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SCIENCE FOR SOCIETY Path analysis is a useful method that helps researchers understand how multiple
factors are connected and how they influence each other. However, the increasing volume of data and the
complexity of interactions among factors necessitate the development of high-accuracy and high-efficiency
statistical methods to enhance our understanding of biological processes and social complexity. Here, we
present a benchmark study using simulations and apply the proposed method to investigate biodiversity ef-
fects on trophic interactions in ecosystems.
SUMMARY
With its facility to assess causal mechanisms among multiple variables, the application of path analysis in
medical, natural, and social sciences has become widespread. Of the many types of path analysis, structural
equation modeling (SEM), including Bayesian applications of this method, has gained popularity. However,
SEM remains constrained by biased estimates in the case of model misspecification, while Bayesian
methods are limited by time consumption and computational requirements. Here, we propose a novel esti-
mator utilizing robust estimating equations combinedwithin aBayesian framework to improvemultilevel path
analysis. We apply this method to an ecological trophic interaction case study that assessed the path effects
of global plant diversity on the interactions of plants, invertebrate herbivores, and their natural enemies. Us-
ing a simulation study, we show that this new estimator is unbiased and more robust. Moreover, the compu-
tational time cost for the estimating procedure is reduced compared with multivariate Bayesian analysis.
INTRODUCTION

Path analysis provides insights into direct and indirect pathways

between explanatory and outcome variables, allowing a window

intowhat once used to be a ‘‘black box’’ in terms of causal chains

of biological or social pathways.1 High-accuracy and high-effi-

ciency path analysis can facilitate the understanding of biolog-

ical processes and social complexity. In the past decades,

path analysis has become increasingly popular in the natural,2,3

medical,4,5 and social sciences.6 Of the various approaches

to path analysis, piecewise structural equation modeling

(PSEM)7,8 and its implementation within a Bayesian frame-

work9–11 has become particularly popular. Typically, SEM
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methods use maximum likelihood (ML) to estimate parameters,

which can be severely biased in case of poorly specified

models.12 Bayesian methods can achieve more robust estima-

tion using weakly informative priors. However, they may also

be biased when the true distribution of the data violates the as-

sumptions of the model; additionally, the Monte Carlo Markov

chain sampling algorithm, which is used to obtain converged

posterior distributions for parameters, is often time intensive.13

Robust estimating equations have been developed to deal with

apparent outliers in the data. This type of estimator assesses the

influence of outlying observations by substituting the squared loss

of residuals with robust loss functions, allowing a reducedweight-

ing to be applied to abnormal observations.14 The application of
ay 23, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Overview of VB-RobM method

In step 1, VB-RobM specifies the relationships

among the variables. In step 2, VB-RobM obtains

initial estimates and residuals by robust estimating

equations according to the specified relation-

ships. In step 3, VB-RobM estimates the density

function for the initial residuals by a Dirichlet pro-

cess mixture model. The rounded rectangles in

step 3 represent hyperparameters for the prior, the

circles represent latent variables, and the triangle

represents the observations, respectively. In step

4, VB-RobM debiases the initial estimates by

integrating the density estimation into the esti-

mating equations. In step 5, VB-RobM obtains

confidence intervals for direct, indirect, and total

effects by bootstrapping.
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robust estimating equations provides a natural progression to

improving SEM methods that may also control for the time cost

associated with replacing the ML estimations with robust estima-

tion. However, symmetric error terms are a key assumption for

robust estimations to be unbiased.15 Bias-corrected robust esti-

mators based on the linear approximation of the robust estimator

have been proposed in generalized estimating equations.15,16

These estimators aremainly one-step approximations to the unbi-

ased estimator by expanding the estimating equations and usually

depend on the accuracy of correction terms. If the estimation of

the correction term is biased, the corrected estimator is also

biased.16 Therefore, there is a need for methods that integrate

the advantages of both robust ML estimation and Bayesian

methods to address their weaknesses.

In this paper, we develop a novel bias-corrected robust

method, Variational Bayesian Robust mediation analysis (abbre-

viated as ‘‘VB-RobM’’—see details below). Combined with VB

approaches,17 which approximate the posterior distributions in

Bayesian inference using specific distribution families, VB-

RobM can obtain a more robust estimate at reduced computa-

tional time. We undertake simulation studies to compare VB-

RobMwith variousmultilevel analysis methods.We demonstrate

this approach using a case study example to illustrate the appli-

cation of VB-RobM in estimating plant diversity effects on bi-tro-

phic interactions between plants and invertebrate herbivores

using a global dataset, expanding this also to tri-trophic interac-

tions that include herbivore natural enemies.

RESULTS

Overview of VB-RobM
The details of the statistical models and algorithms used by

VB-RobM can be found in the methods section and in the
2 Cell Reports Sustainability 2, 100362, May 23, 2025
supplemental information. Briefly, and

as shown in Figure 1, our proposed VB-

RobM method consists of five steps: (1)

data input and specification of the paths

between the variables, (2) obtaining initial

estimates of path coefficients and robust

residuals for each edge, (3) estimating the

density function of the residuals by a Di-
richlet process mixture model (DPMM) and the first and second

moments of the robust function, (4) obtaining the second stage

robust estimation of the path coefficients, and (5) making statis-

tical inferences about the direct, indirect, and total effect of treat-

ments on outcomes by bootstrapping. The fixed-point and coor-

dinate descent algorithm was applied to solve the robust

estimating equations with greater stability.18

Simulation performance on contaminated datasets
Figure 2 shows the benchmark results of VB-RobM alongside

other existing methods, including the restricted maximum likeli-

hood estimator (REML, used by PSEM), bias-corrected robust

REML (BCR REML16), and the multivariate Bayesian estimator

(Bayesian). The simulation datasets were generated based on

a two-level linear mixed model (LMM) as described in Equation

12. An important question is how these approaches deal with

data distributions that do not neatly fit into those widely used

in statistical analysis. While this is not always a problem, real-

world datasets commonly encounter such issues. Here, we

generate ‘‘contaminated’’ datasets that have been deliberately

constructed so as not to conform neatly with standard statistical

distributions as a means of testing the robustness of parameter

estimation between the different methods. Contaminated data-

sets were generated using a mixture distribution combining a

normal and a c
2

distribution in a 4:1 ratio as an example. Addi-

tional simulation results for other mixture distributions with the

same 4:1 ratio are provided in Figures S2 and S3. We compared

statistical performance under two cases: centered errors, where

the mean of the errors is zero (top row of Figure 2), and uncen-

tered errors (bottom row of Figure 2).

Overall, VB-RobM proved to be the most accurate and effi-

cient method in both cases, while REML and Bayesian per-

formed reasonably well but were slightly less precise in the



Figure 2. Simulation (or benchmark) results of REML, BCR REML, Bayesian, and VB-RobM under normal-c2 mixture model errors

The top row (A–C) and bottom row (D–F) display the bias, CP, and average computational time cost per sample (in seconds) for the four methods under centered

and uncentered model errors, respectively. In (B) and (E), the red dashed line indicates the nominal 95% CP, representing the expected level that the methods

should achieve. The detailed results are listed in Tables S1 and S2.
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case of uncentered errors. BCRREML showed substantial draw-

backs in terms of bias and coverage probability (CP). These find-

ings highlight the advantages of VB-RobM over the other three

methods, particularly when the normality assumption is violated,

in path analysis.

Bias measures the accuracy of the estimator, with a bias of

zero indicating that the estimator, on average, provides correct

point estimates. In both cases, as shown in Figures 2A and 2D,

VB-RobM demonstrates lower biases compared with the other

methods, which are nearly zero, for the parameters: intercept

(b0 in Equation 12), slope (b1 in Equation 12), tau (standard devi-

ation of the random effect bij), and sigma (standard deviation of

the error terms εij). The biases for the four parameters, for

centered and uncentered errors were (0.013, 0.000, �0.058,

and �0.009) and (0.006, �0.000, �0.065, and �0.009), respec-

tively (see Tables S1 and S2). Moreover, REML, BCR REML,

and Bayesian exhibited greater bias under uncentered errors,

with biases of (1.036, 0.001, 1.616, and 1.284), (30.219, 0.443,

0.787, and 0.213) and (1.033, 0.001, 4.841, and 1.301), respec-

tively, when compared with the centered error case. The com-

parison of bias reveals that VB-RobM is more accurate and

robust than the other threemethods, especially in the case of un-

centered model errors.
CP refers to the proportion of confidence intervals that

contain the true parameter value across repeatedly simulated

datasets. A CP close to the nominal 95% typically indicates

an accurate estimation of the standard error. Here, we focus

only on the CPs of the intercept and slope estimates, as these

two parameters represent the path effects in path analysis.

Figures 2B and 2E illustrate that the CP of VB-RobM ap-

proaches the nominal 95%, with values of (91.2% and 95.4%)

for centered errors and (89.8% and 93.6%) for uncentered er-

rors (see Tables S1 and S2). By contrast, REML and Bayesian

exhibited low CPs for the intercept under uncentered errors,

respectively, at 46.6% and 60.2%. BCR REML performed the

worst, with CPs consistently falling below the nominal level

across both error cases, suggesting severe underestimation

of the standard error. This would therefore fail to support robust

hypothesis testing.

Finally, the average time cost per sample (in seconds) was re-

corded in simulation studies to evaluate the computational effi-

ciency of the methods. Figures 2C and 2E indicate that REML

is the most efficient, with a computation time of 0.003 s per sam-

ple for both centered and uncentered errors. Due to the addi-

tional debiasing procedure, VB-RobM requires slightly more

time than REML, taking 0.120 s per sample for centered errors
Cell Reports Sustainability 2, 100362, May 23, 2025 3



Figure 3. A real data analysis (i.e., global biodiversity experiments in terrestrial ecosystems) to compare the bi-trophic and tri-trophic in-

teractions with PSEM (REML), PSEM (BCR REML), Bayesian, and VB-RobM

(A) Locations of 68 global experiments (from 57 articles with 262 paired observations).

(B–E) The results of bi-trophic analyses to test the effects of plant species diversity on the interactions of invertebrate herbivores, and plants, for the four methods.

(F–I) The results of tri-trophic analyses to test the effects of plant species diversity on the interactions of natural enemies, invertebrate herbivores, and plants, for

the four methods. Plant performance included the growth, reproduction, and quality of plants, invertebrate herbivore performance included herbivore abundance

and damage, and natural enemy performance included the abundance of predators, abundance of parasitoids, predation and parasitism (see supplemental

methods). ‘‘*’’ denotes significance (p < 0.05). The red and blue arrows denote positive and negative relationships, respectively, the numbers next to each arrow

are the estimates for path effects of the edges, and line width is proportional to the magnitude of the estimates (Tables S3–S7).
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and 0.116 s for uncentered errors. Conversely, Bayesian

methods are the least efficient, primarily due to the computation-

ally intensive Markov chain Monte Carlo (MCMC) algorithm,

requiring 0.416 s per sample for centered errors and 0.382 s

for uncentered errors. The comparison of computational effi-

ciency demonstrates that VB-RobM raises accuracy and robust-

ness with reasonable computational demands, making it a pref-

erable choice for path analysis, particularly in situations involving

large sample sizes.
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Application to a global dataset: The effect of plant
diversity on trophic interactions
We applied our method to an ecological dataset to assess the

path effects of plant diversity on bi-trophic and tri-trophic inter-

actions among plants, herbivores, and their natural enemies.

This dataset, which includes 262 observations from 57 articles,

is geographically shown on the world map (Figure 3A).

Figures 3B–3I show the results of bi-trophic (plants and inverte-

brate herbivores) and tri-trophic (plants, invertebrate herbivores,
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and natural enemies) interaction analyses, respectively, using

PSEM (REML), PSEM (BCR REML), multivariate Bayesian, and

VB-RobM methods. All methods consistently indicated that

increasing plant species diversity enhances the performance of

natural enemies (respectively effects of 0.894, 0.896, 0.940, and

0.708 for the four methods) and plants (0.472, 0.472, 0.610, and

0.265), while reducing herbivore performance (�1.292, �1.287,

�1.340, and �1.053). Additionally, improved natural enemy per-

formance suppresses herbivore performance (�0.044, �0.028,

�0.010, and �0.136), which damages plant performance

(�0.092, �0.092, �0.020, and �0.084). Detailed information is

provided in Tables S3–S6. Similar relationships have been

observed in other large-scale meta-analyses,2,3 strengthening

the credibility of these results.

While the overall relationships predicted by the different ap-

proaches were almost identical, VB-RobM yielded results that

differed from other methods with respect to statistical signifi-

cance. While much can be said about the interpretation of signif-

icance and its meaning, it remains a key criterion for determining

whether observed path effects are due to chance or reflect true

underlying relationships in most studies. In summary, these dif-

ferences appeared in the relationships between natural enemy

performance and herbivore performance, as well as plant spe-

cies diversity and plant performance. For the path effect of nat-

ural enemy performance on herbivore performance, only VB-

RobM identified a statistically significant result, with a p value

of less than 0.001 (5.6233 10–6). In contrast, the other estimators

suggested that these relationships were non-significant (PSEM

[REML], p = 0.181; PSEM [BCR REML] p = 0.365) or for the

Bayesian method had confidence intervals overlapping zero

(–0.086–0.055). Conversely, for the path effect of plant species

diversity on plant performance, VB-RobM was the only method

to report a non-significant result, with a p value of 0.127 (slightly

greater than 0.05). The corresponding p values for PSEM (REML)

and PSEM (BCR REML) were 0.003 and 0.008, while the multi-

variate Bayesian method yielded a confidence interval of 0.247

to 0.967. To explain the different results among these methods,

we provided diagnostic plots for PSEM (REML), PSEM (BCR

REML), Bayesian, and VB-RobM in Figures S4 and S5. The scat-

ter residual points of PSEM (REML), PSEM (BCR REML), and

Bayesian methods were either floating above or sinking below

the expected line, suggesting potential deviations from normal

distribution. Such deviations suggest that the normality assump-

tion underlying these models may not hold, which could lead to

biased estimates.

Lastly, as mentioned earlier, VB-RobM can also infer the

direct, indirect and total effects of plant species diversity on plant

performance, shedding light on the pathways through which the

former affects the latter. Briefly, plant species diversity enhances

plant performance both directly and indirectly through the path-

ways: plant species diversity / natural enemy / herbivore /

plant performance (path 1) and plant species diversity / herbi-

vore / plant performance (path 2). Statistically, as shown in

Table S7, none of the effects were significant, as their confidence

intervals included zero: direct effect (–0.068–0.612), path 1 indi-

rect effect (–0.002–0.022), and path 2 indirect effect (–0.020–

0.206). However, the total effect, defined as the sum of the direct

and indirect effects, was significant with a confidence interval
0.052 to 0.659. In summary, these results provide weak evidence

that plant species diversity affects plant performance through

herbivore control, while strongly supporting its influence via mul-

tiple pathways.

DISCUSSION

In this study, we presented a robust and efficient statistical

method to reduce the influence of heterogeneity in path and

mediation analysis. Benchmark results indicate that VB-RobM

consistently outperforms other methods in terms of bias, CP

and time efficiency when handling data with unusual distribu-

tions or anomalies, i.e., our contaminated datasets (Figure 2).

Application in trophic analysis demonstrates that VB-RobM is

more accurate and robust when the normality assumption of

the data is violated (see Figures S4 and S5).

Previous studies have shown that both LMMand Bayesian ap-

proaches lack robustness when the Gaussian distribution

assumption for model errors is violated.19,20 A notable strength

of VB-RobM lies in its capability to handle both centered and un-

centered errors, an issue often overlooked in path analysis. Esti-

mating path effects without relying on distributional assumptions

is particularly challenging, especially in case of uncentered er-

rors. VB-RobM overcomes these limitations by integrating a

robust estimation framework (Equations 6–8) and leveraging a

DPMM (Equations 9–10) to correct deviations from normality

effectively. Another advantage of VB-RobM is its use of varia-

tional Bayesian approximation instead of the commonly em-

ployed MCMC algorithm for posterior estimation. This substitu-

tion substantially reduces computational time (Figures 2C

and 2F).

Despite VB-RobM surpassing the other three methods in

the case study, it faces difficulties in specific situations. Sim-

ulations with mixture distributions in a 4:1 ratio revealed that

the smallest proportion of contamination tolerable by VB-

RobM was 20%. To enhance its robustness to higher contam-

ination levels, incorporating an S-estimator into VB-RobM

could be a viable strategy.21 However, this approach requires

equal replication across all studies, a constraint that may limit

its practical applicability. Future work could explore inte-

grating the S-estimator into VB-RobM to enhance its robust-

ness and flexibility. Additionally, extending the applied LMM

(Equation 2) to accommodate hierarchical structures with

more than two levels could broaden its applicability in com-

plex data.

In conclusion, VB-RobM provides a significant advancement

in path analysis, improving accuracy and robustness while main-

taining computational efficiency. The method is well suited for

ecological research as well as other domains that require path

analysis to investigate complex relationships acrossmultiple tro-

phic levels.

METHODS

Literature sources and selection criteria
To compare those different methods mentioned in this study in

analyzing biodiversity effects on ecological trophic interactions,

we first establish a global dataset (i.e., the effect of plant diversity
Cell Reports Sustainability 2, 100362, May 23, 2025 5
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on trophic interactions). Studies were selected through a litera-

ture search of the Web of Science Core Collection, BIOSIS

Previews, Derwent Innovations Index, KCI-Korean Journal Data-

base, MEDLINE, Preprint Citation Index, ProQuestTM Disserta-

tions & Theses Citation Index, and SciELO Citation Index. We

used the Boolean search string based on the ‘‘TOPIC’’ search-

ing: [‘‘plant diversity’’ OR ‘‘crop diversity’’ OR ‘‘crop diversifica-

tion’’ OR ‘‘plant species richness’’ OR ‘‘ground cover vegeta-

tion’’ OR ‘‘flower strip’’ OR ‘‘intercrop*’’ OR ‘‘interplant*’’] AND

[‘‘herbivor*’’ OR ‘‘pest’’] AND [‘‘predat*’’ OR ‘‘parasit*’’ OR

‘‘wasp*’’ OR ‘‘natural enem*’’] AND [‘‘yield’’ OR ‘‘biomass*’’ OR

"productivity"]. This literature search was initiated in September

2021 and finalized in late November 2023. The search yielded

196,921 articles (see Figure S1 for a PRISMA diagram), which

were screened based on their titles and abstracts. This was

done to determine whether the articles measured a response

variable relating to the effects of plant species diversity on (1)

invertebrate herbivore performance (herbivore abundance and

damage); (2) natural enemy performance (the abundance, diver-

sity and parasitism of parasitic wasps, and the abundance, di-

versity, and predation of predators); and (3) plant performance

(the growth, reproduction, and quality of plants).3 In total,

195,939 articles were excluded at this stage. From the remaining

982 papers, we obtained our final selection of 57 articles based

on the following criteria for data inclusion: (1) means, standard

errors (or standard deviations), and sample sizes could be ex-

tracted from tables, figures, text, or supplemental information;

(2) the measurements of the treatment (higher plant species di-

versity,R2 plant species) and control (single or lowest plant spe-

cies richness) groups were conducted at the same spatiotem-

poral scale; (3) tri-trophic groups of plants, invertebrate

herbivores and natural enemies were monitored in the same

location; and (4) the study included a treatment that increased

the number of plant species; (5) any other agricultural practice

(e.g., pesticides and fertilizer input) should be the same for the

control (single/lowest plant species) and the treatment (diverse

plant species).2,3 In total, 57 articles with 262 observations

were used to test the effects of plant diversity on bi-trophic

and tri-trophic interactions of plants, herbivores, and their natu-

ral enemies. Measures of plant performance, invertebrate herbi-

vore performance, and natural enemy performance were re-

corded from these studies.

Two-level LMMs and robust REML
We employ two-level LMMs to acquire the initial estimates for

the submodels depicted in Figure 1A. Formally, let Xij;k denotes

the jth observation in the ith study for variable Xk, 1% i% n;1%

j%ni;1% k%K. For example, we can use Xij;1;Xij;2;Xij;3;Xij;4 to

denote the plant diversity, natural enemy performance, herbi-

vore performance, and plant performance in Figure 3. In this

case: n = 262 is the total number of measurements collected

in our study, ni is the number of measurements in ith study,

and K = 4 is the number of trophic levels. We assume Xij;k and

its ancestors or causals Xij;1;Xij;2;Xij;3;Xij;k� 1 (e.g., the plant di-

versity is the ancestor of the natural enemy performance, and

the herbivore performance has two ancestors, the plant diver-

sity and the natural enemy performance) and that these satisfy

the following LMMs:
6 Cell Reports Sustainability 2, 100362, May 23, 2025
Xij;k =
Xk� 1

l = 1

Xij;lbl;k +bi;k + εij;k ; (Equation 1)

where bl;k are the coefficients associated with the ancestor vari-

ables, bi;k � N ð0; t2kÞ are the random effects which explain the

between-study heterogeneity and εij;k � N ð0; n2kbs2
ij;kÞ are the er-

ror terms with known sampling variances and unknown observa-

tion-level heterogeneity. For simplicity, we reformulate model (3)

in matrix form below:

Xk = Mkbk +Zkbk + εk ; (Equation 2)

where Xk = ðXT
1;k ;X

T
2;k ; :::;X

T
n;kÞ

T
, Mk = ðX1;X2;.;XkÞ, bk =

ðb1;k ;b2;k ; :::; bk� 1;kÞT , bk = ðb1;k ;b2;k ; :::;bn;kÞT , εk = ðεT1;k ; εT2;k ;
:::; εTn;kÞT and X i;k = ðXi1;k ;Xi2;k ; :::;Xini ;kÞT , εi;k = ðεi1;k ; εi2;k ; :::;
εimi ;kÞT , Zk is the block-diagonal design matrix determined by the

clusters (in this study, clusters are the article numbers) of the ob-

servations. A generalmethod to estimate the coefficients and vari-

ancecomponents in (2) isREML,which takesaccount of the loss in

degrees of freedom that results from estimating bk .
22 To reduce

heterogeneity within the studies, a robust REML estimator was

proposed by modifying the estimating equations of REML with a

j-function18:

MT
kV

� 1
2

k c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA = 0; (Equation 3)

c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA
T

V
� 1

2
k ZkZ

T
kV

� 1
2

k c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA
� tr

�
dPkZkZ

T
k

�
= 0;

(Equation 4)

c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA
T

V
� 1

2
k
bSkV

� 1
2

k c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA
� trðdPk

bSkÞ = 0;

(Equation 5)

where d = E½jðeÞ2�, e � N ð0; 1Þ, Vk = t2kZkZ
T
k + n2k

bSk ,

Pk = V� 1
k � V� 1

k MkðMT
kV

� 1
k MkÞ� 1

MT
kV

� 1
k and bSk is a diagonal

matrix whose elements are the corresponding sampling variancesbs2
ij;k . The choice of j-function is rather loose, we use Tukey

j-function and fix tunning parameter at 4.685 for location estima-

tion and 5.12 for scale estimation in this study referring to the set-

tings of Richardson and Welsh.18 These settings could achieve

95% efficiency and 90% efficiency compared with ML estimators

for location and scale parameters, respectively.

VB robust estimator
The key assumption for obtaining unbiased estimators

for bk , t2k and n2k is the normality of the scaled residuals
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V
� 1

2

k ðXk � MkbkÞ.16 To overcome the normality limitation, we

modified the estimating equation as

MT
kV

� 1
2

k c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA = MT
kV

� 1
2

k mk ; (Equation 6)

c

0B@V
� 1

2
k ðXk � MkbkÞ

1CA
T

V
� 1

2
k ZkZ
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0B@V
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2
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1CA
� tr

�
hkPkZkZ

T
k

�
= 0;

(Equation 7)
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k
bSkV

� 1
2

k c

0B@V
� 1

2
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1CA
� trðhkPk
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(Equation 8)

where mk = E
h
c
�
V

� 1
2

k ðXk �MkbkÞ
�i

and hkI

= Var

264c
0B@V

� 1
2

k ðXk � MkbkÞ

1CA
375

are the expectation and variance of thej-transformed standard-

ized residuals, respectively.

However, the two new parameters mk and hk are related to the

true distribution of the scaled residuals and needed to be esti-

mated. Therefore, the DPMM is applied to estimate the density

andmoments of the scaled residuals. Comparedwith a generally

used method, kernel density estimation (KDE), DPMM is free of

selecting bandwidth for kernel function.23 What is more,

DPMM is more robust than KDE for we can choose weakly infor-

mative priors based on the residuals (further details regarding the

methods can be found in the supplemental methods). To avoid

the complicated and time-consuming MCMC sampling algo-

rithm for the convergence of DPMM, we use the VB DPMM

following17:

rijmi; ni � N ðmi; niÞ;mi; nijG � G;G � DPða;G0Þ; (Equation 9)

where ri represent the scaled residuals obtained by the first

stage estimation using robust REML estimators and the base

distribution G0 has density

gðm; nÞ = gmjnðmjnÞgnðnÞ = N ðm;0; tnÞIGðn; s;TÞ:
(Equation 10)

Here, IG denotes the inverse gamma distribution and the hy-

perparameters in this model are a;t;s;T. The posterior distribu-

tions for the parameters and the algorithm are given in supple-

mental methods. Under some regularity conditions, the VB

robust estimator bbk follows normal distribution
bbk/
d
N
�
bk ; xk

�
MT

kV
� 1
k Mk

�� 1
�

(Equation 11)

asymptotically, where xk =

 
1
N

PN
i = 1

�
jðriÞ � 1

N

PN
i = 1

jðriÞ
�2
!,�

1
N

PN
i = 1

djðxÞ
dx jx = ri

�2

. Finally, the confidence inter-

vals for the direct and indirect effects are obtained by bootstrap-

ping following Mackinnon.24

Simulation design
We compared the performance of VB-RobM, REML, bias-cor-

rected robust REML and Bayesian LMM by simulation studies.

Specifically, the model we used to generate the dataset is

Yij = b0 + b1Xij +bj + εij: (Equation 12)

We set the slope (b0) and intercept (b1Þ to 0, representing the

path effects of plant species diversity and amediating trophic level

(e.g., natural enemy performance) on an outcome trophic level

(e.g., herbivore performance), respectively. Xij � N ð�1;1Þ
were fixed in all datasets, representing the mediating trophic level

performance. bj � N ð0; 0:25Þ were the random effects, account-

ing for heterogeneity across the studies. The error terms

εij � N ð0;0:01Þ were 4:1 mixed by chi-squared distribution,

exponential distribution or Poisson distribution. We generated

500 datasets for each distribution. Each dataset had 100 samples

and 20 studies, i.e., 1% i%100;1% j%20.

Datasets
We compiled a dataset describing 3-factor (plant species diver-

sity, invertebrate herbivores and their natural enemies) and

4-factor interactions (i.e., plant species diversity, plants, inverte-

brate herbivores and their natural enemies) derived from 262 ob-

servations of 57 articles (see supplemental information). This da-

taset contained a total of 3/5 trophic feeding links between these

species in 3/4-factor interactions. This model dataset was then

used to compare the new VB-RobM method with conventional

PSEM which uses REML estimator and multivariate Bayesian

analysis based on Bayesian LMMs.

Treatments, mediators, and outcome of the case study
dataset
To explore how the treatment, i.e., plant diversity, affects the tro-

phic groups (i.e., natural enemy performance, herbivore perfor-

mance, and plant performance), we took plant diversity as treat-

ment, natural enemy performance (including measures of

abundance of predators, abundance of parasitoids, predation,

and parasitism) and herbivore performance (including measures

of herbivore abundance and damage) asmediators, plant perfor-

mance (includes growth, quality, and reproduction of plants) as

outcomes and latitude, and plant type as covariates, respec-

tively. Further we found that the effects of plant diversity were

nonlinear, and the plant diversity increase from 0 to 1 affected

the trophic groups majorly. Here, plant species richness is

essentially a binary variable (0 or 1), indicatingwhether plant spe-

cies richness was increased irrespective of the number of
Cell Reports Sustainability 2, 100362, May 23, 2025 7



Article
ll

OPEN ACCESS
species added. Specifically, ‘‘0’’ means the control group (i.e.,

single or lowest plant species richness), and ‘‘1’’ denotes the

treatment group (higher plant species richness, R2). Therefore,

to explore the effects of additive plant diversity on the other tro-

phic groups, we defined the added plant diversityD to be the dif-

ference between the plant species richness in treatment and

control groups minus 1. Here, additive plant diversity is a contin-

uous variable describing the increase in plant species richness

between the control (monocultures of the lowest experimental

species richness of plants) and the treatment with an increased

plant species richness relative to the control. In this case, the

intercept terms in the model were interpreted as the treatment

effect and the slope of D was interpreted as the additive effect.

Effect size measures in real datasets
The Hedge’s g standardized mean difference (SMD) is applied to

measure the effects of plant diversity on the trophic groups,

which is calculated as the mean difference between treatment

and control groups divided by pooled standard deviation sp of

these two groups, where sp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnt � 1Þs2

t
+ðnc � 2Þs2c

nt+nc � 2

q
, nt and nc are

the sample sizes, st
2 and sc

2 are the sample variances of the

two groups, respectively.

Implementation of the methods compared
We conducted multivariate Bayesian analysis following the

priors and settings given in Dainese et al.9 Specifically, we

used priors N ð0;10Þ for bk and half-Student T ð3;0;5Þ for t2k
and n2k . We used ‘‘rstanarm’’25 and ‘‘brms’’26 package in R to

conduct the Bayesian analysis and ‘‘piecewiseSEM’’27 to

conduct SEM analysis, respectively. The VB-RobM analysis

was conducted by our developed R package ‘‘VB-RobM,’’ which

is available on GitHub (see data and code availability).

RESOURCE AVAILABILITY
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Further information and requests should be directed to the lead contact, Nian-

Feng Wan (nfwan@ecust.edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

All data used in this analysis are deposited on Zenodo (https://zenodo.org/

records/10514049). The open-source R package VB-RobM and code for

reproducibility of this analysis is available on GitHub (https://github.com/

YuquanW/VBRobM). Supplementary code is provided in Note S2
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