
Journal of Artificial Intelligence Research 82 (2025) 1845-1907 Submitted 06/2024; published 03/2025

Path-Planning on a Spherical Surface with
Disturbances and Exclusion Zones

Jonathan Smith jonsmi@bas.ac.uk
Samuel Hall samhall@bas.ac.uk
George Coombs gecoomb@bas.ac.uk
Harrison Abbot habbot@bas.ac.uk
Ayat Fekry aykry@bas.ac.uk
Michael A. S. Thorne mior@bas.ac.uk
British Antarctic Survey, Cambridge, UK

Derek Long derek.long@kcl.ac.uk
King’s College London, Strand, London WC2R 2LS, UK

Maria Fox maria.s.fox@gmail.com
British Antarctic Survey,
High Cross, Madingley Road, Cambridge CB3 0EX, UK

Abstract
An algorithm is presented for path-planning in a non-uniform spheroid mesh containing exclu-

sion zones, vector and scalar fields. The mesh models physical environments such as ocean regions,
together with a variety of environmental phenomena such as wind, current and ice conditions which
impact on routing decisions. The path-planning method can be used to optimise the travel time
of journeys between points in the mesh. We provide the algorithmic details and the mathematical
foundations of the algorithms. To demonstrate that the method has basic desirable properties, we
show that long paths in unconstrained regions of the mesh closely approximate great circle arcs.
We go on to show that the method path-plans efficiently in environments with complex interacting
conditions.

1. Introduction

In this paper we address the problem of path-planning for a vessel on a spherical surface with
obstacles and an environment. The environment is modelled by a scalar field representing combined
resistances and a vector field representing directional constraints on the progress of the vessel. The
spherical surface and environmental features represent the surface of the Earth, including polar
regions where challenging sea ice conditions apply. This work has application in path-planning for
ships and autonomous marine platforms in a range of environmental conditions. The problem is
a variant of the well-known Zermelo’s navigation problem. Zermelo (1931) studied the problem of
finding the fastest path for a vehicle navigating in a vector field on an uncluttered planar surface.

The path-planning method that we present is called Polar Route. Input to the system is a
gridded model of a region within the global ocean aggregating a range of different environmental
data sources that impact on path-planning for a given vessel specification. We first demonstrate
the features and performance of Polar Route on randomly generated abstract models, then we
present a number of real navigation examples. In order to show that the method is well-founded,

©2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

we demonstrate that paths generated in unconstrained environments are close approximations of
the corresponding great circle arcs1. On top of satisfying this basic requirement, we further show
that Polar Route generates efficient plans in the presence of scalar and vector field environmental
conditions including in situations in which obstacles are present.

As well as path-planning in the presence of fields and exclusion zones, one of the main technical
contributions of this paper is the approach we present to overcoming the limitations of mesh-based
planning. Polar Route features a novel smoothing method that can be used to refine and improve
the efficiency of a grid-based path produced by any of the well-known shortest path methods.

The paper is organised as follows. Section 2 specifies the problem being addressed. Section 3
motivates the problem and highlights some of the challenges that shape the solution we propose.
Section 4 gives an overview of the route planning method used by Polar Route. Section 5 provides
an overview of related work in path planning, particularly in the context of environmental features
and on spherical surfaces. Section 6 describes Polar Route in detail, including the mathematical
derivation of the solution to the fundamental problem: that of finding the fastest path across a
boundary between areas with two different prevailing environmental conditions. We show how this
problem extends to the spherical surface and explain how Polar Route exploits this in constructing
the final path. Section 7 presents an evaluation of the performance of Polar Route on both synthetic
and natural data sets, and a comparison between Polar Route and a Probabilistic Road Maps method
(PRMs) (Kavraki & Latombe, 1998) in an example featuring obstacles but no fields. PRMs are
widely used for path planning in robotics so it is of interest to understand how they can be used
to address our problem. Section 8 extends our evaluation to compare with IcePathFinder (Lehtola,
Montewka, Goerlandt, Guinness, & Lensu, 2019), a system designed for maritime navigation in icy
waters. Finally, Section 9 concludes the paper.

2. Problem Definition

In this section we specify the form of the navigation problem solved by Polar Route. Informally,
the problem is to find the fastest path for a vessel moving between two waypoints, through an
environment on the surface of a sphere. The vessel is modelled as a particle moving under its own
power, with no momentum or constraints on turning behaviour, and subject to the effects of the
environment. A particle assumption is reasonable since the vehicle is insignificant in size at the
scale considered, and the time to change velocity is also insignificant. The environment is modelled
by a scalar field, which acts to constrain the maximum speed that the vessel can generate and a
vector field that acts summatively on the velocity of the vessel moving in it.

2.1 The Environmental Mesh

The environment through which the vessel travels is an abstraction constructed using geospatial
data. Suitable datasets are available from a variety of GIS services2. Surface sea ice concentration

1. A great circle arc between two points is the shorter segment of the circle defined by the intersection of the sphere
and the plane containing its centre and the two points.

2. Geographical Information Systems Services include Copernicus, the National Snow and Ice Data Centre (NSDIC),
the European Centre for Medium-range Weather Forecasting (ECMWF) and the General Bathymetric Chart of
the Oceans (GEBCO).

1846

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

and bathymetry3 are examples of scalar fields, while surface currents and winds are examples of
vector fields.

A dataset might consist of observations, or it might be a model-generated best fit to observations,
providing a mean-state estimate. Datasets have temporal resolution as well, varying from days to
months or years. Complex applications of a digital model of an environment require information
about many environmental conditions, and the different datasets must be abstracted and combined
in some way to provide a characterisation that is adequate for the intended application.

To characterise this data, we abstract the surface into tiles bounded by lines of constant latitude
and longitude. The resulting grid of cells is called a mesh. Each cell in the mesh has a centre that
is geo-located at a unique latitude and longitude, and contains a constant scalar field and constant
vector field. These are arrived at by combining the temporally and spatially located data using a
suitable aggregation method.

A subset of the cells are further subdivided into equally sized quarters in order to better charac-
terise the details of the environmental features in areas of environmental complexity (for example,
around land and on the edges of sea ice). Subdivision leads to a non-uniform mesh in which all
cells have equal angular aspect ratio4 This subdivision can be performed on cells arbitrarily deeply,
although few subdivisions are needed for Polar Route to achieve a very high degree of accuracy in
the great circle approximation (see Figure 1).

The mesh abstraction treats cells as rectangular, projecting the spherical segment onto the
rectangular field. The width of each cell is approximated by taking the distance spanned by its
longitudinal angle at the equator and multiplying it by the cosine of the latitude of the centre of the
cell. Its height is the distance spanned by its latitudinal angle (along the great circle through the
poles). This approximation is successful because land masses at the poles prevent access to cells in
which the distortion of the projection would become prohibitive.

We use a deterministic modelling approach, in common with other long-distance navigation
methods (Bast, Delling, Goldberg, Müller-Hannemann, Pajor, Sanders, Wagner, & Werneck, 2016;
Lehtola et al., 2019; Bijlsma, 1975; Dijkstra, 1959; Kotovirta, Jalonen, Axell, Riska, & Berglund,
2009; Zermelo, 1931). The temporal and spatial scales of the navigation problem considered render
stochastic path-planning infeasible. Our strategy is to plan using a snapshot of conditions, and
replan as conditions change and are re-meshed.

The entire mesh can be conveniently captured as a quad-tree data structure (Finkel & Bentley,
1974). Cells are classified as entirely passable (albeit under different constraints) or entirely im-
passable. Since scalar and vector fields are constant within each cell, fields are discontinuous at the
boundaries between cells.

As well as capturing and representing the information contained in each of the datasets, the
meshing of datasets serves as a compression method, with the file size of resulting meshes being
orders of magnitude smaller than the source data sets from which they were created.

Definition 1. A mesh partitions a region of the environment into different-sized cells of equal
angular aspect ratio, bounded by lines of constant latitude and constant longitude, in which each cell
contains a constant scalar and constant vector field.

3. A bathymetric dataset such as GEBCO provides high resolution measurements of sea bed elevation (and hence
depth of water).

4. The angular aspect ratio is the ratio of the angles subtended by the horizontal and vertical edges of the cell.

1847

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 1: Polar Route plans a path between two waypoints that are 2629.29 km apart within a cell
of dimensions 20◦ latitude by 40◦ longitude. In a single cell representation, the straight
line path is 1.14% longer than the great circle computed on a sphere. One cell subdivision
reduces this error to less than 0.3%. Three cell subdivisions are sufficient to reduce the
cell sizes down to 2.5◦ latitude by 5◦ longitude and allow Polar Route to construct a great
circle approximation to within an error of 0.02%. Five subdivisions reduce the cell sizes
to 0.625◦ latitude by 1.25◦ longitude, and achieve an error within 0.004%.

Details of the construction of the mesh data structure are outside the scope of this paper. A
mesh satisfying the properties described in Definition 1 can be arrived at in different ways. Polar
Route receives such a mesh as an input, and generates paths that are constrained by its structure.

2.2 Properties of Paths

A vessel travelling across a cell travels with its velocity determined by the sum of the vector field
effect in that cell and the vector of magnitude equal to its maximum speed (determined by the
scalar field in the cell) at its chosen bearing. Note that the fastest path across a cell will always
be found by using the maximum speed possible, according to the scalar and vector fields. A vessel
travelling along the boundary between two cells is assumed to be affected by the more favourable
conditions of the two adjacent cells.

Definition 2. Cells are considered closed at the boundaries. Two cells, A and B, are adjacent
if neither is blocked and their intersection is non-empty. They are diagonally adjacent if their
intersection consists of a single point. The space inside a cell, C, (including its boundary) is referred
to as Space(C).

In general, a path is a continuous trajectory from a start waypoint to an end waypoint, passing
through cells in the mesh. A path in a single cell, C, can be modelled as a continuous parametric
equation, C : [0, 1] → Space(C), defining the points on the curve (which may be a straight line), in

1848

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 2: An example of a general path from s to t in a mesh, passing through four cells and
consisting of three adjacent cell pairs. The points on the boundaries of the cells are the
ends of the curves of the path in the two adjacent cells. The three significant points, fp,
mp and lp, are shown for the adjacent cell pair C1 and C2.

C as a function of a parameter x ∈ [0, 1]. The curve connects the points C (0) and C (1), which may
lie inside C or on its boundary (see Figure 2). Although Definition 3 describes the fully general form
of arbitrary continuous paths in a mesh, Polar Route only constructs paths in which the curves are
straight lines.

Definition 3. A path, P , in a mesh, M, between start waypoint, s, and end waypoint, t, is a
sequence of pairs, (Ci,Ci), i = 0, .., n, of cells and curves in those cells, such that C0(0) = s,
Cn(1) = t and, for each i = 1, .., n, Ci−1(1) = Ci(0).

The final clause of Definition 3 ensures that the path is connected from one cell to the next.

Definition 4. An adjacent cell pair in a path, P = {(Ci,Ci) : i = 0, .., n} is a pair of cells
(Cj , Cj+1), and the first point, fp, mid-point, mp, and last point, lp, of the path in this adjacent
cell pair are Cj(0), Cj(1) and Cj+1(1), respectively.

Three types of adjacent cell pairs, defined in Definition 4, can arise: those in which all three
points lie on cell boundaries (the most common type in a smoothed path), those in which either the
fp or the lp lie inside the space of the corresponding cells (which only occurs at the start and end
of a path) and, finally, those in which fp are lp are the specific cell centres of their respective cells
(occurring in the grid-based paths constructed prior to smoothing).

The problem we address can now be formally stated as follows:

instance: Two points, s and t on a spherical surface, a mesh M defining a grid-
structured partition of the surface, assigning scalar, S(C), and vector, V (C), field effects
to each cell C ∈ M in the mesh, and an error tolerance ϵ > 0.

question: Find a path, P , within M from s to t whose total travel time is ϵ-optimal
among all paths from s to t in M.

This format mirrors that used by Mitchell and Papadimitriou (1991) in their paper on a closely
related problem. Their work is further discussed in Section 5.

1849

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

3. Motivation

The shortest path between two points on a sphere is a great circle arc. Modern GPS-based methods
can follow a great circle arc in equatorial waters, although these methods are much less reliable in
areas closer to the poles. Global navigation continues to depend primarily on compass bearings.
Ships follow rhumb lines5, changing bearing at appropriate points in order to closely follow great
circle arcs. This practice reduces reliance on continuous GPS coverage and also allows interventions
to adjust course around local weather conditions or other obstacles. This motivates constructing
paths as sequences of waypoints connected by rhumb lines, where a key challenge is the problem
of finding the most efficient way to connect rhumb lines in the presence of obstacles and varying
environmental conditions.

Figure 3 shows examples of the problem we are addressing, constructed by randomly generating
the scalar and vector fields as Gaussian Mixture Models. These examples are displayed in Mercator6

projections. In these horizontal and vertical path examples, the waypoints are in fixed horizontal
positions and fixed vertical positions respectively. Fixing these positions makes it clear how the paths
change under the different conditions. It can be seen that the paths in the vertical examples cross
the 0 latitude boundary, showing that Polar Route correctly manages the reflection of the surface
through the equator. In the absence of constraints, the shortest paths follow approximate great circle
arcs, as can be seen in the top left of the vertical examples, and the top of the horizontal examples.
When environmental conditions are present, modelled by Gaussians, the paths are distorted from
great circle arcs as necessary to accommodate them.

Figures 4 and 5 show paths planned by Polar Route in real environmental settings in the Arctic
and in equatorial waters. The Arctic example is shown in a northern polar stereographic projection7.
These examples show that Polar Route proposes efficient ways to navigate modelled conditions across
long distances, adhering to common navigation practice by following rhumb lines and changing
bearings infrequently. The computational requirements are moderate so routes can be regenerated
when environmental conditions change.

4. Methods

Polar Route plans in two stages. First, the mesh is abstracted into an accessibility graph, defined
in Definition 5.

Definition 5. An accessibility graph is defined as G = ⟨V,E,w⟩, where V is the set of cell centre
points and E is the set of edges connecting adjacent pairs in V , with weights w(e) ∈ R+ for each
edge e ∈ E.

Dijkstra’s algorithm (1959) (presented in Appendix E) is used to construct shortest paths,
which we call mesh-optimal, in the accessibility graph. To avoid unnecessary computation we only

5. A rhumb line, also known as a loxodrome, is a path of constant bearing.
6. A Mercator projection of a convex curved surface is a projection in which lines of constant longitude run orthog-

onally to lines of constant latitude, forming a grid. The parallels of latitude are straight lines spaced increasingly
far apart towards the poles. The projection is named after the cartographer Gerardus Mercator who first defined
this projection in 1569.

7. A polar stereographic projection projects points on a sphere onto the plane from a point of perspective at the
pole. Great circle arcs passing through the pole are then seen as straight lines on the projected surface. All
other great circles project to circles, but arcs of great circles passing close to the pole are seen as approximately
straight.

1850

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 3: Examples of paths planned in Gaussian Mixture Model environments, showing the mesh-
optimal paths (red dotted lines) and paths obtained after smoothing (in black). As can
be seen from the axes, these are southern hemisphere and equatorial examples. Further
analysis of these examples is included in Section 7.

evaluate edges as they are required by the Dijkstra search. Dijkstra’s algorithm could be replaced
by a version of A∗ or a dual search from both the start and end points in the accessibility graph to
achieve equivalent mesh-optimal paths.

The edge weights, w, are the fastest travel times between the centres of the adjacent cells in
G. If the two cells model different environmental conditions, the shortest travel time will be the
conjunction of two straight-line segments meeting at the boundary of the cells. The position of
the crossing point on the boundary is the single degree of freedom in this non-linear optimisation
problem. The impact of the position of the crossing point on the total travel time, in a variety of
different current conditions, is shown in Figure 6. The graph shows the travel time between two
points equally spaced across a boundary that is orthogonal to the straight line connecting them,
so that, in the absence of a vector field, the shortest travel time is when the crossing point is at

1851

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 4: Paths planned in the Arctic using surface ice concentration data from September 2023.
The red dotted area is expanded on the right, to show the mesh decomposition on the ice
edge, and how Polar Route skirts around inaccessible cells.

0 displacement from the straight line between the points. As can be seen, travelling away from
the line, to either side, increases the travel time. The curve is a quadratic (as we show in detail
in Section 6.1.1) and, more precisely, a hyperbolic, in which the asymptotes are determined by the
maximum speed on each side of the boundary.

Figure 6 shows that, when a vector field is present, the curve is displaced, so that the solution can
vary between positive and negative displacements. In this example, the environment is modelled
with currents and a scalar field fixing the maximum speed of the vehicle to be 20 in both cells
(units are not important in this abstract example). The currents are described by pairs of vectors
(a, b); (c, d) for the two cells in the order of travel, with a and c the currents orthogonal to the
crossing line and b and d oriented in the direction of the straight line from the starting point to
the end point. In Section 6.1.1 we show the derivation of this curve as an implicit function of the
displacement and explain how its minimum can be found numerically using the Newton-Raphson
method.

Curvature affects the choice of crossing points. Figure 7 shows the effect of latitude on the
choice of crossing point in the southern hemisphere. In this example, the travel time is a function
of angular displacement from the origin at 63.75◦ S. The start and end points are both at this
latitude, a constant scalar field of 20 is used and no vector field applies. The distance between the

1852

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 5: A planned path crossing the equator (at 0◦ latitude) from Start to End. The red boxes
indicate expansions showing how Polar Route navigates around land cells and shallow
bathymetry.

waypoints has been increased to show the curvature effect. The orange curve shows the travel times
for the planar model, in which the fastest path crosses at zero displacement. The blue curve shows
the effect on travel times of modelling the spherical surface. In this case, it is faster to cross at a
latitude displacement of -0.31◦. Clearly, similar results, but reflected, are obtained in a northern
hemisphere example. Only at the equator will the planar and curved surface paths be the same.

The curve in Figure 7 is not a quadratic, because the choice of crossing point has a cosine-based
effect on the scaling of distance. The details of the derivation of the implicit function determining
travel time over the curved surface as a function of the choice of crossing point are given in Ap-
pendices C and D, and the solution can be found by an application of Newton-Raphson’s method
similar to that used in the planar case (the common structure makes it sensible to use a common
solution framework for the two cases).

1853

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 6: Travel times between two points at 63.75◦ S latitude under the effects of different currents
(colour-coded). The x-axis shows the crossing point as displacement in degrees from the
straight line between the two points. The y-axis shows the travel time at each of these
displacements. The line through zero gives the optimal travel time in the absence of a
vector field. The environment is modelled as a planar surface. The non-zero currents are
all magnitude 5 northerly in the left cell and of different magnitudes and orientations on
the right (as indicated by the legend).

The navigation problem requires not only that the path respects the vector and scalar fields in
the cells it crosses, but also that it avoids cells that are blocked (by land or other exclusion zones).
The compromise between the effects of curvature and the impact of blocked cells, as well as the
graduated effects of the scalar and vector fields, makes the problem challenging. Finding shortest
time paths through scalar fields has been explored, and the solution proposed by Mitchell and
Papadimitriou (1991) illustrates the significance of the identification of the crossing points between
boundaries of regions with different scalar characteristics. The combination of this problem with
vector fields has received less attention. As discussed in Section 5, Garrido et al. (2020) do address
scalar and vector fields in the context of marine navigation, but only with regard to short-distance

1854

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 7: Travel times between two points at 63.75◦ S latitude, showing the effect of modelling the
spherical surface. The orange curve is the optimal solution in the planar model. The blue
curve shows that optimal travel time is achieved on the spherical surface by crossing at a
-0.31◦ displacement.

navigation on a high resolution grid of a planar surface. The additional impact of using a spherical
surface is most relevant in long-distance maritime or aerial navigation and this problem remains
extremely challenging. We discuss some related work in this area in Section 5.

We therefore formulate the equations that determine the travel time for a given crossing point
and then minimize this time numerically, using Newton’s method to solve the corresponding minimi-
sation problem. Special cases arise if the problem does not have a stable solution or if the solution
falls outside the boundaries of the cells. If we face numerical instability, we attempt various recovery
methods for the numerical process, and otherwise set the edge as infinite weight.

As can be seen in Figure 8, the paths in the two directions between two waypoints are asymmetric
due to the directional effect of the vector field. The path from West to East exploits the strong
Antarctic Circumpolar Current (ACC) flowing between the tip of South America and the Northern
Peninsula of Antarctica. The East to West path avoids the ACC by travelling closer to the Northern
Peninsula and exploiting the East Wind Drift Current. This example emphasises the importance
of modelling the vector field as it has significant effects on path quality.

Smoothing iterates over the entire path until convergence is reached. This process refines a
mesh-optimal path into one that follows the curvature of the sphere as closely as possible given the

1855

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 8: On the left, mesh-optimal and smoothed paths in a Mercator projection. On the right,
the same paths in a southern polar stereographic projection. In all cases, the paths in
both directions are shown, generated in an environment constrained by a scalar field
representing land and sea ice, and a vector field representing currents. The vector field
significantly increases the East to West travel times.

modelled disturbances and accessibility constraints. Figure 8 illustrates the impact of combining
navigation on a sphere with the problem of obstacle avoidance and field effects, showing each of the
two stages of the Polar Route method. The details of both the mesh-optimal path construction and
the smoothing method are presented in Section 6.

4.1 Optimality

Polar Route constructs paths that represent a compromise between travel time and the number of
bearing changes. The latter feature is important to navigators, but hard to evaluate versus travel
time. The formal problem description in Section 2 is expressed only in terms of minimising travel
time. The number of bearing changes on a path is dependent on the number of grid cells the path
crosses, but the error between the great circle arc that crosses a cell, and the rhumb line distance
across that cell, depends on the size of the cell, as shown in Figure 1. If we are willing to accept
more bearing changes in order to reduce travel time, we can increase the number of cells to improve
the accuracy of the paths. If cells are further subdivided in order to achieve this, the properties
of the original cells remain unchanged. Subdivision can therefore be performed arbitrarily often in
order to improve the path travel time.

The rhumb line distance converges approximately linearly towards great circle arc distance in
the number of cell divisions. The number of cells crossed by the path approximately doubles for
every subdivision. Thus, convergence to optimality is approximately logarithmic in the number of

1856

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 9: Percentage error in rhumb line versus great circle arc between points at 60◦ latitude,
2.5
2n

◦ latitude and 5
2n

◦ longitude apart, for increasing n.

cells on the path. Figure 9 shows the error between rhumb line distance and great circle arc for an
example crossing (corner to corner) in a cell at 60◦ latitude. As can be seen, the error is less than
1 in 10,000 after just one subdivision.

The approach used in Polar Route has a singularity in its behaviour at the poles. As a con-
sequence, paths that pass exactly through the poles cannot be constructed using this method.
Behaviour close to the poles remains stable, but the algorithm for handling converging points at
the boundaries of cells during smoothing does not apply if the polar cells are allowed to converge at
a single point. The error in paths that should otherwise traverse the pole can be made arbitrarily
small by using increasingly fine-grained subdivision of the cells around the pole, allowing their base
edges to get arbitarily close to the pole without reaching it. Since marine navigation at the poles is
not a real problem, we do not attempt any more specific solution to navigation in polar regions.

A more significant issue for optimality of Polar Route paths is the possibility that mesh optimal
paths pass around obstacles on the opposite side relative to the optimal path in reality. In this
case, our smoothing algorithm cannot lift the path across the obstacle. This situation can always
be resolved by finer subdivision of the cells around the obstacle. More generally, the length of the
mesh-optimal path also converges towards the optimal path length as the cells are subdivided.

5. Background

Path planning has been considered in a variety of environments, particularly in situations con-
strained by the presence of obstacles or the existence of predefined accessible paths (eg roads).
Some researchers have explored the problem of robots moving through different terrains, taking
into account the impact on their maximum speed according to the terrain conditions. For exam-
ple, Mitchell and Papadimitriou (1991) found an efficient solution to path planning through planar

1857

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

polygonally segmented regions, in which different polygons are assigned different weights represent-
ing the maximum speed of the vehicle in each region. They solve the following problem:

instance: Two points, s and t in the plane, a finite triangulation γ in the plane, an
assignment of weights, ae and af , to edges and faces, and an error tolerance ϵ > 0.

question: Find a path within γ from s to t whose weighted Euclidean length is ϵ-optimal
among all paths from s to t in γ.

The solution they explore allows paths to follow the edges forming boundaries between the
regions, which are weighted separately from the faces. The authors employ a continuous Dijkstra’s
algorithm method, in which the paths maintained in the priority queue managed by the algorithm
are extended by selecting intervals of reachable space, separated by events at which the paths cross
boundaries or enter edges between faces.

While triangulations and other tilings, such as hexagonal, can be used to form a mesh, grids
formed from rectilinear polygons are often used to represent terrain in different situations where
path-planning is required. Methods for path-planning in rectilinear models find shortest paths under
accessibility constraints requiring grid artifacts such as cell centres, corners or edges to be followed.
These include Dijkstra’s algorithm (1959) and variants of A⋆ search (Koenig, Likhachev, & Furcy,
2004; Koenig & Likhachev, 2002; Ferguson & Stentz, 2006). These constraints mean that shortest
paths found by these methods are longer than the actual shortest paths in the environments being
modelled. This was shown by Daniel et al. (2014), who show how A⋆ can be used to find an initial
path that can then be “smoothed” by relaxing some of the grid-following components of the path
and allowing grid edges to be crossed at any angle, to make those parts of the path shorter. In their
approach, called Theta⋆, this is done by using lines of sight to replace a sequence of lines that visit
grid points, as long as these lines of sight do not cross obstacles. The resulting paths have fewer
changes of heading and are closer to optimal paths in reality. An alternative approach is considered
by Rivera et al. (2020), who reduce the impact of the grid-based restrictions by considering larger
neighbourhoods. This leads to a larger range of possible angles for the path segments and reduces
the occurrence of grid artifacts in the paths. Both works were carried out on a planar surface and
environmental factors, such as wind, were not considered. Rospotniuk and Small (2022) extend an
any-angle approach due to Harabor and Grastien (2013), designed for Euclidean planes, to compute
optimal paths on a spherical surface with obstacles. Their system, called Spherical Anya, performs
an any-angle style search in a grid (based on an equirectangular projection), but uses great circle
arcs to project the lines of sight. This leads to optimal paths as combinations of great circle arcs
and boundary-following behaviour around obstacles. The authors do not consider scalar or vector
fields.

5.1 Algorithmic Approaches

The Fast Marching Method (Sethian, 1996) uses a variant of Dijkstra’s algorithm to find paths in
a graph constructed on a fine-scaled mesh, using numeric methods to determine the travel time
between points in the mesh. This approach allows both scalar and vector fields to be consid-
ered (Garrido et al., 2020; Garrido, Álvarez, & Moreno, 2016). Sethian (1996) has observed that
the topology of the surfaces over which it is applied can include spherical or ellipsoidal surfaces.
As Garrido et al. (2020) observe, the accuracy of their solutions is a compromise between the grid
resolution and the computation time. Although the cost of their algorithm is O(n) for a grid of

1858

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

n points, this is dependent on using an implementation of Dijkstra’s algorithm that exploits an
untidy priority queue (Yatziv, Bartesaghi, & Sapiro, 2006). The same data structure could be used
to speed up the performance of Dijkstra’s algorithm in Polar Route, but the untidy priority queue
introduces an approximation that can, in principle, lead to inaccurate outcomes.

The Fast Marching approach proposed by Garrido et al. (2020) involves first expanding a wave
front from the source to identify obstacles, further propagating waves from the obstacles themselves,
to identify costs with points on the grid that compromise between time-to-travel and distance to
obstacles. Bijlsma (1975) uses a variant of Fast Marching in which the time increment is maintained,
so that instead of calculating the time to reach positions, he calculates the positions reached after
specific times. Petres et al. (2007) have also explored the use of Fast Marching to plan navigation
in underwater environments on a local scale where spherical geometry is not relevant.

Other methods discretise the environment without imposing a regular grid structure. A detailed
survey by Kavraki and LaValle (2016) highlights some of the main approaches that have been
taken in path and motion planning for robotics. One of the most influential approaches is the
Probabilistic Road Map (PRM) method (Kavraki & Latombe, 1998). This approach builds a graph
representing the underlying space and the impact of the kinodynamic constraints on the robot
moving in that space. It does this by using sampling to select waypoints in the space (filtering
these to remove points that lie inside obstacles) and then connecting close neighbours by using
simple edges that represent feasible solutions to the local kinodynamic problem of moving the
robot from one configuration to the other. This approach has an important property: assuming
that the sampling strategy has appropriate qualities, the shortest path between waypoints in the
graph generated by this method will converge to optimal as the sampling density increases. By
appropriately selecting the metric for determining the edges between waypoints, this approach can
be applied to spherical surfaces. Sampling can be performed probabilistically or deterministically.
LaValle et al (2004) discuss the impact of alternative strategies, including importance sampling,
quasi-probabilistic and mixed deterministic-probabilistic sampling. The performance of a PRM
approach on problems addressed by Polar Route is further discussed in Section 7.

5.2 Mathematical Methods

The navigation problem of finding the fastest path for a vessel navigating in a vector field on a
surface, was first formalised by Zermelo (1931). He offered as an example the problem of navigating
a ship in wind, which he considered on a planar surface. In a conference in 1929 he also proposed
a version of the same problem with an airship moving in a 3-dimensional vector field. Zermelo
and other mathematicians approached the problem through the calculus of variations. Certain
cases are solvable analytically (for example, a vector field of constant magnitude and direction is
easily solvable) and navigation on surfaces of revolution, such as a globe or an ellipsoid, have been
explored (Bonnard, Cots, & Wembe, 2021; Aldea & Kopacz, 2020), with some simpler cases also
being solvable analytically. In most cases, the problem can only be solved numerically. One way to
approach path planning is as a control optimisation problem as it was posed by Zermelo (1931).

Variational methods treat navigation problems as continuous control problems, with solutions
developed as continuous functions specifying control responses along the path of the vessel. For
example, Bijlsma (1975, 2001) uses this approach to solve marine navigation problems in scalar
fields, while Aldea and Kopacz (2020) use it to solve navigation on a spheroid surface in wind. In
these methods, the theoretical underpinnings rely on assumptions that the fields are continuous

1859

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

and differentiable. The solutions can then be found, in certain cases, using variational principles.
The computational process is then to find values of these solutions, which is typically achieved
numerically, by closely approximating the necessary derivatives using local gradient calculations
and integration (to determine travel time, distance travelled or fuel consumed) by similar numerical
methods, such as a simple predictor-corrector method.

Discretised data does not necessarily prevent the use of a continuous model. Bilinear interpo-
lation can be used between discrete values, effectively turning the discontinuous problem into a
continuous approximation which may be considered no worse an approximation of the underlying
reality than is a discretised mesh. Nevertheless, the optimal control approaches rely on discretis-
ing the space once again in order to apply numerical methods and this discretisation is typically
done at very high resolution. For example, Bijlsma (2001) uses a mesh with a resolution similar
to the distance a ship can travel in 6 hours. This would be approximately 150 km8 which is a
little more than a degree of latitude. A uniform mesh at this resolution would introduce at least
an order of magnitude more grid points than is typical in a mesh generated for Polar Route in
which non-uniform sized cells greatly reduce the mesh complexity. For finer scaled navigation, such
as that considered by Garrido et al. (2020), the very high resolution grids required would make it
computationally very expensive to plan paths over long distances.

Post-processing paths to smooth them is a common stage in the construction of robot paths.
Typically, this is to account for the kinematics of the robot and to overcome the discretised structure
of the underlying graph used in the initial path construction. In Polar Route, smoothing accounts
for the spherical surface over which the vessel is navigating. Smoothing paths using splines (Sprunk,
2008) has been used in robotics, where the emphasis is on smoothly changing momentum, but is
not relevant to the problem of navigating on a sphere, where the geometric constraints are well-
understood, but the impact of environmental conditions challenges the discovery of short paths.

5.3 Shortest Path Methods

A different context for the construction of shortest paths (by distance or travel time) is in the
graphics community, where geodesics are of fundamental importance in characterising, rendering
and manipulating images of surfaces and models of structures. A thorough survey of methods for
finding geodesics in this context is that of Crane et al. (2020), who characterise solutions within
two broad groups: those rooted in computational geometry, treating polyhedral surfaces as exact
representations of the structures, and the scientific computing approaches that treat polyhedral
meshes as approximations of smooth surfaces. Our work falls somewhere between these two, since
we treat the environment as fundamentally discretised by the mesh, but with a model of the surface
as spherical. Similarly, our approach combines methods from computational geometry (Dijkstra’s
algorithm is a common building block for many of these approaches) and scientific computing (using
a numerical method to account for the spherical surface).

In their survey, Crane et al. highlight the MMP algorithm (Mitchell, Mount, & Papadimitriou,
1987) as a landmark approach to the geodesic problem. This is a forerunner of the work by Mitchell
and Papadimitriou (1991) previously discussed, in which they extend the problem to include scalar
fields. Lanthier et al. (1997) also explore this problem. Lanthier (1999) is also identified as one of
the first to attempt to construct geodesics using a graph-based method and the subsequent work

8. Marine navigation typically uses nautical miles (nm) as the unit of distance. The conversion is 1 km equals 0.54
nm.

1860

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

is a strategy to make the underlying graph better represent the cost of traversal of faces. Crane et
al. observe that pure graph-based approaches in which vertices are added (Steiner points (Lanthier
et al., 1997) or spanner points (1997)) suffer from too poor scaling behaviour in exchange for real
accuracy in finding good crossing points for edges of the polyhedral representation of the underlying
surface. Crane et al. also note that approaches based in iterative path improvement, in which graph-
based paths are improved by using the local topology of the paths typically require many iterations,
but global approaches to path improvement have been successful at improving performance (Liu,
Chen, Xin, He, Liu, & Zhao, 2017).

The methods used in Polar Route share much with the overall frameworks of many of these
approaches (mesh-based graph abstractions, iterated path improvement and the impact of scalar
weighted regions), but there do not appear to have been efforts to solve the problems in the context
of vector fields, perhaps because these do not have natural interpretations in the context of graphics
problems. Furthermore, Crane et al. do not identify examples of prior work combining the challenges
of scalar field resistances with spheroid surface topologies.

While much of the relevant work in path-planning has been done in the context of local, small-
scale and often indoor navigation for mobile robots, several automated methods have been developed
for solving the navigation problem for ships and other vehicles in different ocean settings (Bijlsma,
1975; Kotovirta et al., 2009; Lehtola et al., 2019; Li, Ringsberg, & Rita, 2020; Mishra, Alok, Rajak,
Beg, Bahuguna, & Talati, 2021; Sen & Padhy, 2015; Topaj, Tarovik, Bakharev, & Kondratenko,
2019; Walther, Rizvanolli, Wendebourg, & Jahn, 2016; Zermelo, 1931). The most common methods
use uniform mesh-based approximations of the environment (Garrido et al., 2020; Bijlsma, 2001;
Kotovirta et al., 2009; Lehtola et al., 2019; Mishra et al., 2021; Sen & Padhy, 2015), combined with
the use of heuristic search (Hart, Nilsson, & Raphael, 1968) or greedy methods (Garrido et al.,
2020; Lehtola et al., 2019; Mishra et al., 2021; Sen & Padhy, 2015) and some sort of post-processing
approach to remove mesh artifacts. In the meshes used, edges or cells (or both, as in the case of
Mitchell and Papadimitriou (1991)) may be supplemented with scalars modelling environmental
impacts on vessel performance. Mishra et al. (2021), compute weights using a mathematical model
parameterised by vessel-specific information, and precompile them as travel times on the edges
connecting nodes in a uniform mesh. Dijkstra’s algorithm is then used to compute the mesh-optimal
path. Alternatively, cells are augmented with performance data that affects route efficiency (Garrido
et al., 2020; Lehtola et al., 2019). The cost of computing appropriate edge and cell weights is
dependent on the complexity of the environment being modelled. Dellin and Srinivasa (2016) have
considered shortest path problems in which edge costs are expensive to find and have examined lazy
edge computation strategies and the impact they can have on the path finding algorithm.

Kotovirta et al. (2009) plan routes in a mesh constructed using a lossy compression technique.
To address dependence on the underlying mesh, Powell’s conjugate direction method (1964) is used
to search for a route between two points taking into account the impact of different environmental
conditions on speed. The result is a path that is not constrained by mesh artifacts so is not restricted
to the construction of rectilinear paths. The curvature of the Earth is not taken into account, and
the number of waypoints needed for route construction must be determined in advance. The distance
to be travelled must be split into segments to keep the overall computational cost realistic. Long
paths comprising great circle arcs cannot be constructed since curvature is not modelled.

1861

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

5.4 Methods in Marine and Land Transport

Lehtola et al. (2019) describe IcePathFinder, a graph-based optimal path-finding method with a
post-processing step to remove some of the resulting mesh artifacts from the paths and improve
their geodesic validity. This relaxation monotonically improves the cost of the path by successively
removing points using a method similar to the line of sight substitution of Theta⋆ (Daniel et al.,
2014). When the cost can no longer be improved, the costs of edges between pairs of points are
replaced by the costs of traversing geodesic curves. The resulting paths have smoothed out some of
the mesh effects and take into account the curvature of the Earth. The order of removal of points is
fixed, but removal of different subsets could lead to better paths: a search over alternatives would
be highly computationally costly. We describe some detailed comparisons with IcePathFinder in
Section 8.

Transportation path-planning in a quad-tree mesh has been studied (Bast et al., 2016) and used
as the core of well-known in-car navigation algorithms. In road navigation, a pre-existing network
of accessible roads is used to constrain the routes that can be taken by vehicles between waypoints,
with real-time traffic updates used to re-plan paths. In a maritime situation, the routes available to
vehicles are constrained by the environmental conditions pertaining in otherwise open water, and
paths can be similarly updated as environmental conditions change.

6. Polar Route

In this section we give details of the route planning method used in Polar Route. The first step
in the construction of the mesh abstraction is to determine the edge weights of the edges in the
accessibility graph defined in Section 4, Definition 5.

6.1 Mesh-Based Route Construction

In the mesh-optimal planning phase of path-construction, a route between waypoints is found by
determining the path through the mesh that minimises travel time in the cell array representation
of the vector and scalar fields. When an adjacent pair of cells is diagonally arranged, the optimal
route between them is initialised to be the path between their centres using straight line connections
between the centres and the common corner. The non-diagonal cases to be considered are adjacent
arrangements where the destination cell is at the left, right, above or below the source cell. Without
loss of generality, we consider an adjacent pair of cells where the task is to go from the left centre
to the right centre, taking into account the vector fields in the two cells. In fact, we implement
the computation this way, rotating the cells to this configuration and reinterpreting the x and y
axes and the environment vectors appropriately. The adjacent cell pair arrangement is shown in
Figure 10, highlighting the fact that the two cells might be of different sizes (recall that this can be
due to both cell subdivision and the scaling of cell size by cosine of the latitude).

Figure 10 refers to the following quantities: (u1, v1) and (u2, v2) are the vector field components
in the left and right cells respectively; Y is the vertical separation of the two centre points; x is half
of the width of the left cell; a is half of the width of the right cell; y indicates the position of the
crossing point and b is the vertical distance travelled in the right hand cell.

This adjacent cell pair has the special property that it is context-free, since it does not matter
where the left cell is entered or where the right cell is exited, as these positions will not affect the
selection of the crossing point between the centres of the adjacent cells. The context-free pattern

1862

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 10: A pair of adjacent cells sharing part of the boundary: Y is the vertical displacement from
the left cell centre to the right cell centre, y the vertical displacement of the crossing
point relative to the left cell centre and b the displacement of the crossing point from the
right cell centre, but measured in the same direction as y (so here it would be negative).

consists of the two adjacent cells and the selected crossing point between them. These patterns are
stored and can be retrieved and assembled into paths during mesh-optimal path construction. As
explained in Section 4, we perform this process lazily, only determining the values when an edge is
accessed, but then storing them for future look-up.

The mesh-optimal path structure puts the adjacent cell pairs in context by specifying, for each
pair, the point at which the adjacent pair is entered (the entry point) and the point at which it is
exited (the exit point). An abstracted example is shown in Figure 11. Once two adjacent cell pairs
are chosen to form part of a path, pairs A and B in the figure, the two curves in C1 will meet at
the centre, allowing them to be combined to form a single path across the cell. This path enters
at the crossing point between C0 and C1 and exits at the crossing point between C1 and C2. As
stated in Definition 4, these points are named fp (the entry point), mp (the midpoint) and lp (the
exit point).

Figure 12 shows a situation in which a given cell, A, contains an extremely strong vector field ef-
fect and the crossing point computed between A and B, using the solution described in Section 6.1.1,
lies outside the common boundary of the two cells. In this case, the direct edge from A to B is
removed from the graph and any path that connects A and B will route through other cells (the B
to A computation is carried out independently). In cases where all adjacent cells contain opposing
vector fields with greater magnitude than the achievable speed of the vessel there may be no path
from A to B.

The implementation of Dijkstra’s algorithm within Polar Route uses a weight function input, w.
The function, w, returns the shortest travel time between the cell centres for the given edge. The
optimisation process used to determine the best crossing point is described in the next section.

6.1.1 Crossing Point Optimisation

The method for choosing the crossing point receives parameters that have been scaled by the cosines
of the latitudes of the two cells, but does not make any further allowance for curvature of the surface.
This model is an equirectangular approximation (Veness, 2002) in which cells are treated as having
a flat surface and a constant width throughout the cell. This allows us to compute the shortest

1863

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 11: A path is a sequence of connected adjacent cell pairs. As A, B and C are linked to
form a path, a contextualised adjacent cell pair is formed by merging the curves in the
common cells, C1 and C2.

Figure 12: The crossing point falls out of range of the common boundary when travelling from the
centre of A to the centre of B, due to the strong vector field in A.

1864

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 13: Travel within a single cell: in time t, the vessel will travel d due to its velocity, v, and
current, u. The crossing point is at position y relative to the centre of the cell.

distance across a cell using Pythagoras’ theorem, as a simple approximation of the distance across
the curved surfaces of the cells.

The effect of the environmental vector field on the vessel is to change its effective velocity on its
trajectory, and it will have to choose a heading that takes into account the vector field affecting it.
To achieve the straight line route the vessel must maintain a constant net velocity along that line,
which will be the sum of the vector field effect and the velocity of the vessel. In our model, the
speed of the vessel in a cell is dependent on both the vector and scalar fields that apply in that cell.

If the vessel crosses the central boundary between cells at a selected point, y (measured relative
to the horizontal axis through the centre of the left cell – see Figure 10), then the time, t, it takes
to travel from the centre of the left-hand cell to the crossing point (or from the crossing point to
the centre of the right-hand cell) satisfies:

t(u+ v) = d (1)

as shown in Figure 13, where u is the environment vector in the cell, v is the velocity of the vessel and
d is the vector from the centre of the cell to the crossing point on the boundary. The cell-dependent
speed of the vessel is constant on this path.

We proceed as follows. First we find the solution for t as a function of the crossing point, defined
in terms of the distance y as shown in Figure 10. Then we find the crossing point, y, that minimises
the sum of the travel times in the two adjacent cells. As illustrated in Figure 6, this function (in
the equirectangular case) is a quadratic and we use Newton’s method to optimise the choice of y.
Newton’s method finds successively better approximations to the roots of a continuous function,
iterating until a convergence condition is achieved. The single variable function case is defined as
follows:

xn+1 = xn − f(xn)

f ′(xn)
(2)

where f ′(x) denotes the first derivative of f(x).

1865

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

The travel times in the two cells we denote ttl(y) (the time to travel to the crossing point from
the centre of the left cell) and ttr(y) (the time to travel to the centre of the right cell from the
crossing point). We denote the speed of the vessel in the left cell as sl and its speed in the right cell
as sr.

Rearranging Equation 1, the travel time in the left cell is derived as follows.

tv = d− tu (3)

Considering the left cell, in which the speed of the vessel is sl, the vector from the centre to the
crossing point is d1 and the environment vector field is u1, the square of Equation 3 is:

s2l t
2 − |u1|2t2 + 2D1t− |d1|2 = 0 (4)

where D1 = u1.d1. This equation can be solved for t:

t =
−2D1 ±

√
4D2

1 + 4|d1|2(s2l − |u1|2)

2(s2l − |u1|2)
(5)

=
−D1 ±

√
D2

1 + |d1|2(s2l − |u1|2)

s2l − |u1|2
(6)

Since we are only interested in positive values of t, we have:

t =

√
D2

1 + |d1|2(s2l − |u1|2)−D1

s2l − |u1|2
(7)

with a special case when s2l = |u1|2 which is when the magnitude of the vector field matches the

speed of the vessel in the left cell. In this case, t =
|d1|2
2D1

, by equation 4, being undefined when
D1 = 0 (the case in which the vector field is orthogonal to the intended direction of travel). If D1

is negative, this latter case is degenerate, with the vessel not fast enough to overcome the vector
field effect in the intended direction. The solution for t defines the function ttl(y) for a given vector
field, cell size and speed. The function ttr(y) is defined similarly, using sr, u2, D2 and d2.

Our function, f(y) is then the sum of the two travel times in each of the left cell, ttl(y), and
right cell, ttr(y), ttl(y) + ttr(y), which we want to minimise by choosing the best y possible. This
is found by iterating over equation 8 until a convergence condition is reached. The ticks denote the
first and second derivatives and the subscripted l and r indicate whether travel is through the left
or right cell respectively.

yk+1 = yk −
tt′l(yk) + tt′r(yk)

tt′′l (yk) + tt′′r(yk)
(8)

The squared distance travelled in the right box is a2+b2, where b is equal to Y −y. The distance
from the centre of the left cell to the central boundary is x (see Figure 10). The distances travelled
in the two cells are therefore defined using Pythagoras as follows.

d21 = x2 + y2 (9)

d22 = a2 + b2 = a2 + (Y − y)2 (10)

1866

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

The following terms are helpful in simplifying the derivations below. We use the shorthand ∂
to refer to the operator d

dy .
C1 = s2l − |u1|2 (11)

C2 = s2r − |u22| (12)

D1 = u1x+ v1y (13)

∂D1 = v1 (14)

D2 = u2a+ v2(Y − y) (15)

∂D2 = −v2 (16)

X1 =
√
D2

1 + C1d21 (17)

X2 =
√
D2

2 + C2d22 (18)

Equations 11 to 18 name the left and right cell components of the expressions in Equation 7.
Equation 7 has an analogous form for the right cell, and the pair of equations can be abbreviated as
Equations 19 and 20. These expressions are the travel time functions, ttl(y) and ttr(y) respectively,
taking values t1 and t2 as follows:

t1 =
X1 −D1

C1
(19)

t2 =
X2 −D2

C2
(20)

Differentiation of Equation 4, using Equation 11, yields:

∂t12C1t1 + ∂t12D1 + 2v1t1 − 2y = 0 (21)

Factorising gives:
∂t1(C1t1 +D1) = y − t1v1 (22)

and by a similar derivation for the right cell:

∂t2(C2t2 +D2) = y − Y + t2v2 (23)

The minimum travel time is achieved when ∂t1 + ∂t2 = 0. By Equation 19 we have that:

C1t1 = X1 −D1 (24)

so
X1 = C1t1 +D1 (25)

and, similarly:
X2 = C2t2 +D2 (26)

The derivatives of X1 and X2 are obtained as follows. Squaring both sides of Equation 17 and
differentiating using Equation 14, leads to:

∂X1 =
D1v1 + C1y

X1
(27)

1867

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

and by similar steps:

∂X2 =
−D2v2 − C2(Y − y)

X2
(28)

Using Equations 22 and 25 we have that

∂t1 =
y − t1v1
X1

(29)

and, by similar reasoning from Equations 23 and 26:

∂t2 =
y − Y + t2v2

X2
(30)

To obtain the minimum travel time, we require that the derivative, ∂t1 + ∂t2, is zero:

y − Y + t2v2
X2

+
y − t1v1
X1

= 0 (31)

Rewriting this expression using Equations 19 and 20, we define the function F (y):

F (y) = X2(y −
v1(X1 −D1)

C1
) +X1(y − Y +

v2(X2 −D2)

C2
) (32)

It can be seen that this equation corresponds to F (y) = X1X2(tt
′
l(y) + tt′r(y)), which is zero

precisely when f(y) = ∂t1 + ∂t2 is zero. By writing F (y) in the following form:

F (y) = (X1 +X2)y −
(X1 −D1)X2v1

C1
+

(X2 −D2)X1v2
C2

− Y X1 (33)

it can be seen that the derivative of F (y) is:

∂F (y) = (X1 +X2) + y(∂X1 + ∂X2)
− v1

C1
(∂X2(X1 −D1) +X2(∂X1 − ∂D1))

+ v2
C2

(∂X1(X2 −D2) +X1(∂X2 − ∂D2))

−Y ∂X1

(34)

Using the definitions of F (y) and ∂F (y), we can apply Newton’s method to arrive at a value of
y that makes F (y) = 0.

6.2 Route Smoothing

The smoothing process smooths the adjacent cell pairs in the order in which they appear in the mesh-
optimal path. The smoothed passage between the cells must pass between the entry and exit points
connecting the adjacent cell pairs without the requirement to visit the centres of the cells. Starting
from the mesh-optimal path, route smoothing iterates over the path structure until convergence.
On each iteration, i, successive pairs of adjacent cells are considered, using the boundary points of
these cells in the mesh-optimal path to constrain and inform the positions of these points in the
resulting partially smoothed path, pi (Definitions 6 and 7).

Definition 6. Given a mesh-optimal path p, a partially smoothed path, pi, is a path found after
i iterations of smoothing starting from the path p0, obtained from p by removing, for each adjacent
cell pair, the cell centre points and connecting both fp and mp, and mp and lp, by straight lines.

1868

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 14: The relationship between the fp, mp and lp points in an adjacent pair, also showing the
graph edge and centre points (dotted) used to construct the mesh-optimal path.

Definition 7. A partially smoothed path, pi, has converged if, when compared with the partially
smoothed path pi−1, there is a 1:1 correspondence between all of the waypoints in pi and pi−1, and
none of the waypoints in pi differ in position by more than a given tiny constant δ from their positions
in path pi−1.

A single iteration of smoothing therefore entails choosing, for each adjacent cell pair in sequence,
the optimal mp, given its fp and lp (see Figures 14 and 15). These points are collectively referred
to as the tracking points as they allow the process of smoothing to be tracked along the sequence of
adjacent cell pairs. This requires a second invocation of Newton’s method, as the optimal mp, given
fp and lp, will not be the same as the optimal crossing point between the cell centres chosen during
mesh-optimal path construction. The new crossing point calculation no longer uses the accessibility
graph because the crossing point decision is no longer context-free. The mesh-optimal path has
provided the context in which the new crossing point is selected.

On this second invocation, we introduce a more sophisticated approximation of the curvature of
the sphere that models the change in width within a cell by introducing a latitude correction. This
was not needed in the use of Newton’s method during mesh-optimal path construction because all
paths are forced to go between the centres of the two cells, dominating any sensitivity to latitude
changes within a cell, and making the fixed cell-width assumption adequate in that context.

The computation of mp differs for horizontal and vertical orientations of the cell pair, as described
in Appendices C and D respectively.

When the new mp falls outside the shared boundary of the two cells, as is shown in Figure 12,
new cells are introduced into the path, in the direction of the mp, to allow the eventual smoothed
path to take its more efficient route. The introduction of new cells requires that they be checked to
ensure they are not blocked. Over multiple iterations the addition of new cells can change the course
of the path. New cells are introduced in several different contexts during smoothing, depending on
the configuration of the adjacent cell pair itself and the position of the new mp. We cover all of
these cases in Section 6.3.

6.3 Smoothing Algorithm

In this section we present the details of the smoothing algorithm. Twelve auxiliary functions are
referred to in the algorithm components, and are defined in Appendix B.

The inner loop of the smoothing algorithm shown in Algorithm 1 consists of a data structure
and seven functions. Communication between these functions is managed via the data structure

1869

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 15: How the smoothing process proceeds through a sequence of adjacent cell pairs, smoothing
the selection of mp in each adjacent cell pair in turn.

1 Record {
2 aps ; // The list of adjacent cell pairs in the path
3 pathIndex ; // Index of the cell pair currently being processed
4 pathSize ; // Length of aps
5 ap ; // The current adjacent cell pair of interest
6 ap′ ; // The next cell pair of interest

7 fp;
8 mp;
9 lp;

10 converged;
11 complete ; // The status of the current loop iteration
12 } SmoothingRecord ;

Data Structure 1: The data structure used in the smoothing functions.

which carries the context that is maintained and used by each of the functions during the execution
of the main loop. Convergence is checked for each time round the main loop. The context, called
the smoothing record, consists of the list of adjacent cell pairs making up the path (which changes
as cells are added to and removed from the path during smoothing), the index of the cell pair about
to be smoothed and the tracking points associated with that pair. At the start of the inner loop,
the smoothing record is initialised for the current iteration and information about the way the loop
proceeded is collected and passed back from the functions as the loop executes.

The smoothing record data structure is defined as shown in Data Structure 1. After setting
up the context, the five main stages of Algorithm 1 are: initialisation, removal of reversed edges,
merging of close points, handling diagonal edges and the general case in which Newton’s method
is used to solve the equation that determines the new crossing point between adjacent cells on the
path.

1870

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

input : Mesh Optimal Path, P
output: Smoothed path

1 begin
2 startwp := the start waypoint of P ;
3 endwp := the end waypoint of P ;
4 sr := new SmoothingRecord();
5 sr.aps := the list of adjacent cell pairs in P ;
6 sr.converged := false;
7 while not sr.converged do
8 sr.fp := startwp;
9 sr.mp := null;

10 sr.lp := null;
11 sr.pathIndex := 0;
12 sr.pathSize := length(sr.aps);
13 sr.converged := true ; // Assume converged until shown otherwise
14 while sr.pathIndex < sr.pathSize do
15 sr := initialise(sr, endwp);
16 sr := removeReversedEdges(sr);
17 sr := closePoints(sr);
18 sr := handleDiagonalPath(sr);
19 sr := smoothCrossing(sr, P);

20 return P ;

Algorithm 1: The Smoothing Algorithm. The inner loop is a sequence of function calls. If
any one of them completes the handling for this iteration, the remaining functions will do
nothing, as shown in their definitions.

Initialisation, shown in Algorithm 2, simply receives the smoothing record and sets up the
adjacent pair, the mp and the lp of the context to be used for the next iteration of the smoothing
process. When initialising, the fp will be the start waypoint.

The removal of reversed edges, shown in Algorithm 3, is done at the beginning of every iteration.
Reversed edges can occur as a result of adding edges during smoothing, because the smoothing
process only has a local view of the choices of cells reachable from the current adjacent cell pair. It
is not always clear where reversed edges might arise, so it is best to remove reversals systematically.
We therefore check for, and remove, reversed edges before going into the next iteration of the
smoothing process.

The next stage is to merge points that have moved sufficiently close together to be considered
the same point. As smoothing progresses, the fp and mp, or the mp and lp, might approach one
another to within our minimum separation (defined using the constant MERGESEP). An example
is shown in Figure 17. This situation can arise as the path smoothing moves points on two sides
of a cell towards a common corner. When fp and mp approach one another, the algorithm simply
delays handling the situation until the next iteration of the smoothing, and moves on to the next
edge. If, however, the mp and lp approach too closely, the situation is handled by removing the
redundant ith and i + 1th edges and replacing them with a direct edge between the start of the

1871

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

1 Function initialise(sr, endwp):
input : SmoothingRecord, sr, final waypoint, endwp
output: modified SmoothingRecord

2 begin
3 sr.ap := sr.aps[sr.pathIndex] ; // The current adjacent cell pair
4 sr.mp := sr.ap.crossing;
5 if sr.pathIndex+ 1 < sr.pathSize then
6 sr.ap′ := sr.aps[sr.pathIndex+ 1];
7 sr.lp := sr.ap′.crossing;
8 else
9 sr.ap′ := null;

10 sr.lp := endwp;

11 return sr;

Algorithm 2: Initialisation function that sets the various cells and points of interest in a
single iteration of smoothing.

1 Function removeReversedEdges(sr):
input : SmoothingRecord, sr
output: modified SmoothingRecord

2 begin
3 if not sr.ap′ == null and sr.ap.start == sr.ap′.end then // Reversed edges
4 remove(sr.pathIndex, sr.aps); // Remove the indicated element from aps
5 remove(sr.pathIndex, sr.aps); // And again, to remove the reversed edge
6 sr.pathSize := sr.pathSize− 2;
7 sr.converged := false ; // Any change in path breaks convergence
8 sr.complete := true;

9 return sr;

Algorithm 3: Removal of a reversed edge pair: this phenomenon can occur as a result
of edge insertions during smoothing and the pair is removed and the path linked directly
between the two ends of the pair.

former to the end of the latter. It is certain that this edge must exist because the cells it connects
share the common corner at which the points are converging, and are both accessible. The merging
method is shown in Algorithm 4.

Once these tidying-up steps are complete, we move on to the next iteration of smoothing of the
partially smoothed path.

Algorithm 5 describes the process for smoothing a diagonal edge. It can arise that the optimal
path actually passes through a corner, but typically the smoothed route through a diagonally
adjacent cell pair will need to pass through either the top or bottom cell on the missing diagonal,
as shown by the dotted lines in Figure 18. In Algorithm 5, the correct cell to introduce is found by
selectSide(fp,mp, lp, ap), which uses spherical geometry to determine on which side mp lies relative

1872

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 16: (a) A case in which reversed edges can be produced (the red dotted line and the green
line in the middle cell reverse one another). (b) These are removed. (c) The general case
of the central panel of part (a), in which the two cells are of different sizes.

to the great circle arc segment between fp and lp. Provided that the selected cell is accessible, new
edges are added to include it in the path.

The final stage is the main smoothing stage, in which Newton’s method is used to choose the new
crossing point. This stage is described in Algorithm 6. Significant changes to the mesh-optimal path
can now arise, as new cells will need to be entered if this new crossing point is out of range of either
of the adjacent cells in the pair. In this case, the algorithm identifies, using the nearestNeighbour
function, any cells that the path might have to newly enter, called the target cells, and finds the
edges that will need to be added. If either of the target cells is blocked, the chosen crossing point
must be clipped back to the closest corner. These cases are exemplified in Figures 19 and 20, which
show the targetA and targetB cases detailed in Algorithm 6.

The edges connecting the newly added cells to the path are identified from the underlying
neighbourhood graph, which respects the inaccessibility of cells and the impact of high magnitude
vector fields. The decision about which of the identified edges to add is then made by Algorithm 7.
When the new crossing point falls outside the range of the start cell, but inside the range of the end
cell, or vice versa, only one new target cell needs to be added, and hence only two new edges are
required. These cases are referred to as V-type cases, since the two edges are connected to form a
V. When the new crossing point falls outside of the boundaries of both the start and end cell, two
new target cells are added, and hence three new edges are identified and inserted. This is a U-type
case. In both the V-type and U-type cases, the original edge connecting the start and end cells is
removed. Since the three edges in the U-type case form a characteristic horseshoe shape, this case

1873

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

1 Function closePoints(sr):
input : SmoothingRecord, sr
output: modified SmoothingRecord

2 begin
3 if not sr.complete then
4 if dist(sr.fp, sr.mp) < MERGESEP then
5 ++sr.pathIndex;
6 sr.fp := sr.mp;
7 sr.complete := true;
8 else if dist(sr.mp, sr.lp) < MERGESEP and sr.pathIndex < sr.pathSize− 1

then // Final waypoint cannot merge
9 newEdge := findEdge(sr.ap.start, sr.ap′.end);

10 remove(sr.pathIndex, sr.aps); // Remove ap
11 remove(sr.pathIndex, sr.aps); // Remove ap′

12 insert(sr.pathIndex, [newEdge], sr.aps);
13 sr.pathSize := sr.pathSize− 1;
14 sr.converged := false;
15 sr.complete := true;

16 return sr;

Algorithm 4: Handling situations in which the midpoint is within MERGESEP of either
the first or last point.

Figure 17: The midpoint, mp, and lastpoint, lp are within MERGESEP of one another. The tracking
points, fp, mp and lp are associated with the adjacent cell pair consisting of the two
cells linked by the graph edge ap. The subsequent adjacent cell pair in the path consists
of the cells connected by graph edge ap′. The edge, ap′′ completes the graph of these
three cells, but this edge does not connect adjacent cells on the path.

1874

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 18: Smoothing a diagonal section of a path. (a) The arc segment is used to identify the
cell to include. (b) The two new adjacent cell pairs are added, and the crossing points
(marked in red) are added. (c) The arc is approximated by a series of constant bearing
legs between these pairs of points.

Figure 19: The targetA case: (a) New cell is blocked (shaded) and the proposed new midpoint,
mp′, lies outside it. (b) The mp point is clipped back to the original cell pair and the
new position of mp′ lies on the corner of the blocked cell. (c) New cell is accessible,
but mp′ lies outside its boundary. (d) New edges are introduced, edgeA and edgeB, to
replace the original adjacent cell pair. These have separate midpoints, mp′1 for the first
pair and mp′2 for the second, clipped back to lie inside the boundary of the newly entered
cell. Successive iterations of smoothing will move mp′1 west, possibly out of the new cell,
adding a further cell to the path. In all cases, the original mp is no longer in the path.

1875

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

1 Function handleDiagonalPath(sr):
input : SmoothingRecord, sr
output: modified SmoothingRecord

2 begin
3 if not sr.complete then
4 if isDiagonal(sr.ap) then
5 target := selectSide(sr.fp, sr.mp, sr.lp, sr.ap);
6 if not blocked(target, sr.ap.start, sr.ap.end) then
7 edgeA := findEdge(sr.ap.start, target);
8 edgeB := findEdge(target, sr.ap.end);
9 remove(sr.pathIndex, sr.aps);

10 insert(sr.pathIndex, [edgeA, edgeB], sr.aps);
11 ++ sr.pathSize;
12 sr.converged := false;
13 else
14 ++sr.pathIndex;
15 sr.fp := sr.mp;

16 sr.complete := true;

17 return sr;

Algorithm 5: Smoothing diagonal edges.

Figure 20: In a targetB situation: (a) After clipping to the corner on the left of the blocked (shaded)
cell, we move to the next triple in which fp is the clipped point. It can then happen
that an attempt is made to move the position of mp to mp′, a position also blocked by
the same cell. (b) The crossing point mp′ is clipped back to the original cell corner,
becoming the new value of mp. This leads to the edge of the blocked cell being tracked.

is referred to as a horseshoe (line 23 of Algorithm 7). When all necessary edges have been added,
the updated smoothing record is returned (line 39 of Algorithm 7).

Figure 21 shows the addition of a U-type horseshoe in the horizontal case, when both cells are
the same size and when they are of different sizes as a result of cell-subdivision.

1876

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

1 Function smoothCrossing(sr, P):
input : SmoothingRecord, sr, mesh-optimal path, P
output: modified SmoothingRecord

2 begin
3 if not sr.complete then
4 mp′ := NewtonSmooth(sr.fp, sr.mp, sr.lp, sr.ap);
5 if mp′ == null then
6 throw P ; // Newton call failed to converge or recover

7 targetA := nearestNeighbour(ap.start, ap.end,mp′);
8 if blocked(targetA,ap.start,ap.end) then
9 mp′ := clipTo(ap.start,mp′);

10 targetA := null;
11 else
12 edgeA := findEdge(sr.ap.start, targetA);
13 mp′ := clipTo(targetA,mp′);

14 targetB := nearestNeighbour(sr.ap.end, sr.ap.start,mp′);
15 if blocked(targetB,sr.ap.start,sr.ap.end) then
16 mp′ := clipTo(sr.ap.end,mp′);
17 targetB := null;
18 else
19 edgeC := findEdge(targetB, sr.ap.end);
20 mp′ := clipTo(targetB,mp′);

21 if inside(mp′, sr.ap.start) then
22 targetA := null;

23 return addEdges(targetA, targetB, sr);

24 return sr;

Algorithm 6: Find the new mp, using Newton’s method to solve the equation, and then
check whether this requires any additional edges to be added. The actual checks and addition
of edges are handled in the auxiliary function, addEdges.

Situations can arise in which the smoothing process can lead to oscillating patterns in the
insertion and removal of edges: this is caused when the spherical surface leads to a shorter physical
distance being traversed if a path pushes closer to a pole, but the conditions in the newly entered
cell or cells created by the vector field lead the smoothing to seek to cross outside the newly
entered cells, pushing the path back into the cells it left. These situations can be recognised by the
repeated visits to the same context and are trapped in the tests on lines 26 and 31 of Algorithm 7.
These two functions, newPair and newTriplet, test whether the edge combination (pair or triple,
respectively) has arisen before and, if so, whether the calculated crossing point, mp′, is close to
(within MERGESEP of) a crossing point previously calculated in this context. If these conditions
are met, then the situation is considered a repetition and handled by clipping the crossing point
to the appropriate corner of the start or end cell. In all cases, the pair or triplet, together with

1877

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

1 Function addEdges(sr, P):
input : Cells targetA, targetB; SmoothingRecord, sr
output: modified SmoothingRecord

2 begin
3 if targetA == null then
4 if targetB == null then
5 if dist(sr.mp,mp′) > MERGESEP then
6 sr.converged := false;

7 // Simple case: smoothing stays inside cells
8 sr.ap.crossing := mp′;
9 ++ sr.pathIndex; // Step along path

10 sr.fp := mp′;
11 else // Outside destination cell
12 edgeB := findEdge(sr.ap.start, targetB);
13 remove(sr.pathIndex, sr.aps);
14 insert(sr.pathIndex, [edgeB, edgeC], sr.aps);
15 ++ sr.pathSize;
16 sr.converged := false;

17 else
18 sr.converged := false;
19 if targetB == null then // Outside origin cell
20 edgeB := findEdge(targetA, sr.ap.end);
21 remove(sr.pathIndex, sr.aps);
22 insert(sr.pathIndex, [edgeA, edgeB], sr.aps);
23 ++ sr.pathSize;
24 // Else: outside both cells - horseshoes
25 else if targetA == targetB and
26 newPair(edgeA, edgeC,mp′) then
27 remove(sr.pathIndex, sr.aps);
28 insert(sr.pathIndex, [edgeA, edgeC], sr.aps);
29 sr.pathSize := sr.pathSize+ 1;
30 else if not targetA == targetB and
31 newTriplet(edgeA, edgeB, edgeC,mp′) then
32 edgeB := findEdge(targetA, targetB);
33 remove(sr.pathIndex, sr.aps);
34 insert(sr.pathIndex, [edgeA, edgeB, edgeC], sr.aps);
35 sr.pathSize := sr.pathSize+ 2;
36 else
37 sr.ap.crossing := clipTo(sr.ap.start,mp′);
38 sr.ap.crossing := clipTo(sr.ap.start, sr.ap.crossing);
39 sr.converged := dist(sr.mp, sr.ap.crossing) < MERGESEP ;

40 return sr;

Algorithm 7: Addition of new edges in the U-type (horseshoe) and V-type patterns.

1878

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 21: The horseshoe pattern (a reference to the green-dashed edges newly added to the path)
for smoothing a horizontal adjacent cell pair. On the left, the case for two equal-sized
cells. On the right, a more general case in which the cell sizes in the original pair
differ. The original crossing point in the mesh-optimal path is c1. The edges of the
mesh-optimal path are shown in red. The new crossing point chosen during smoothing
is c2. In both cases, c2 drops out of range of the bottom boundaries of the two cells,
due to the improved curvature approximation used in the smoothing process, requiring
the introduction of a horseshoe pattern. The green nodes and dotted lines are not part
of the smoothed path, but indicate the three new adjacent cell pairs that comprise the
horseshoe (U-type) pattern. The edges of the smoothed path (at this iteration) are
shown in blue.

the calculated crossing point, are added to a record of such contexts to ensure that subsequent
repetitions are trapped.

In multiple places in the overall smoothing algorithm, a check is required to determine whether a
new cell is accessible. This test checks that edges exist to and from the cell to form the edges of the
path. However, an additional requirement is that the impact of the scalar and vector fields within
the new cell will not outweigh the potential benefit of taking the shorter route by slowing the vessel
too much. Until the final path is known, it is impossible to know how much distance the vessel will
have to traverse through the new cell and, therefore, the extent of the impact of the fields on its
performance. This can lead to the path being moved into a new cell, only to be moved back out
again as the smoothing process shortens the segment across a costly cell until it clips a corner. This
behaviour ultimately resolves, using the context-recording mechanism just described, but in order
to reduce computation time we abbreviate this process by the use of a simple heuristic implemented
in the blocked auxilliary function. The heuristic checks that the conditions in the target cell are not
much worse relative to those in either of the two original cells on the path.

When choosing the mp between two horizontally adjacent cells, the latitude of mp varies. The
journeys to and from mp are determined by the latitudes of the fp and lp of the adjacent cell pair.
When travelling vertically, the latitude of mp is fixed, and it is the longitude that varies. Also,
travel to and from mp is in the longitudinal direction so is not affected by the latitudes of fp and

1879

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

lp. Therefore the vertical case requires a different method for computing the travel time between
the cells.

In the vertical case, described in Appendix D, mp must lie on the fixed latitude boundary
between the cells, but if fp and lp are close to one of the longitudinal boundaries mp might be
pushed horizontally beyond the vertical boundaries of the two cells. This results in the need for the
addition of either a U-type or a V-type pattern. The way that the new cells and required edges are
identified is exactly analogous to the horizontal case.

As the smoothing process nears convergence, no further pairs will be introduced but crossing
points will continue to be moved until the shortest path (according to our curvature approximation)
has been found. As the empirical results shown below illustrate, convergence is typically achieved
after fewer than 3000 outer-loop iterations, with some paths converging after a few hundred, and
some unusual cases requiring as many as 20,000 iterations to converge (see the artificial examples
in Figure 3).

The algorithms of Polar Route are sound (any path found by the approach is a valid path
according to Definition 3). This follows from the facts that Dijkstra’s shortest path algorithm
is sound and that the smoothing algorithm cannot break any of the properties of a path in its
modifications.

By suitable selection of mesh sizes the accuracy can be improved to achieve an arbitrary ϵ-
precision for any selected ϵ > 0. This implies a form of completeness of the Polar Route algorithm,
since it implies that, by a suitable choice of mesh resolution, one can always generate a path within
ϵ-precision of the optimal path. A sketch of the proof for this claim is as follows. Smoothing can
never make the path longer than the underlying Dijkstra path, so it is sufficient to show that the
Dijsktra path itself converges to the optimal path as the mesh resolution is increased. The distance
between points in the graph used for the Dijkstra path overestimates the true distances between the
cell centres by approximating the effect of curvature. The local distance metric used to define the
edge lengths in the graph uses rhumb line distances, while the optimal path has a length greater than
or equal to the great circle arc (it might be longer due to obstacles or the effects of environmental
fields). As mesh resolution increases, the rhumb line distance between points converges towards the
great circle arc distance (see, for example, Vezie’s report (2016)). Thus, the local metric converges
to the true distance and, since the Dijkstra path is globally optimal within the graph, the Dijkstra
path converges on the optimal smooth path.

7. Evaluation and Results

All of the results reported in this paper were generated on a 32 Gb Macbook Pro M2 Max laptop
computer.

A basic requirement of a path-planner on a spherical surface is that it closely approximates great
circles in the absence of environmental features. Therefore, to begin the evaluation of our method,
we compare the lengths of smoothed paths in unconstrained environments with the lengths of great
circle arcs generated between the same pairs of waypoints. A smoothed path of the same length as
the great circle arc must be identical to it.

We use the haversine distance measurement and rhumb line distance measurement desribed
in the online resource entitled Calculate distance, bearing and more between Latitude/Longitude
points9. As discussed above, the route planner generates smoothed paths as sequences of rhumb

9. http://www.movable-type.co.uk/scripts/latlong.html

1880

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 22: Percentage misfits with great-circle arcs, for a collection of 522 randomly selected start
and end waypoint pairs within a domain spanning longitude -140◦ to 0◦ and latitude
-75◦ to -45◦. The histogram shows the distribution of waypoint pairs considered, in
terms of great circle distances between them.

lines, so we expect a small error, with respect to the length of the corresponding great circle, to
accumulate over long paths.

We first show that Polar Route generates highly accurate approximations of great circle arcs
in unconstrained environments. We randomly generate pairs of waypoints at least 2,500 km apart,
located at a range of latitudes, and path-plan between them. We set a limit of 20,000 outer-loop
path-smoothing iterations per path. All of the paths reported in our experiments converged and, in
practice, about 80% of the paths converged in fewer than 3,000 iterations. The number of iterations
required to smooth a path is correlated with the distance between the waypoints.

As shown in the legend of Figure 22, three types of paths are considered: mesh-optimal paths
and smoothed paths, between the randomly selected pairs of waypoints and, for comparison, the
single rhumb lines between the pairs of points. The mesh-optimal and smoothed paths are generated
using uniform meshes of different cell sizes, as indicated.

We measure a length “misfit” in kilometers between each of the paths in the three different path
types and the great circles between the same pairs of waypoints. We then compute a percentage
misfit for the three types of path relative to the great circle arc.

Figure 22 shows the error in path length, relative to the length of the great circle arc, that we
accumulate using our approximation in different uniform mesh sizes. We consider meshes comprising
cells of sizes 1◦ latitude by 1◦ longitude, 2◦ latitude by 2◦ longitude, 2.5◦ latitude by 5◦ longitude
and 5◦ latitude by 5◦longitude. As expected, the finer the mesh the better the approximation to

1881

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 23: Mesh-optimal and smoothed paths approximating great circle arcs in an unconstrained
environment (the apparent curvature of the mesh-optimal path to w7 in the left column
is caused by the Mercator projection distortion).

the spherical surface and hence the closer our smoothed paths are to the great circle arcs. The
plot shows that for all of the meshes, 95% of the smoothed paths accumulate an error lower than
0.403%, and all of the smoothed paths are within 6% error. By contrast, 95% of rhumb line paths
accumulate up to 25% error, with fewer than 5% of rhumb line paths accumulating less than 6.6%
error. Considering the mesh-optimal paths constructed in these meshes, the 1x1 mesh results in the
best mesh-optimal paths, with 95% of them achieving less than 6.6% error. The 2x2 meshes result
in similar quality mesh-optimal paths, with 95% of them lying within 7.3% error. 95% of the paths
in the 2.5x5 meshes are within 8.1% error. The 5x5 meshes lead to much higher error: only 65% of
the paths are within 6.6% error and at least 2% of the paths accumulate as much as 15% error. All
of the Polar Route paths, both mesh-optimal and smoothed, are within 17% of the great circle arc
length.

The difference between the error accumulated by smoothed paths versus the mesh-optimal
paths in this plot shows the importance of our smoothing method for achieving high quality paths.
Smoothing achieves a very close approximation indeed to the corresponding great circle arcs. Fig-
ure 23 shows a collection of paths, starting from a start waypoint, s, and visiting a set of 7 other
waypoints, constructed in the same unconstrained environment and hence uniform mesh. Mesh-
optimal paths are shown in the first row, and their smoothed versions in the second row. Both
types of path are shown in Mercator and polar stereographic projections.

As a second comparison with Polar Route we consider the use of Probabilistic RoadMaps
(PRMs) (Kavraki & Latombe, 1998), a common method for path-planning in robotics. PRMs
construct a graph abstraction of the environment based on a sample of waypoints that is generated

1882

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 24: Comparison between Polar Route (mesh-optimal and smoothed routes) and a PRM-
generated route in an artificially generated environment. (a) shows PRM paths gen-
erated using different numbers of samples. As the number of samples increases, the
approximation to the great circle arc improves. (b) The mesh-optimal and smoothed
routes generated by Polar Route in a non uniform mesh are shown. The best of the
PRM paths is shown (in blue) for comparison.

from a sampling distribution. For each sampled point, w, a neighbourhood is considered and direct
edges are created between w and each other point in the neighbourhood where possible. The start
and end waypoints are included in the PRM and then a shortest-path algorithm can be applied to
extract the optimal path in the PRM.

In the limit, a PRM has two important mathematical properties: sampling covers the entire
navigable space and, as a consequence, the path found is the optimal path. Probabilistic roadmaps
are suitable for modelling binary environments. These are environments consisting of entirely acces-
sible and entirely inaccessible regions, with no field effects. Standard PRM approaches lack methods
to model field effects that impede or resist the progress of the robot leading to varying achievable
robot speeds within an accessible region.

1883

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

It is straightforward to see that a PRM can be used to solve the problem of navigating between
the start and destination waypoints in the binary artificial environment shown in Figure 24. The
questions of interest are: how many sampled points will be needed for the PRM to construct as
good an approximation to the optimal route as Polar Route can find in the same environment; how
much CPU time is required by the PRM method and how many changes of bearing will the PRM
path comprise by comparison with the path found by Polar Route.

To address these questions, we ran a PRM method with 2000, 5000, 10,000, 15,000 and 30,000
samples from a uniform distribution, and graph construction based on k-nearest neighbour with
k = 30. The distance metric used is a geodesic calculation on a spherical surface. Polar Route
plans in the non-uniform mesh shown in Figure 24 and the smoothed path, shown in red, contains
21 changes of bearing (points on the route excluding the end waypoint) and took 9.1 seconds
to generate. The non-deterministic behaviour of PRMs means that the path does not improve
monotonically as the number of samples increases.

To construct the best PRM route shown, 10,000 samples are required. The route found contains
63 changes of bearing and takes 3985.81 seconds to generate. Even then, the PRM path is 42.4 km
longer than that obtained by Polar Route. Of course, the PRM we have used for this experiment
is simple, using the most basic sampling distribution. Better results in the binary case could be
obtained using a more sophisticated model, but deriving a distance metric and sampling strategy
that could efficiently cope with directional effects and variable achievable speeds would be a research
problem on its own.

As well as closely approximating great circle arcs when fields are not present, Polar Route must
be able to generate efficient paths when there are strong vector fields and resistances impeding or
enhancing the progress of the vessel. Figures 25 and 26 show examples of paths in environments
that are increasingly constrained. The figures show non-uniform meshes generated using Gaussian
Random Fields. In the unconstrained environment with exclusion zones (the top row in both figures)
the vessel can travel at 27.5 km/h in non-excluded cells. The figures show the successive additions
of vectors (second row), scalar fields modelling non-uniform resistances (third row) and both scalar
and vector fields (final row). The total CPU times reported are the times required to compute all 7
paths shown in each of the plots and are the sum of the mesh-optimal and smoothing times (unless
stated otherwise). It can be observed that the construction of the mesh-optimal paths accounts for
approximately 10% of the total CPU time and, in these examples, smoothing is about 2.5 times
more expensive in the complex environments than in the simplest environment.

In order to support the discovery of optimal paths that coincide with optimal paths in reality, a
desirable property of the mesh is that splitting around land or other exclusion zones does not result
in land cells bordering very large cells. Examples can be constructed in which Polar Route chooses
a mesh-optimal path that travels on the wrong side of the exclusion zone (relative to where the
optimal path lies in reality) to avoid the cost of navigating to the centres of very large cells. This
phenomenon can dominate the latitude effect so that the discovered path is sub-optimal. Figure 27
(a) shows how this can occur. The task is to plan the path from a point to the West of the figure at
around 12◦ latitude, to a point on the East side of the large land mass shown. The mesh-optimal
path passes to the North of the land mass because travel to the centre of the cell lying South of the
land mass would be too expensive to be considered during mesh-optimal path construction. Part
(b) shows that, if this cell is subdivided so that the splitting gradient (defined in Definition 8),
between the southerly tip of the landmass and the cell to the South of it, is shallow, then the path
corresponding to the best path in reality can be found.

1884

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 25: Examples of mesh-optimal routes in different environments. Black lines represent the
routes. Black dots the waypoints. Grey regions represent the vector field, and black
regions represent exclusion zones. The colour map represents the non-uniform scalar
field, with faster speeds in light green and slower in darker blue.

1885

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 26: Examples of smoothed routes in different environments. Black lines represent the routes.
Black dots the waypoints. Grey regions represent the vector field, and black regions
represent exclusion zones. The colour map represents the non-uniform scalar field, with
faster speeds in light green and slower in darker blue.

1886

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 27: An example in which a mesh with a suitable splitting gradient supports Polar Route in
finding optimal paths. As this is a Southern hemisphere example, the optimal path in
reality is the one shown in part (b). In (a), the splitting gradient to the South of the
land mass is so steep that the mesh-optimal path differs from the optimal path in reality.

Definition 8. A splitting gradient between adjacent cells is a ratio determining the relative sizes of
the two cells.

With this proviso, mesh-optimal paths successfully navigate around the exclusion zones and
fields, and provide the skeleton of the path that is then smoothed to best exploit or mitigate the
environmental conditions. The effects of smoothing can be seen in Figure 26. It can be seen
that, without the guidance of the mesh-optimal paths, the great circle arcs would cut through
the exclusion zones. Finding the compromises that are made in the mesh-optimal path, between
distance and environmental conditions, is what makes this optimisation problem so difficult to solve
manually.

It can be observed in Figure 26 that the resulting smoothed paths sometimes touch the corners
or edges of cells that are inaccessible or difficult to travel through. These are the consequences of
clipping to corners or edges caused by the discontinuities in the environment fields that arise at
cell boundaries. This feature of visiting corners and edges distinguishes Polar Route from other
path-finding methods, such as IcePathFinder (Lehtola et al., 2019), as is seen in Section 8.

Figure 28 shows smoothed paths generated for vessels capable of different maximum speeds,
travelling in the presence of exclusion zones, a uniform scalar field determining a constant speed for
the vehicle.

The final abstract evaluation focuses on the performance of Polar Route on a sequence of in-
creasingly complex, randomly generated, non-uniform environment meshes generated as Gaussian
mixture models, of the kind seen in Section 3. This allows us to investigate the scaling behaviour
of Polar Route as environments become more complex and smoothing becomes more challenging.
These meshes feature an increasing number of icy atolls, scattered randomly in open water. A scalar
field defines the speeds achievable by the vessel in each cell, with maximum speed being attainable
in open water and zero speed attainable in ice concentrations above a given threshold of 80%. We
use a domain of 0◦ latitude by 140◦ longitude, and a starting cell size of 2.5◦ latitude by 2.5◦ lon-
gitude. For each k in k = 1..10 we generated 10 meshes of k atolls with start and end waypoints
horizontally displaced, and 10 meshes of k atolls with the waypoints vertically displaced. We then
used Polar Route to find paths between each of the pairs of waypoints in these 20 cases. In total,

1887

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 28: Examples of smoothed routes for vessels travelling at different speeds. Black lines rep-
resent the different routes taken at different speeds (5, 10 and 27.5 km/h). Black dots
represent the waypoints. Black regions represent exclusion zones. Grey arrows represent
the vector field. A uniform scalar field is used. It can be seen that the 5 km/h vessel is
much more susceptible to the vector field than the faster vessels.

200 paths were generated and the CPU times to generate the paths, averaged over each group of k
atolls, is reported in Figure 29.

Figure 29 shows that, as k increases, the problems in this particular collection become harder
for Polar Route until k = 4. As k increases beyond 4, the icy atolls tend to clump together, creating
easier routing problems. This phenomenon can be seen in natural navigation problems, where the
most challenging routing problems arise in areas containing many different obstacles and conditions,
requiring the route to weave between them in an efficient way. An example is seen in Figure 4, where
the North West passage presents this kind of challenge. All of the problems in the Gaussian Mixture
Model collection are solved within 600 seconds, with average performance across the set being less
than 100 seconds.

8. Comparison with IcePathFinder

Lehtola et al. (2019) describe a path-planning method, called IcePathFinder, for ships operating in
constrained regions in the presence of other marine traffic. The only region of operations considered
in their paper is the Baltic Sea. The path-planning method consists of an A⋆ search within a
uniform, high resolution, grid, followed by a post-processing method to improve the geodesic reality

1888

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 29: The orange curve represents average CPU time for each of the numbers of Gaussians
used. The blue curve supplies the min and max CPU times within each group of 20 path
problems. The orange bars show the standard deviations in each group.

of the paths. The method takes into account the impact of sea ice on the speeds achievable by
the vessel. This is modelled by associating a maximum attainable speed with each cell in the grid,
resulting in a speed map similar to the scalar field information that we record in our mesh. The
speed map specifies how the speed of the vessel is modified in a given cell due to ice conditions and
the presence of other ships.

Given a speed map represented as a uniform grid, the A⋆ stage of path-planning generates fastest
paths between specified waypoints in the grid. In common with other grid-based planning methods,
the resulting paths contain grid artifacts which make the paths impractical for navigation. A post-
processing phase then passes over the path, considering each triple of adjacent points ⟨s, i, d⟩, and
removing the point i if it is not needed for obstacle avoidance and a strictly shorter path is possible
by going directly from s to d. This process iterates over the whole path until no further efficiency
improvements are possible. Finally, the length of the path is calculated as the sum of the geodesic
distances between the remaining pairs of points.

In order to compare IcePathFinder with Polar Route, we conducted experiments in both an
artificial environment and in the Baltic Sea. We generated IcePathFinder solutions using the au-
thors’ github codebase10. The artificial example consists of open water and land, with start and
end waypoints positioned at lat-long coordinates on either side of the land feature. Land is shown
as a black rectangle in the figures. The artificial environment is uniformly gridded at the resolution

10. https://github.com/vlehtola/icepathfinder

1889

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 30: (a) Comparison between the post-processed and A⋆ paths of IcePathFinder in an artificial
environment using a uniform mesh.(b) Comparison between the smoothed and mesh-
optimal paths of Polar Route in the same uniform mesh.

of 0.625◦ latitude by 1.25◦ longitude. In this example, all non-land cells are navigable at a uniform
speed (set at 8 knots11 = 14.816 km/h for the purpose of these experiments).

Figure 30 part (a) shows the IcePathFinder A⋆ route, plotted alongside the IcePathFinder post-
processed route. For comparison, in part (b) we run Polar Route using the same mesh and uniform
speed.

The A⋆ route constructed by IcePathFinder is 6171 km long, giving a travel time of 232.87
hours. The post-processing stage shortens the length by 273.8 km, giving a length of 5897.2 km
and a travel time of 222.53 hours. The mesh-optimal path generated by Polar Route is 5821.9 km
long, with a travel time of 219.69 hours. The smoothed route is 5651.3 km long with a travel
time of 213.26 hours. Thus, Polar Route finds a path that is 9.27 hours faster and 245.9 km
shorter than the IcePathFinder path. Furthermore, IcePathFinder does not correctly visit the start
and end waypoints, instead visiting the bottom-left corners of the cells containing them. In this
example, IcePathFinder over-extends at one end of the path, and falls short at the other. The larger
contribution to the additional distance accumulated by IcePathFinder is that, in both the A* and
post-processed paths, IcePathFinder can only change direction at the corners of cells, while Polar

11. A knot is 1.852 km/h.

1890

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Route changes direction on boundaries. It can be seen in Figure 30 (b) that Polar Route exploits
this opportunity and closely approximates a great circle arc albeit at the expense of many changes
in bearing due to the high resolution of the uniform mesh. It can be noted that, in this example,
the Polar Route path runs along the top of the blocked region, while IcePathFinder observes a
separation forcing it to travel 0.25 degrees north of the top boundary.

Polar Route can find smoothed paths requiring significantly fewer bearing changes when a non-
uniform mesh is used. Figure 24 shows how Polar Route performs on the above artificial example
in a non-uniform mesh in which open water cells are not subdivided. The largest cells in this mesh
are 5◦ latitude by 10◦ longitude, and the smallest cells are exactly the same size as the cells in the
uniform mesh shown in Figure 30. IcePathFinder cannot use the non-uniform mesh as IcePathFinder
relies on uniform cell sizes. This is a significant limitation for long-distance navigation where land
and other features are present.

It can be observed that the mesh-optimal path produced using the non-uniform mesh is 8.6 km
longer than the mesh-optimal path produced in the uniform mesh, and the smoothed path in the
non-uniform mesh is 4 km longer than the smoothed path in the uniform mesh. Thus the non-
uniformity of the mesh slightly increases the lengths and travel times of the paths constructed by
Polar Route. This is because travelling through larger cells leads to a coarser discretisation of the
path. However, as we show in the CPU time comparisons, the non-uniform mesh leads to a highly
efficient compaction of the environmental model allowing very fast path construction across large,
heterogeneous environments, at the cost of only a small degradation in path quality. Furthermore,
the number of bearing changes in the smoothed path is substantially reduced (from 94 in the uniform
mesh to 21 in the non-uniform mesh) which is beneficial for the navigator.

To conduct the Baltic Sea experiment, we constructed a high resolution uniform mesh for
IcePathFinder using a resolution of approximately 1× 1 nautical miles which is 1/60◦ = 0.0167◦at
the equator. Lehtola et al. use this resolution, with a uniform mesh of 0.0167◦ latitude by
0.0167◦ longitude. For Polar Route, we generated a non-uniform mesh with maximum cell size
of 0.267◦ latitude by 0.267◦ longitude and minimum cell size equal to those in the uniform mesh
used by IcePathFinder. Both meshes are constructed using the elevation (global GEBCO) and sea
ice concentration (HELMI) datasets used in the IcePathFinder codebase as reported by Lehtola et
al. (2019).

The start and destination waypoints are placed at lat-long coordinates (58.241,18.219) and
(65.577,24.328) respectively, spanning an area of more than 8× 6 degrees (hence a region of size in
the order of 500,000 square kilometers). Figure 31 shows the differences between the corrected path
of IcePathFinder, found in the uniform mesh, and the smoothed path found by PolarRoute in the
non-uniform mesh. While the paths are similar, the path generated by PolarRoute transits through
lower ice concentrations and therefore has a shorter overall transit time. Furthermore, the geodesics
used by IcePathFinder to estimate the length of the path, sometimes cross inaccessible cells, as we
show in the two artificial examples given in Figures 32 and 33. These examples demonstrate that
geodesics can underestimate the path lengths and travel times of paths. We therefore calculate the
lengths of both the IcePathFinder path and the Polar Route path as the sum of the lengths of the
rhumb lines comprising the paths. Although it takes Polar Route three times longer to compute its
path, Polar Route saves 10.8 hours of travel time, and generates a path that is 5.3 km shorter than
that found by IcePathFinder. Although the saving in distance is very small, the saving in travel
time is important. The expanded red box in Figure 31 shows how Polar Route carefully navigates
the lower ice concentrations, while IcePathFinder ploughs through the adjacent area of high sea ice

1891

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 31: Comparison between the final paths of PolarRoute (left) and IcePathFinder (right) in
the Baltic Sea region shown in Lehtola (2019).

concentration. This significantly slows the ship (and significantly impacts on fuel use), contributing
to the longer travel time of the IcePathFinder path.

1892

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 32: A vertical case in which IcePathFinder uses geodesics that sometimes enter inaccessible
areas, while Polar Route never visits cells it has identified as inaccessible.

9. Conclusions

We present an automated method for path-planning in a variant of Zermelo’s navigation prob-
lem (1931), in which a vessel is navigating on a spherical surface with obstacles, subject to vector
and scalar field effects presented as tiled regions of constant effect. The method is called Polar
Route, and is suitable for marine navigation of a vessel in complex marine environments in which
there are surface currents, seasonal sea ice and variable ocean depths, among other factors.

1893

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Figure 33: A horizontal case in which IcePathFinder uses geodesics that sometimes enter inacces-
sible areas, while Polar Route never visits cells it has identified as inaccessible.

The problem solved by Polar Route is similar to the problem of finding shortest paths in tri-
angular meshes, described by Mitchell and Papadimitriou (1991). Polar Route does not use a
triangulation, but a non-uniform grid-based decomposition of the environment, and our surface is
spherical rather than planar. In addition, and in contrast to the majority of work in this area of
research, we include both scalar (with weighting effects similar to those used in some of the related
work discussed in Section 5) and vector fields. Vector fields significantly complicate the problem,
because the direction of travel across a region becomes critical in determining the shortest path.

1894

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Polar Route works in two phases: first, a baseline path is constructed using Dijkstra’s algorithm
on a coarse approximation of the spherical surface. The grid-based Dijkstra method is combined with
an optimisation method to determine where to cross the boundaries between latitude-scaled cells in
a combined scalar and vector field. These equations are solved using Newton’s method. Second, the
resulting mesh-optimal paths are smoothed, using a mathematically rigorous smoothing method.
We have demonstrated the utility of our two-stage method in a variety of different conditions (with
and without exclusion zones, vector fields and scalar fields, in a range of differently cluttered areas,
and over long and short distances). Given an environmental mesh as input, the path-planning
method described here has been shown to generate conveniently navigable paths that minimise
travel time to within an accuracy that depends on the mesh size.

Continuous methods have been proposed which rely on the environment being characterised
by analytic and differentiable functions. Polar Route relies on a mesh constructed using GIS data
which is sampled at points and hence discontinuous. In general, there is no natural analytic form
for the data fields, and often insufficient data to allow smooth interpolations.

Comparison between Polar Route and IcePathFinder, a long-distance marine path-planner solv-
ing a similar problem to ours, shows that Polar Route produces better quality paths than those
of IcePathFinder and never produces paths that collide with exclusion zones or violate the scalar
and vector constraints of the environment. By contrast, because the IcePathFinder smoothing
method works by removing crossing points rather than by recalculating them, it sometimes find
paths that contain collisions with exclusion zones. Furthermore, IcePathFinder only works with
a uniform mesh, which limits the scale and complexity of the environments it can plan for. The
use in IcePathFinder of geodesics to estimate path lengths and travel times sometimes violates the
modelled environmental constraints.

Comparision with a Probabilistic Roadmap method showed that – while PRMs in theory guar-
antee optimal paths in binary environments – these can take considerable CPU time to find and
cannot, in practice, achieve solutions as close to optimal as those generated by the two-stage method
of Polar Route. Of course the performance of the PRM method depends on the sampling strategy
used, and importance sampling is much better than uniform sampling for selecting useful points.
However, in order to define a suitable importance sampling strategy, the general trajectory of the
path itself must be known, and this is not known until at least one phase of path-planning is
completed.

Much of the work in grid-based path planning relies on high resolution meshes in order to
capture a suitable level of environmental detail for the path-planning application. Polar Route uses
a non-uniform mesh in which areas featuring unvarying data profiles are modelled by large cells
containing constant scalar and vector fields. Polar Route is required to plan long distance routes as
well as shorter ones (still typically hundreds of kilometers long) in complex environments. Smoothed
paths generated by Polar Route comprise sequences of rhumb lines with changes in bearing at the
waypoints between them. Navigation over the distances between the waypoints can be considered
with respect to uniform and constant vector and scalar fields, since the control problem of following
a rhumb line is confronted in real time by the vessel’s navigator or helmsman. Thus, as shown by our
results, a mesh-based approximation of the environment, following the description in Section 2.1, is
sufficient for generating high quality routes in these situations.

The costly parts of Polar Route are in the computation of edge weights during graph construction
and in the iterative path-smoothing process. The construction of mesh-optimal paths, given the
accessibility graph, is not usually a bottleneck because of the non-uniformity of the mesh. This keeps

1895

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

the number of cells small relative to the area of the globe being covered. We use a lazy strategy for
the calculation of edge costs in the graph, which also mitigates the effect of large graph sizes. We are
using a standard implementation of Dijkstra’s algorithm, so the performance of the mesh-optimal
path construction – should we discover scaling problems – could perhaps be improved by switching
to A* search, or by exploiting an optimised data structure such as an untidy priority queue (Yatziv
et al., 2006). The smoothing process requires that every crossing point be re-evaluated, on every
smoothing iteration, using the refined model of curvature. Since thousands of iterations may be
required to achieve path convergence, the process is expensive, and complex paths can take a few
minutes to construct. Nonetheless our results show that the waiting time is acceptable and the
approach achieves smooth paths with good properties: they never cross obstacles and they spend
as little time as possible in areas that impede the progress of the vessel.

As a topic for future work, it would be of interest to enable Polar Route to optimise metrics other
than travel time. In particular, navigators are often interested in reducing fuel consumption along
a route while still reaching a destination before a set deadline. In Polar Route, Dijkstra’s algorithm
can be applied using an objective function in which the weights are modified via a further function
such as determination of fuel cost given the conditions present in the cells travelled through. In such
a case, fuel cost would be optimised subject to individual edges being selected for optimal travel
time. Optimising fuel directly would require three degrees of freedom to be considered: the speed in
each cell and the crossing point. Proper implementation of this objective would involve a substantial
change to the crossing point calculation. Similarly other objectives, such as minimising discomfort
to those on board, would lead a navigator to avoid heading into difficult weather conditions, or
sailing parallel to high waves, but these cannot yet be properly captured as objective functions in
Polar Route.

Polar Route has been designed to work within a plan-replan execution framework, where the
approach is to plan in snapshots of the environment and then replan when conditions change. An
alternative approach would be to model the temporal dynamics of the environment and plan for
expected changes in the ice condition and weather.

Finally, the proper treatment of winds and waves requires a shift away from the model of the
vessel as a particle. Winds and waves can act on the side of the vessel, depending on the bearing of
the vessel, and therefore require a more complex specification of the vessel and additional modelling
complexity. Furthermore, wind, in particular, can lead to rapidly changing conditions and the
model of the environment further motivating the inclusion of a temporal dimension. It might not
be possible to capture all of the necessary relationships that could affect navigation by means of a
single combined scalar field and a single combined vector field. These questions raise considerable
extra complexity and will be addressed in future work.

Acknowledgements

We would like to acknowledge UKRI-NERC for funding the work reported in this paper. We thank
the anonymous reviewers of an earlier draft of this paper for their detailed and helpful comments.

Appendix A. Software Resources

The methods and plots in this paper are provided in the route planning software Package PolarRoute,
version 0.5, found at:

1896

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

https://github.com/antarctica/PolarRoute/releases/tag/v0.5 . The IcePathFinder paths
were generated using the code provided by Ville Lehtola at:
https://github.com/vlehtola/icepathfinder. A much earlier, unpublished, version of the work
described in this paper can be found on ArXiv https://arxiv.org/pdf/2209.02389.

Appendix B. Auxilliary Functions Supporting the Smoothing Algorithm

The smoothing algorithm described in Section 6.3 depends on a collection of basic operations as
follows (error cases are not considered in these descriptions):

• insert(x,L1,L2): Inserts the list, L1, into the list, L2, at position index x (the first element
of L1 will appear at position x after the insertion). The first element of a list is at index
position 0.

• remove(x,L): Removes the element at position x from list L.

• length(L): Returns the length of list L.

The following functions operate with the basic data structures of the geophysical representation.
It is assumed that the space is represented with a mesh of cells, that points are represented by
a latitude and longitude on the surface of the sphere, that edges, ap, are characterised by two
adjacent cells (sharing a boundary or single common corner), ap.start and ap.end, and that an
edge has a crossing point, ap.crossing, on the shared boundary between the adjacent cells (which
could be a common corner). Furthermore, it is assumed that each edge has a direction, which is
diagonal if the shared boundary is a single point, and is vertical (north or south) if the shared
boundary is oriented east-west, and horizontal otherwise. Three constants are parameters used in
the algorithm: MERGESEP, which determines how close points become before we merge them into
the same point, CONVERGESEP which determines the minimum change in the position of a point
that is considered to have been a significant change for the smoothing of the path, and WORSE
which is a threshold on how much worse the conditions (scalar field or vector field) can be in a cell,
C, compared with an alternative, A, for it to be considered possible to consider passing through C
instead of A.

• dist(x,y): Returns the distance between the points x and y, which is the length of the shorter
great circle arc that connects them.

• findEdge(cellA,cellB): Returns the edge that connects the two cells, cellA and cellB. If
there is no edge connecting the cells (or its weight is infinite), it returns null.

• isDiagonal(ap): Returns true if the edge ap is diagonal (connects cells that share only a
common corner).

• inside(x,cell): Returns true if the point x lies inside the cell cell (including its boundary).

• clipTo(cell, x): Returns the point inside cell that is closest to the point x. Note that if x
lies on a line that is an extension of one of the sides of cell, then the point that is returned
will be a corner of cell. Also, if x is inside cell, then the function will return x.

1897

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

• nearestNeighbour(cellA,cellB,x): Returns the cell in the mesh that shares a boundary
with cellA and has an edge on the line that extends the common boundary of cellA and cellB
(and on which the point x lies) in the direction of x. If x lies inside cellA or there is no cell
that satisfies these requirements, it returns null.

• selectSide(firstpoint,midpoint,lastpoint,ap): Assuming that midpoint is the common
corner of the two cells in the diagonal edge ap, returns the cell that shares a boundary with
both ap.start and ap.end on the same side of midpoint as the shorter great circle arc passing
between firstpoint and lastpoint. In the case that midpoint is within CONVERGESEP of the
arc, then it returns null.

• blocked(targetA,cellA,cellB): Returns true if targetA is null (meaning it is not accessible)
or if the conditions in the cell are relatively worse than those in either cellA or cellB by the
relevant threshold, WORSE. If the maximum speeds in the target cell and cells A and B are
ST , SA and SB, respectively, the relative impact of entering the new cell is determined by
checking whether

SA − ST
ST

>WORSE

or
SB − ST
ST

>WORSE .

Finally, NewtonSmooth(firstpoint,midpoint,lastpoint,ap) is a method that returns the new
crossing point on the boundary between ap.start and ap.end, when crossing from the first point, fp,
on the boundary of ap.start to the last point, lp, on the boundary of ap.end. The mid point, mp,
which is the current crossing point ap.crossing, is used as the initial value for Newton’s method.
The orientation of ap determines whether this will invoke horizontal or vertical smoothing. In the
horizontal case, the selection of the crossing point implements the derivation given in Appendix C.
In the vertical case, the selection implements the derivation given in Appendix D.

Appendix C. Derivation of the Minimal Smoothed Path Travel Time in the
Horizontal Case

In the method described in Section 6.1.1, each cell is treated as having a constant width which is
scaled by the latitude of its centre point. During smoothing we introduce a latitude correction so
that the choice of y respects the curvature of the sphere. We therefore replace x with x cos θ, where
θ = y

2R + λ. Here, θ is the latitude of the crossing point, and λ is the latitude of the entry point
into the cell pair. Using zl = x cos θ, the speed of the vessel in the entry cell is:

s2l t
2
1 = (zl − t1u1)

2 + (y − t1v1)
2 (35)

As in Section 6.1.1, b (the horizontal travel in the exit cell) is equal to Y − y. We can form a
corresponding equation for the exit cell, using ψ = −b

2R + τ , the latitude of the crossing point (where
τ is the latitude of the exit point) and zr = a cosψ, the horizontal distance travelled in the exit cell.

We define:
d21 = z2l + y2 (36)

d22 = z2r + (Y − y)2 (37)

1898

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

D1 = zlu1 + yv1 (38)

D2 = zru2 + (Y − y)v2 (39)

The terms C1, C2, X1, X2, t1 and t2 are as defined in Section 6.1.1, with the D terms in those
equations replaced by Equations 38 and 39.

Quadratic equations for travel in the entry and exit cells can then be constructed and solved as
in Section 6.1.1.

Differentiating 35, we obtain:

s2t1∂t1 = (zl − t1u1)(∂zl − u1∂t1) + (y − t1v1)(1− v1∂t1) (40)

After cancelling and factorising:

∂t1(s
2t1 + (zl − t1u1)u1 + v1(y − t1v1)) = y − t1v1 + ∂zl(zl − t1u1) (41)

and after rearranging terms:

∂t1((s
2 − u21 − v21)t1 + zlu1 + yv1) = y − t1v1 + ∂zl(zl − t1u1) (42)

Equation 42 can be rewritten using Equations 11, 13 and 19 as follows:

∂t1(C1t1 +D1) = y − t1v1 + ∂zl(zl − t1u1) (43)

Using Equation 17, we have:

∂t1X1 = y − t1v1 + ∂zl(zl − t1u1) (44)

∂t1 =
y − t1v1 + ∂zl(zl − t1u1)

X1
(45)

An expression for ∂t2 can be derived through similar steps.

∂zl =
−x sin θ

2R
(46)

∂zr =
−a sinψ

2R
(47)

∂D1 = ∂zlu1 + v1 (48)

∂D2 = ∂zru2 − v2 (49)

Generalising Equation 35 to the exit cell, we can write:

t22s
2 = (zr − t2u2)

2 + (Y − y − t2v2)
2 (50)

Differentiating Equation 50, we obtain:

s2t2∂t2 = (zr − t2u2)(∂zr − u2∂t2) + (Y − y − t2v2)(−1− v2∂t2) (51)

1899

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

which can be written:

∂t2(s
2 − u22 − v22)t2 +D2 = Y − y + t2v2 + ∂zr(zr − t2u2) (52)

and therefore:
∂t2 =

Y − y + t2v2 + ∂zr(zr − t2u2)

X2
(53)

As in Section 6.1.1, we require that:

y − t1v1 + ∂zl(zl − t1u1)

X1
+
Y − y + t2v2 + ∂zr(zr − t2u2)

X2
= 0 (54)

By summing and rearranging terms, we obtain:

(X1 +X2)y − t1X2v1 + t2X1v2 − Y X1 + ∂zr(zr − t2u2)X1 + ∂zl(zl − t1u1)X2 = 0 (55)

so F (y), the function we wish to minimise, is:

F (y) = (X1 +X2)y − t1X2v1 + t2X1v2 − Y X1 + ∂zr(zr − t2u2)X1 + ∂zl(zl − t1u1)X2 (56)

Equation 56 can be rewritten, using Equations 19 and 20, as:

F (y) = (X1 +X2)y − (X1−D1)X2v1
C1 + (X2−D2)X1v2

C2
− Y X1+

∂zr(zr − (X2−D2)u2

C2
)X1 + ∂zl(zl − (X1−D1)u1

C1
)X2

(57)

To form the derivative of Equation 57 we require the derivatives of ∂zl and ∂zr. Since ∂θ =
∂(y

R + λ) = 1/R and ∂ψ = ∂(−Y−y
R + τ) = 1

R , we have:

∂∂zl = −xcosθ
R

∂θ = − zl
R2

(58)

∂∂zr = −asinψ
R

∂ψ = − zr
R2

(59)

The derivative of Equation 57 is then:

∂F (y) = (X1 +X2) + y(∂X1 + ∂X2)
− v1

C1(∂X2(X1 −D1) +X2(∂X1 − ∂D1))
+ v2

C2
(∂X1(X2 −D2) +X1(∂X2 − ∂D2))− Y ∂X1

− zr
4R2 (zr − (X2−D2)u2

C2
)X1 − zl

4R2 (zl − (X1−D1)u1

C1
)X2

+∂zr(∂zr − u2
C2

(∂X2 − ∂D2))X1

+∂zl(∂zl − u1
C1

(∂X1 − ∂D1))X2

+∂zr(zr − (X2−D2)u2

C2
)∂X1 + ∂zl(zl − (X1−D1)u1

C1
)∂X2

(60)

where ∂X1 and ∂X2 are defined as follows.

∂X1 =
D1∂D1+C1(zl∂zl+y)

X1

= (∂zlu1+v1)D1+C1(y+zl∂zl)
X1

= D1v1+C1y+∂zl(D1u1+C1zl)
X1

(61)

1900

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Figure 34: Using cosine ratios to approximate horizontal distance in a vertical alignment.

∂X2 =
D2(∂zru2−v2)+C2(zr∂zr−Y+y)

X2

= −v2D2−C2(Y−y)+∂zr(D2u2+C2zr)
X2

(62)

Using Equations 56 and 60, we can use Newton’s method to arrive at a value of y that makes
F (y) = 0. Due to the new latitude correction, this value of y might visit latitudes outside the
horizontal boundaries of the two cells. This results in the addition of a suitable horseshoe pattern,
which will result in new cell pairs to be smoothed on later iterations.

During smoothing, it can happen that the travel time is zero, or infinitesimal, in one or other
cell. If the two points concerned are fp and mp, no action is taken on this iteration and we simply
advance to the next triplet of points. On the next iteration of smoothing along the path, this pair
of close points will be mp and lp, and will be addressed in the following way. Figure 17 shows the
situation in which the close points are mp and lp. The situation is resolved by removing mesh-
optimal path edges ap and ap′, and replacing them with a single edge ap′′. This new edge, which
was not previously part of the mesh-optimal path, now connects the end points of ap and ap′. Since
all three cells in the figure are accessible, ap′′ must exist. The points mp and lp no longer lie on
the path, as they are replaced by the single crossing point for the edge ap′′. This crossing point
becomes the new mp, and lp is identified as the exit point for the target cell at the end of the edge
ap′′. The point fp remains unchanged.

1901

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Appendix D. Derivation of the Minimal Smoothed Path Travel Time in the
Vertical Case

When smoothing from an entry point to an exit point in a vertical alignment, the path passes
through a crossing point at a latitude, θ, between the entry and exit point latitudes, λ and ψ
respectively. Suppose that the vertical distance from the entry point to the crossing point is x that
the vertical distance from the crossing point to the exit point is a. When travelling from the entry
point to the crossing point, at a latitude θ, the horizontal distance travelled, d, depends on both
the longitudinal separation of the entry point and the crossing point, and θ. We approximate d
using cos ratios as shown in Figure 34. The figure shows two longitudinal lines and three latitudes,
in a vertical adjacent cell pair arrangement. The entry point is at latitude λ, the exit point is at
latitude ψ, and the crossing point is at latitude θ. As shown, a distance travelled at the crossing
point latitude must be scaled to give the corresponding distances at the other two latitudes. Two
ratios are required, one to approximate the horizontal distance travelled at the entry latitude, and
the other to approximate the horizontal distance travelled at the exit latitude. We call these ratios
r1 and r2 respectively, defined in Equations 63 and 64.

r1 =
cosλ

cosθ
(63)

r2 =
cosψ

cosθ
(64)

d21 = x2 + (r1y)
2 (65)

d22 = a2 + (r2(Y − y))2 (66)

D1 = xu1 + r1v1y (67)

D2 = au2 + r2v2(Y − y) (68)

∂D1 = r1v1 (69)

∂D2 = −r2v2 (70)

The travel times in the start and end cells, t1 and t2, are given as:

s2l t
2
1 = (x− t1u1)

2 + (r1y − t1v1)
2 (71)

s2rt
2
2 = (a− t2u2)

2 + (r2(Y − y)− t2v2)
2 (72)

Differentiating Equations 71 and 72, we obtain:

s2l t1∂t1 = −(x− t1u1)u1∂t1 + (r1y − t1v1)(r1 − v1∂t1) (73)

1902

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

∂t1(s
2
l t1 + (x− t1u1)u1 + v1(r1y − t1v1)) = r1(r1y − t1v1) (74)

∂t1((s
2
l − u21 − v21)t1 + xu1 + r1v1y) = r1(r1y − t1v1) (75)

∂t1(C1t1 +D1) = r1(r1y − t1v1) (76)

∂t1X1 = r1(r1y − t1v1) (77)

∂t1 =
r1(r1y − t1v1)

X1
(78)

and, by similar reasoning:

∂t2 = −r2(r2(Y − y)− t2v2)

X2
(79)

As before, we require ∂t1 + ∂t2 = 0.
We differentiate X1 and X2 to obtain:

∂X1 =
r1(D1v1 + r1C1y)

X1
(80)

and
∂X2 =

−r2(D2v2 + r2C2(Y − y))

X2
(81)

We can now write:

∂t1 + ∂t2 = r1(
r1y − t1v1

X1
) + r2(

r2(y − Y) + t2v2
X2

) = 0 (82)

This can be rewritten as follows using Equations 19 and 20:

F (y) = (r22X1 + r21X2)y −
r1(X1 −D1)X2v1

C1
+
r2(X2 −D2)X1v2

C2
− r22Y X1 (83)

which, differentiated, gives:

∂F (y) = (r22X1 + r21X2) + y(r22∂X1 + r21∂X2)
− r1v1

C1
((∂X1 − ∂D1)X2 + (X1 −D1)∂X2)

+ r2v2
C2

((∂X2 − ∂D2)X1 + ∂X1(X2 −D2))

−r22Y ∂X1

(84)

Using the definitions of F (y) and ∂F (y), Equations 83 and 84, we use Newton’s method to arrive
at a value of y that makes F (y) = 0.

Appendix E. Dijkstra’s Algorithm

Algorithm 8 is the standard version of Dijkstra’s algorithm as used in Polar Route.

1903

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

input : Graph G = (V,E,w) with edge costs w : E → R+; initial vertex vI ∈ V and
destination vertex, vG ∈ V

output: Dijkstra path, P , which is a list of vertices starting at vI and ending at vG, with
successive pairs connected by an edge in E

1 Begin
2 Q:= empty priority queue of vertices sorted by increasing dist;
3 for v ∈ V do
4 dist[v] = ∞;
5 prev[v] = undefined;
6 add v to Q;
7 end
8 dist[vI] = 0;
9 while Q not empty

10 u:= vertex in Q with minimum dist;
11 remove u from Q;
12 if u == vG then
13 P := empty path;
14 u = vG;
15 prepend u to P ;
16 while not u == vI
17 u:=prev[u];
18 prepend u to P ;
19 return P ;
20 end
21 for x ∈ V such that (u, x) ∈ E do
22 newdist:=dist[u] + w(u, x);
23 if newdist < dist[x] then
24 dist[x]:=newdist;
25 prev[x]:=u;
26 end
27 end
28 return No path exists;
Algorithm 8: Dijkstra’s Algorithm for finding shortest path between a given start and
end location in a graph.

References

Aldea, N., & Kopacz, P. (2020). Time-optimal navigation in arbitrary winds. Annual Reviews in
Control, 49, 164–172.

Bast, H., Delling, D., Goldberg, A. V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D.,
& Werneck, R. F. (2016). Route Planning in Transportation Networks. In Kliemann, L., &
Sanders, P. (Eds.), Algorithm Engineering - Selected Results and Surveys, Vol. 9220 of Lecture
Notes in Computer Science, pp. 19–80. Springer.

1904

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Bijlsma, S. J. (1975). On Minimal-Time Ship Routing. Ph.D. thesis, University of Delft.

Bijlsma, S. J. (2001). A Computational Method for the Solution of Optimal Control Problems in
Ship Routing. NAVIGATION, 48 (3), 144–154.

Bonnard, B., Cots, O., & Wembe, B. (2021). Zermelo Navigation Problems on Surfaces of Revolution
and Hamiltonian Dynamics. Tech. rep., hal-03209491v2f.

Crane, K., Livesu, M., Puppo, E., & Qin, Y. (2020). A Survey of Algorithms for Geodesic Paths
and Distances. arXiv e-prints, 2007.10430, arXiv:2007.10430.

Daniel, K., Nash, A., Koenig, S., & Felner, A. (2014). Theta*: Any-Angle Path Planning on Grids.
J. Artif. Intell. Res. (JAIR), 39, 533–579.

Dellin, C., & Srinivasa, S. (2016). A Unifying Formalism for Shortest Path Problems with Expen-
siveEdge Evaluations via Lazy Best-First Search over Paths with Edge Selectors. In Proc. of
the Internaitonal Conference on Automated Planning and Scheduling.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische mathe-
matik, 1 (1), 269–271.

Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path planning: The Field D*
algorithm. Journal of Field Robotics, 23.

Finkel, R. A., & Bentley, J. L. (1974). Quad Trees: A Data Structure for Retrieval on Composite
Keys. Acta Informatica, 4 (1), 1––9.

Garrido, S., Álvarez, D., & Moreno, L. (2016). Path Planning for Mars Rovers Using the Fast
Marching Method. In Reis, L. P., Moreira, A. P., Lima, P. U., Montano, L., & Muñoz-
Martinez, V. (Eds.), Robot 2015: Second Iberian Robotics Conference, pp. 93–105, Cham.
Springer International Publishing.

Garrido, S., Alvarez, D., & Moreno, L. E. (2020). Marine Applications of the Fast Marching Method.
Frontiers in Robotics and AI, 7.

Harabor, D., & Grastien, A. (2013). An Optimal Any-Angle Pathfinding Algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling, pp. 308–311.

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4 (2), 100–
107.

Kavraki, L. E., & Latombe, J.-C. (1998). Probabilistic roadmaps for robot path planning. In
Practical Motion Planning in Robotics: Current Approaches and Future Directions, pp. 33–53.
John Wiley.

Kavraki, L. E., & LaValle, S. M. (2016). Motion Planning. In Springer handbook of robotics, pp.
139–162. Springer.

Koenig, S., & Likhachev, M. (2002). D*Lite. In Proceedings of the 18th National Conference on
Artificial Intelligence and 14th Conference on Innovative Applications of Artificial Intelligence,
pp. 476–483. AAAI Press / The MIT Press.

Koenig, S., Likhachev, M., & Furcy, D. (2004). "lifelong planning a∗". Artificial Intelligence, 155 (1),
93–146.

1905

Smith, Hall, Coombs, Abbot, Fekry, Thorne, Long & Fox

Kotovirta, V., Jalonen, R., Axell, L., Riska, K., & Berglund, R. (2009). A System for Route
Optimization in Ice-Covered Waters. Cold Regions Science and Technology, 55 (1), 52–62.

Lanthier, M. (1999). Shortest path problems on polyhedral surfaces. Ph.D. thesis, Carleton University,
School of Computer Science.

Lanthier, M., Maheshwari, A., & Sack, J.-R. (1997). Approximating weighted shortest paths on
polyhedral surfaces. In Proceedings of the 13th Annual ACM Symposium on Computational
Geometry.

LaValle, S. M., Branicky, M. S., & Lindemann, S. R. (2004). On the Relationship between Classical
Grid Search and Probabilistic Roadmaps. The International Journal of Robotics Research,
23 (7-8), 673–692.

Lehtola, V., Montewka, J., Goerlandt, F., Guinness, R., & Lensu, M. (2019). Finding Safe and
Efficient Shipping Routes in Ice-Covered Waters: A Framework and a Model. Cold Regions
Science and Technology, 165.

Li, Z., Ringsberg, J. W., & Rita, F. (2020). A Voyage Planning Tool for Ships Sailing between
Europe and Asia via the Arctic. Ships and Offshore Structures, 15 (sup1), S10–S19.

Liu, B., Chen, S., Xin, S.-Q., He, Y., Liu, Z., & Zhao, J. (2017). An optimization-driven approach
for computing geodesic paths on triangle meshes. Computer-Aided Design, 90, 105–112.

Mata, C. S., & Mitchell, J. S. B. (1997). A New Algorithm for Computing Shortest Paths in
Weighted Planar Subdivisions. In Proceedings Symposium on Computational Geometry.

Mishra, P., Alok, S., Rajak, D. R., Beg, J. M., Bahuguna, I. M., & Talati, I. (2021). Investigating
Optimum Ship Route in the Antarctic in Presence of sea ice and Wind Resistances – A Case
Study between Bharati and Maitri. Polar Science, 30.

Mitchell, J. S. B., Mount, D. M., & Papadimitriou, C. H. (1987). The Discrete Geodesic Problem.
SIAM Journal on Computing, 16 (4), 647–668.

Mitchell, J. S. B., & Papadimitriou, C. H. (1991). The Weighted Region Problem: Finding Shortest
Paths through a Weighted Planar Subdivision. J. ACM, 38 (1), 18––73.

Pêtrès, C., Pailhas, Y., Patrón, P., Petillot, Y., Evans, J., & Lane, D. (2007). Path Planning for
Autonomous Underwater Vehicles. IEEE Transactions on Robotics, 23 (2), 331–341.

Powell, M. D. (1964). An Efficient Method for finding the Minimum of a Function of Several
Variables without Calculating Derivatives. The Computer Journal, 7, 155–162.

Rivera, N., Hernández, C., Hormazábal, N., & Baier, Jorge, A. (2020). The 2k Neighborhoods for
Grid Path Planning. J. Artif. Intell. Res., 67, 81–113.

Rospotniuk, V., & Small, R. (2022). Optimal Any-Angle Pathfinding on a Sphere. J. Artif. Int.
Res., 72, 475—-505.

Sen, D., & Padhy, C. P. (2015). An Approach for Development of a Ship Routing Algorithm for
Application in the North Indian Ocean Region. Applied Ocean Research, 50, 173–191.

Sethian, J. (1996). A Fast Marching Level Set Method for Monotonically Advancing Fronts. In
Proc. National Acadacemy of Science, Vol. 93, pp. 1591–1595.

Sprunk, C. (2008). Planning Motion Trajectories for Mobile Robots using Splines. Tech. rep.,
Albert-Ludwigs Universität Freiburg.

1906

Path-Planning on a Spherical Surface with Disturbances and Exclusion Zones

Topaj, A. G., Tarovik, O. V., Bakharev, A. A., & Kondratenko, A. A. (2019). Optimal Ice Routing
of a Ship with Icebreaker Assistance. Applied Ocean Research, 86 (November 2018), 177–187.

Veness, C. (2002). Calculate Distance, Bearing and More Between Latitude/Longitude Points.
https://www.movable-type.co.uk/scripts/latlong.html. Accessed: 2022-01-04.

Vezie, K. (2016). Mercators Projection: A Comparative Analysis of Rhumb Lines and Great Circles.
Tech. rep., Whitman College.

Walther, L., Rizvanolli, A., Wendebourg, M., & Jahn, C. (2016). Modeling and Optimization
Algorithms in Ship Weather Routing. International Journal of e-Navigation and Maritime
Economy, 4, 31–45.

Yatziv, L., Bartesaghi, A., & Sapiro, G. (2006). O(N) implementation of the fast marching algorithm.
Journal of Computational Physics, 212 (2), 393–399.

Zermelo, E. (1931). Über das Navigations problem bei ruhender oder veränderlicher Windverteilung.
Zeitschrift für Angewandte Mathematik und Mechanik, 11 (2), 114–124.

1907

