changes in nitrogen deposition?, Environmental Pollution, 208, Part
 B, 879-889, https://doi.org/10.1016/j.envpol.2015.09.013
- TFIAM, 2024. Report by the Co-Chairs of the Task Force on Integrated Assessment Modelling, United
 Nations Economic Commission for Europe, 2024. ECE/EB.AIR/GE.1–WG.1/2024/INF.2.
 <u>https://unece.org/sites/default/files/2024-</u>
- 825 07/Item%205c%20ECE_EB.AIR_GE.1_2024%20INF%202%20TFIAM%20final.pdf
- 826 UKCEH, n.d.. EMEP4UK, UK Centre for Ecology and Hydrology, <u>https://www.emep4uk.ceh.ac.uk/home</u>
- van der Plas F, Hautier Y, Ceulemans T, Alard D, Bobbink R, Diekmann M, Dise NB, Dorland E, Dupré C,
 Gowing D, Stevens C, 2024. Atmospheric nitrogen deposition is related to plant biodiversity loss at
 multiple spatial scales. Global Change Biology 30, https://doi.org/10.1111/gcb.17445
- Vieno M, Dore AJ, Stevenson DS, Doherty R, Heal MR, Reis S, Hallsworth S, Tarrason L, Wind P, Fowler
 D, Simpson D, Sutton MA, 2010. Modelling surface ozone during the 2003 heat-wave in the UK,
 Atmospheric Chemistry and Physics, 10, 7963-7978, DOI 10.5194/acp-10-7963-2010
- Vieno M, Heal MR, Williams ML, Carnell EJ, Nemitz E, Stedman JR, Reis S, 2016a. The sensitivities of
 emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265-276, 10.5194/acp16-265-2016
- Vieno M, Heal MR, Twigg MM, MacKenzie IA, Braban CF, Lingard JJN, Ritchie S, Beck RC, Móring A, Ots
 R, Di Marco CF, Nemitz E, Sutton M, Reis, S, 2016b. The UK particulate matter air pollution episode of
- March–April 2014: more than Saharan dust, Environmental Research Letters, 11, 044004,
 10.1088/1748-9326/11/4/044004
- Walker JT, Bell MD, Schwede D, Cole A, Beachley G, Lear G, Wu Z, 2019. Aspects of uncertainty in total
 reactive nitrogen deposition estimates for North American critical load applications, Science of The
 Total Environment, 690, 1005-1018, <u>https://doi.org/10.1016/j.scitotenv.2019.06.337</u>
- Wichink Kruit RJ, Aben J, de Vries W, Sauter F, van der Swaluw E, van Zanten MC, van Pul WAJ, 2017.
 Modelling trends in ammonia in the Netherlands over the period 1990–2014. Atmospheric
 Environment, 154n 20-30, <u>https://doi.org/10.1016/j.atmosenv.2017.01.031</u>
- Williams JJ, Chung SH, Johansen AM, Lamb BK, Vaughan JK, Beutel M, 2017. Evaluation of atmospheric
 nitrogen deposition model performance in the context of U.S. critical load assessments, Atmospheric
 Environment, 150, 244-255, https://doi.org/10.1016/j.atmosenv.2016.11.051

- 849 Woodward H, Oxley T, Rowe EC, Dore AJ, ApSimon H, 2022. An exceedance score for the assessment 850 of the impact of nitrogen deposition on habitats in the UK, Environmental Modelling & Software, 150,
- 851 105355, <u>https://doi.org/10.1016/j.envsoft.2022.105355</u>

852

853

Journal Pre-proof

Highlights

- Uncertainty in reactive N deposition reflected in large range in model estimates
- Model predictions of current and future CL exceedances vary considerably
- Uncertainty should be factored into policy development
- Despite uncertainty, significant increase in ambition needed to protect habitats

Journal Proposi

Declaration of interests

□ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☑ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Huw Woodward reports financial support was provided by United Kingdom Department for Environment Food and Rural Affairs. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.