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 A B S T R A C T

Improved methods for identifying species at risk are needed to strengthen climate change vulnerability 
assessments, as current estimates indicate that up to one million species face extinction due to environmental 
changes. Integrating multiple sources of uncertainty enhances the robustness of Red List of Threatened Species 
assessments, providing a more comprehensive understanding of species’ risks. We present a comprehensive 
framework that incorporates uncertainties, including measurement error, structural uncertainty, natural 
variability, future climate emissions scenario, and extreme events of sea ice loss, to evaluate the extinction risk 
of the emperor penguin (Aptenodytes forsteri), currently classified as Near-Threatened. We apply three ecological 
models, one bioclimatic and two metapopulation models, combined with a multi-model large ensemble (MMLE) 
of climate projections from general circulation models, to conduct a Red List evaluation at both global, regional 
and colony levels. Our results show that emperor penguins could be classified under a range of Red List 
categories depending on the ecological model, Intergovernmental Panel on Climate Change (IPCC) climate 
emissions scenario, and extreme event frequency. Under Criterion A, global classifications vary from Vulnerable 
to Critically Endangered. Severe declines are projected in the Indian and East Pacific sectors, Dronning Maud 
Land and the Amundsen-Bellingshausen Sea, with Criterion E indicating that 24% to 100% of colonies meet
Endangered status thresholds, depending on huddling thresholds and ecological models. This study represents 
the first application of an MMLE coupled with an ecological ensemble approach to project climate change 
impacts on a species, capturing a comprehensive range of uncertainties and offering a framework for improving 
forecasting and decision-making under climate change.
1. Introduction

Species are affected by anthropogenic climate change 
(Hoegh-Guldberg and Bruno, 2010; Urban, 2015). Preliminary esti-
mates forecast climate-related extinctions of 14%–32% of macroscopic 
species by 2074, potentially including 3–6 million animal and plant 
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taxa, even under intermediate climate change scenarios (Wiens and 
Zelinka, 2024). This contrasts with only 10,967 species identified on 
the International Union for Conservation of Nature (IUCN) Red List 
of Threatened Species that have an increased risk of extinction from 
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climate change (IUCN, 2019; Akçakaya et al., 2014). Improved meth-
ods for identifying species at risk are necessary to strengthen climate 
change vulnerability assessments, as current extinction risk evalua-
tions indicate that approximately one million species face potential 
extinction due to climate-related and anthropogenic pressures (Trull 
et al., 2018; Foden et al., 2019; Mancini et al., 2024; Pacifici et al., 
2015; IPBES, 2019). Integrating multiple sources of uncertainty can 
improve the robustness of threat category assignment for Red List as-
sessments and provide a more comprehensive understanding of species 
risk (Akcakaya et al., 2006; Rueda-Cediel et al., 2018).

The IUCN Red List recognizes various sources of uncertainty, includ-
ing measurement error, natural variability in ecological and climatic 
processes, structural uncertainties related to model choice and tech-
niques, and future climate scenarios (IUCN, 2024) (Fig.  1 boxes 5 and 
9) . For species threatened by climate change, the IUCN guidelines 
emphasize the importance of accounting for uncertainties in general 
circulation models (Fig.  1 box 9b), Intergovernmental Panel on Climate 
Change (IPCC) climate emissions scenarios (Box 6 on Fig.  1) and ecolog-
ical modeling approaches (Fig.  1 box 5b). They specifically recommend 
incorporating projections from multiple general circulation models, 
across both high and low emission scenarios, and using results from 
at least two or three different ecological models to ensure robustness 
in projections (Araújo and New, 2007; Pearson et al., 2006; Buisson 
et al., 2010).

Natural variability, as defined by the IUCN, refers to inherent fluctu-
ations in species’ life histories and environmental conditions over time 
and space (IUCN, 2024). This variability reflects the dynamic nature of 
ecological systems and their interactions with changing environmental 
conditions. In ecological modeling, natural variability encompasses 
fluctuations intrinsic to population and community dynamics, driven by 
stochastic processes, life-history traits, and internal feedbacks. Natural 
variability aligns closely with the concepts of endogenous variability, 
stochasticity in biological processes, parameter variability, and pro-
cess error, all of which help determine the predictive variance of a 
system (Lande et al., 2003; Dietze, 2017). In climate science, natural 
variability is defined as unforced variability arising internally within 
the climate system, such as chaotic atmospheric processes or decadal 
oscillations (e.g. El Niño–Southern Oscillation), and is often captured 
through Single Model Large Ensembles (Kay et al., 2015). Although 
climate variability also impacts the predictability of ecological systems, 
few ecological studies have systematically integrated this variability 
as derived from Single Model Large Ensembles (Trisos et al., 2020; 
Jenouvrier et al., 2021).

Natural variability is an important source of uncertainty, but it is 
just one component. Equally important is structural model uncertainty, 
which arises from the assumptions and formulations inherent in any 
given model. Unlike natural variability, structural uncertainties have 
only recently begun to be systematically addressed in ecology through 
ecological ensembles (Clare et al., 2024; Tittensor et al., 2021; Spence 
et al., 2018; Cheung et al., 2016; Bagchi et al., 2013), whereas climate 
science has been incorporating them for decades with Multi-Model 
Ensembles (Tebaldi and Knutti, 2007). More recently, climate science 
has developed the Multi-Model Large Ensemble (MMLE), which cap-
tures natural variability through single model large ensembles while 
simultaneously addressing structural uncertainties (Deser et al., 2020).

Eco-climatic modeling, which links ecological models with general 
circulation models, is particularly relevant for the emperor penguin 
(Aptenodytes forsteri), currently categorized by the IUCN Red List as
Near-Threatened. The life cycle of emperor penguins is closely tied 
to sea ice conditions, affecting both their population dynamics and 
their distribution (Ainley et al., 2010; Trathan et al., 2020; Labrousse 
et al., 2023). On a global scale, a recent comprehensive assessment 
reveals that the abundance of emperor penguins declined by 9.6% 
between 2009 and 2018 (LaRue et al., 2024). Projections indicate 
that by 2100, almost all emperor penguin colonies will become quasi-
extinct under high greenhouse gas emission scenarios, with the global 
2 
population expected to decline by approximately 99% compared to 
current levels (Jenouvrier et al., 2021). Even under moderate emission 
scenarios, more than two-thirds of colonies are projected to disappear 
by midcentury (Jenouvrier et al., 2020). These findings have supported 
the listing of emperor penguin as a threatened species under the U.S. 
Endangered Species Act (U.S. Fish and Wildlife Service, 2022), but they 
were based on a single large ensemble of climate projections (Kay et al., 
2015) and only one ecological model (Jenouvrier et al., 2010, 2012, 
2017).

These past approaches to anticipatory projections of emperor pen-
guin futures have used the latest outputs from the Intergovernmental 
Panel on Climate Change (IPCC) assessments and the Coupled Model 
Intercomparison Project (CMIP), which provides standardized climate 
model simulations. However, climate models have struggled to capture 
some aspects of observed Antarctic sea ice variations (Roach et al., 
2020), such as the small increases that occurred between 1979 and 
2014 (Comiso et al., 2017; Parkinson, 2019) and the abrupt reductions 
in recent years (Diamond et al., 2024; Fogt et al., 2022; Hobbs et al., 
2024; Purich and Doddridge, 2023; Raphael and Handcock, 2022). 
This observational-model discrepancy may in part be due to internal 
variability (Singh et al., 2019) as well as to the relatively short satellite 
record. Nonetheless, on longer timescales (1979–2023), observed sea 
ice trends fall within the range simulated by climate models (Hobbs 
et al., 2024), suggesting that the models can simulate a reasonable 
long-term response to anthropogenic forcing.

While appearing deficient in some aspects related to simulating 
Antarctic climate, eco-climatic modeling remains the best tool available 
for projecting the abundance and distribution of emperor penguins 
under multiple scenarios. Additionally, eco-climatic models enable both 
long-term hindcasting of penguin populations and projections of future 
trends, allowing us to validate ecological models against historical 
data (IUCN, 2024). Here we present a multi-model framework aligned 
with IUCN guidelines to address key uncertainties, including natural 
variability, structural uncertainties, and scenario-based factors, such 
as IPCC climate emissions and extreme event scenarios, to deliver 
anticipatory projections and a comprehensive Red List evaluation for 
the emperor penguin.

This study marks the first application of MMLEs in ecological fore-
casting for species risk assessment. To do this, we incorporated pro-
jections from multiple climate models, each with different sea ice 
structural biases, into three ecological models, including both biocli-
matic and process-oriented metapopulation models. Each ecological 
model is based on different ecological data and has a distinct structure 
and set of assumptions (Table A.1), resulting in different projection 
outcomes. This approach enabled us to capture a range of climate 
futures and assess the influence of these critical sources of variability 
on emperor penguin population dynamics and extinction risks (Table 
A.2). Despite the large uncertainties identified, our findings suggest 
that the emperor penguin warrants a listing status within the range of
Vulnerable to Critically Endangered under the IUCN guidelines on risk 
and uncertainty (IUCN, 2024), representing an important change from 
its current classification as Near Threatened.

2. Methods

2.1. Emperor penguin life cycle

The emperor penguin has a highly specialized life cycle that is 
intricately linked to Antarctic sea ice (Ainley et al., 2010; Trathan 
et al., 2020). Penguins rely on sea ice for breeding, resting, moulting, 
feeding, and evading predators (Stonehouse, 1953; Prevost, 1961). 
The extent of sea ice is crucial; insufficient ice can disrupt marine 
food webs and make breeding habitats unstable, while excessive ice 
increases the distance between nesting and feeding areas, limiting the 
penguins’ ability to nourish their chicks adequately (Jenouvrier et al., 
2012). Adults arrive at their breeding sites in March or April, with 
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Fig. 1. Framework for assessing climate change impacts on species for the International Union for Conservation of Nature (IUCN) Red List. The process starts by 
identifying the impacts of climate change on species persistence, considering demographics, habitat suitability, phenotypic traits, and life history requirements (Box 1), which 
informs the selection of appropriate IUCN criteria (Gray Box 2). Ecological models tailored to these criteria are developed (Light Orange Box 3) and validated (Orange Box 4). 
Climate projections are built using at least two greenhouse gas emissions scenarios, such as Shared Socioeconomic Pathways (SSPs) or Representative Concentration Pathways 
(RCPs), to represent a range of emissions pathways (Light Green Box 6). These data are processed by selecting relevant variables, aligning resolutions (Green Box 7), choosing 
climate models that agree well with observed climate patterns, and applying corrections for biases and variability (Green Box 8). Uncertainties are integrated through ecological 
and climate model ensembles, addressing natural variability and structural differences (Dark Orange Box 5 and Dark Green Box 9). The final step combines processed climate 
outputs with ecological models to compute metrics relevant to the selected criteria, enabling a robust and uncertainty-informed evaluation of extinction risks (Purple Box 10). 
(Interpretation of the references to color in this figure legend is available in the web version of this article. The boxes are also numbered, ensuring clarity even in grayscale print.)
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females laying a single egg by mid-May. The males then incubate the 
egg for 65 to 75 days without feeding, enduring the harsh Antarctic 
winter by huddling together for warmth. In August, after the chicks 
hatch, the females return, and both parents alternate between foraging 
and caring for the chick. By December, the chicks and adults leave 
the colony, returning to the ocean. Their diet consists primarily of 
Antarctic silverfish, krill, and squid, with sea ice conditions affecting 
the availability of these prey species (Offredo and Ridoux, 1986).

2.2. IUCN criteria

Emperor penguins are currently classified as Near Threatened (NT) 
on the IUCN Red List, which indicates the species is on the verge of 
meeting the criteria for a threatened category (Vulnerable, Endangered, 
or Critically Endangered) but do not fully meet the requirements. The 
IUCN Red List (IUCN, 2024) uses a set of criteria to assess the risk of 
extinction of species both globally and regionally. Five main criteria (A-
E) are used to determine the threat level for a species. In this analysis, 
we focus on criteria A and E (Fig.  1 box 2).

Criterion A: Population Reduction examines the rate of popula-
tion decline of a species. A species can be considered threatened if 
it has undergone a reduction in the number of mature individuals of 
at least the amount (%) stated under the criterion over a given time 
frame (generally 10 years or three generations, whichever is longer). 
Sub-criteria under Criterion A detail whether the population reduction 
is derived from actual counts, inferred in the past, or projected into 
the future. Our analysis is based on future projections over three 
generations (Criterion A3), specifically targeting the year 2073 for 
the emperor penguin, based on three generations from 2024 and a 
generation time of 16.4 years (Bird et al., 2020).

Criterion E: Quantitative Analysis involves a quantitative risk 
analysis to estimate the probability of extinction. Here, extinction for 
each penguin colony was defined as the colony population size falling 
below a huddling threshold, rather than reaching zero, to account for 
the species’ unique behavior of huddling during winter to survive both 
wind and extreme cold. Huddling represents a form of Allee effect, 
enabling individuals to conserve heat and survive the harsh winter 
conditions. Huddling efficiency depends upon the number of penguins 
in a group; smaller groups are less effective at heat conservation, result-
ing in higher mortality rates (Gilbert et al., 2006). Without huddling, 
emperor penguins would reach the metabolic status that would trigger 
refeeding three weeks earlier; the egg would then be abandoned before 
the return of the female (Ancel et al., 1997).

Various studies suggest that colonies which form larger huddles 
have positive thermoregulatory benefits (Gilbert et al., 2006), with 
smaller huddles likely present only in the smallest and most isolated 
colonies (Trathan et al., 2011). These findings suggest that a larger 
huddle threshold is likely more representative of typical huddling 
behavior, especially in established and stable colonies. In warmer (more 
northerly) regions such as at the Antarctic Peninsula, huddles as small 
as 10 breeding individuals may occur, whereas in colder regions typical 
thresholds are closer to 100, as supported by photographic evidence 
(Daniel Zitterbart, Woods Hole Oceanographic Institution, and Tom 
Hart, University of Oxford, email personal communications, July 2024). 
To address uncertainty, we analyzed two thresholds: 10 and 100 in-
dividuals. The primary analysis adopts the 100-individual threshold, 
reflecting observed colony behavior and the thermal benefits of larger 
huddles. Results for the 10-individual threshold are included in the 
Appendix to explore a more conservative scenario, where extinction 
risks are reduced by assuming resilience at smaller huddling thresholds 
(Figure B.1, Table A.3).

According to IUCN guidelines (IUCN, 2024), extinction risk as-
sessments should be conducted over three time periods: 10 years or 
three generations (whichever is longer), 20 years or five generations 
(whichever is longer), and 100 years. However, given the generation 
time of emperor penguins of 16.4 years (Bird et al., 2020) and the 
4 
availability of climate data only up to 2100 (Kay et al., 2015; Deser 
et al., 2020; Rodgers et al., 2021), we performed extinction risk as-
sessments for two key time periods: the year 2073 and the year 2100. 
We calculated and report the probability of extinction for each known 
colony across Antarctica following methods outlined in Jenouvrier et al. 
(2014).

2.3. Climate models and their projections under different scenarios

IUCN guidelines (IUCN, 2024) state assessments must use projec-
tions from a minimum of two scenarios and at least two General 
Circulation Models to account for the uncertainties involved in climate 
projections (Fig.  1 Boxes 6 and 9). To account for natural variability 
and structural model and IPCC climate emissions scenario uncertainty, 
we used different combinations of large ensembles or MMLEs of climate 
projections from three general circulation models (CanESM, CESM, 
and CSIRO) under three IPCC climate emissions scenarios (RCP 8.5, 
SSP3.7-0, and the Paris Agreement) as inputs to our three ecological 
models (Kay et al., 2015; Deser et al., 2020). Table A.2 details the full 
names and combinations of these models and scenarios, as we were 
unable to include all sources of uncertainty in a single eco-climatic 
model, given constraints on how these climate projections are created 
and the way our ecological models are formulated.

While the availability of such large ensembles is limited, we em-
ployed the most comprehensive set currently available by using simula-
tions from the Multi-Model Large Ensemble Archive. These simulations 
were conducted using six distinct CMIP5-class climate models un-
der a high-emission scenario (RCP 8.5), the only scenario for which 
large ensemble experiments were performed for all six models (Deser 
et al., 2020). Three of the models under this scenario (GFDL-CM3, 
GFDL-ESM2M, and MPI-ESM) have low Antarctic sea ice cover, with 
near-zero ice area during the summer months even in the historical 
period (Figure B.2). Given this discrepancy with actual observations, 
projections from these climate models were not suitable for use with 
our ecological models, and we excluded them from our analysis (Fig. 
1 Box 8.a). Restricting our MMLE to the CanESM, CESM1, and CSIRO 
large ensembles, we were able to explore differences in penguin popu-
lation projections due to both natural variability and structural model 
uncertainty associated with climate modeling (Table A.2).

To address emissions scenario uncertainty in climate models, we 
used output from three IPCC scenario forcings of either the CESM1 or 
CESM2 general circulation model. The CESM performs well at capturing 
the seasonal and annual hemispheric and regional mean and variability 
of Antarctic Sea Ice compared with other CMIP5 and CMIP6-class 
models (Roach et al., 2020; Singh et al., 2019, 2021). To investigate the 
latest emissions scenarios from CMIP6, we used the CESM2 Large En-
semble Community Project under the SSP3-7.0 future radiative forcing 
scenario (Rodgers et al., 2021) (Table A.2). To examine a low-emission 
scenario, we used climate projections from CESM1, that offer long-term 
climate data that reach stabilization pathways at 2 ◦C levels (Sanderson 
et al., 2017) (Table A.2).

2.4. Ecological models

Our emperor penguin population projections are based on an ex-
tensive and diverse array of data (LaRue et al., 2024; Jenouvrier et al., 
2012; Garnier et al., 2023), which we used to develop three ecological 
models (Appendix C), each with distinct strengths tailored to capture 
different facets of emperor penguin ecology (Fig.  1 Box 3, Table A.1, 
Appendix C). These models provide a state-of-the-art quantitative anal-
ysis of population declines and extinction risks at the global, regional, 
and colony levels, with results directly relevant for IUCN assessments. 
Population projections from these models (Section 2.5) were driven 
by climate inputs from climate model large ensembles or an MMLE of 
three climate models (Section 2.3), and included three IPCC climate 
emissions scenarios as well as extreme sea ice loss event scenarios 
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not directly simulated by these general circulation models (Table A.2, 
Section 2.7). This approach allowed us to integrate sources of climate 
and ecological uncertainty needed to meet IUCN guidelines, as well as 
measurement or observation error (Fig.  1 Box 5).

Two of these ecological models are structured metapopulation mod-
els, one based on a multi-event capture-recapture model (SPCMR) and 
the other an integrated population model (SPIPM). Both rely on a 
unique long-term time series of individual-based mark-recapture data 
spanning 30–40 years at the Pointe Géologie breeding colony, while 
the SPIPM model also uses population counts and breeding success data 
collected over 60 years at the same site (Barbraud and Weimerskirch, 
2001; Jenouvrier et al., 2009, Table A.1) These two models, which 
include age and breeding stages, assess how environmental variables 
affect vital rates, such as mortality and reproduction. In contrast, the 
bioclimatic abundance species distribution model (or Scalar (unstruc-
tured) Count-based Dynamic model: SCDSAT), relies on 10 years of 
satellite-derived adult population counts across 50 colonies (LaRue 
et al., 2024). While less process-oriented than the other two mod-
els, SCDSAT offers broad spatial coverage, partitioning variability in 
penguin abundance from 2009–2018 across 50 breeding colonies dis-
tributed around Antarctica conditional on decadal sea ice estimates 
(Table A.4, Table A.1).

Both metapopulation models use a mechanistic-statistical model 
that incorporates novel genetic and demographic information (Garnier 
et al., 2023). This enabled us to examine how different dispersal 
behaviors and climate scenarios affect population projections to assess 
how dispersal influences global population responses to climate change 
relative to mitigation efforts, updating the analysis of Jenouvrier et al. 
(2017). Emperor penguins are most likely to disperse through semi-
informed dispersal, characterized by a relatively small mean dispersal 
distance of 414 km and low emigration rates (Garnier et al., 2023). 
Under high emission climate scenarios that lead to population declines, 
semi-informed dispersal is estimated to increase the global population 
size by up to 7% compared to projections without dispersal (Figure 
D.1). However, under a low emission climate scenario, dispersal pro-
cesses do not enhance the global population size and may even result 
in a slight reduction compared to a scenario without dispersal (Figure 
D.1). Overall, while dispersal behaviors remain important, their impact 
on future global population sizes is relatively small compared to the 
influence of climate change mitigation efforts (Jenouvrier et al., 2017, 
2021).

The two metapopulation models incorporates density dependence 
using the Ricker model (Appendix C.1.1), which accounts for negative 
density dependence in population growth rates. We did not intro-
duce structural uncertainties specific to negative density dependence 
effects on reproduction and survival, as there is insufficient evidence 
to support these effects in emperor penguins and previous studies 
provide justification for minimal density effects in the Pointe Géologie 
population (Gimenez and Barbraud, 2009; Jenouvrier et al., 2012). 
Earlier analyses of density dependence demonstrated a positive rela-
tionship between population size and adult survival, likely driven by 
huddling behavior during the harsh Antarctic winter (Barbraud and 
Weimerskirch, 2001; Jenouvrier et al., 2005). We opted for evidence-
based modeling by employing a Ricker model to represent negative 
density-dependent effects on population growth rates, rather than hy-
pothesizing about these effects on survival and reproduction. Moreover, 
our extinction risk analysis incorporated the Allee effects associated 
with positive density-dependence from huddling behavior (Section 2.2).

2.5. Ecological model projections

The three ecological models estimate population dynamics over 
varying scales: SPCMR produces annual counts of mature and immature 
individuals of both sexes for a single colony; SPIPM does the same, but 
solely for females; and SCDSAT generates annual counts of adults in 
spring across all 66 colonies. Given this, each of these models relies 
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on different spatial and temporal substitutions to project global and 
regional population dynamics.

Our metapopulation models (SPIPM and SPCMR) employed a time-
for-space substitution to project population dynamics for other colonies 
by assuming that the functional relationships between environmental 
factors and vital rates estimated at Point Géologie are consistent across 
space, despite potential local adaptive differences or other site-level 
effects. In contrast, the SCDSAT model uses a space-for-time substi-
tution to project the average expected adult abundance of colonies 
in a given year based on the average decadal sea ice concentration 
(SIC) (Şen et al., 2023). Built using data from 50 colonies across a 
spatial environmental gradient, the SCDSAT model transfers the spatial 
relationship between average environmental conditions and penguin 
abundance across time to predict a time series of abundance at each 
colony. It should be noted that this approach comes at the expense 
of not fully capturing year-to-year dependencies, fast processes such 
as birth and death rates, and transitional dynamics driven by initial 
conditions.

We used these functional relationships between environmental con-
ditions and either abundance (SCDSAT) or vital rates (SPCMR and 
SPIPM) to compute future (beyond 2018) and past (prior to 2009) 
population projections. We did this in such a way as to include struc-
tural uncertainty, natural variability, and scenario-based uncertainty 
found in both these ecological models (Table A.1) and the general 
circulation models (Table A.2) used to supply the necessary climate 
projections (Appendix C). These population projections were then ag-
gregated to create regional or global penguin abundance time series 
for each ecological model, which were subsequently used to calculate 
annual percent changes in abundance needed for the eco-ensemble 
(Section 2.6) and for model validation Appendix E.

2.6. Multi-model ecological eco-ensemble

To account for structural uncertainty in our ecological models, we 
employed a Bayesian model-averaging approach, using model weights 
to combine projections from the three ecological models into a multi-
model ecological ensemble (Fig.  1 Box 5.b). We estimated model 
weights at the global population level, aligning with the require-
ments of the IUCN Red List criteria, which prioritize global population 
assessments for evaluating extinction risk. While satellite data offer 
valuable insights into colony-specific dynamics, their ability to reliably 
detect colony trends over a 10-year period is limited by substantial 
observation error and intrinsic variability (Labrousse et al., 2022). 
Factors such as weather conditions, huddling behavior, and satellite 
resolution introduce noise into population indices derived from very 
high-resolution imagery (Fretwell et al., 2012; Labrousse et al., 2022). 
These limitations undermine the reliability of short-term trend de-
tection at the colony level, necessitating either extended monitoring 
periods or the aggregation of data across multiple colonies to improve 
precision (Che-Castaldo et al., 2017; Labrousse et al., 2022). Focusing 
on global trends and integrating data from multiple colonies provides 
a robust way to use these model weights to develop an eco-ensemble 
that supports conservation assessments.

Model averaging in this framework consists of two key steps (McEl-
reath, 2016): (1) determining model weights and (2) resampling from 
the posterior distributions with the respective weight of each model to 
generate an ensemble posterior. Model weights are typically derived 
through actual out-of-sample performance via leave-one-out cross-
validation (e.g., stacking) or methods that approximate out-of-sample 
performance using the full dataset (e.g., Widely Applicable Informa-
tion Criterion WAIC or pseudo-Bayesian Model Averaging, see Yao 
et al., 2018). In our case, metrics such as WAIC were not applicable 
because the response variables used to build the three predictive 
models differed, rendering their posterior likelihoods incomparable. 
Similarly, leave-one-out cross-validation was not sufficiently rigorous 
for determining model weights, as we employed both space-for-time 
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and time-for-space substitutions to project global penguin population 
abundances.

Instead, to assess substitution performance, we predicted the trend 
of global abundance between 2009–2018 for each model (𝛽predicted) and 
then contrasted these projections with the trend in the observed global 
abundance time series (𝛽observed) from LaRue et al. (2024). These trends 
were calculated as the slope of annual abundance regressed against 
year. We computed model weights using the posterior averages of the 
slopes as:

1
|𝛽observed − 𝛽predicted|

,

where the resulting weights for SPIPM, SCDSAT, and SPCMR were 
0.29, 0.31, and 0.40, respectively. We adopted a similar approach for 
annual variations in abundance, where the resulting weights for SPIPM, 
SCDSAT, and SPCMR, were 0.33, 0.30, and 0.37, respectively. In this 
way, we were able to directly compare the time-for-space substitution 
ability of the SPIPM and SPCMR metapopulation models with the 
space-for-time substitution ability of the SCDSAT bioclimatic model.

Since each model produces different model outputs (Table A.1), we 
built a model ensemble using the percent rate of change, rather than 
the direct model outputs themselves. The percent rate of change for 
each model was calculated relative to the average abundance of mature 
individuals between 2009 and 2018 (𝑁2009−2018), as:

Percent Rate of Change = 𝑁𝑡 −𝑁2009−2018

𝑁2009−2018
,

where 𝑁𝑡 is the abundance in year 𝑡 taken from the global population 
projections computed in Section 2.5. For each year, we resampled the 
percent rate of change from the posterior of each model, with the model 
weights serving as the probability of sampling from the posterior of the 
respective models. The combined posterior of these samples for each 
year were used to produce the eco-ensemble percent change projections 
across the three models.

2.7. Extreme event scenario

Extreme events, such as sea ice loss and glacial calving, directly 
impact vital rates and colony dynamics (Fretwell et al., 2014; Fretwell 
and Trathan, 2019; Fretwell et al., 2023), amplifying global population 
declines (Jenouvrier et al., 2021). Specifically, satellite data reveal 
that early sea ice breakup and glacial calving events frequently lead 
to breeding failures and colony relocations, underscoring the species’ 
vulnerability to extreme events (Fretwell et al., 2014; Fretwell and 
Trathan, 2019; Fretwell et al., 2023). We developed three scenarios to 
assess the impact of extreme events on emperor penguin population 
dynamics, updated from Jenouvrier et al. (2021): (1) No Extreme 
Events, where reproduction is unaffected by extreme conditions; (2)
Fixed Frequency of Extreme Events, where the historical frequency 
(3.6%) is held constant, and extreme events cause complete repro-
ductive failure; and (3) Increasing Frequency of Extreme Events, 
where the frequency increases proportionally to sea ice decline. For 
scenarios 2 and 3, an extreme event occurs when sea ice falls below a 
sea ice threshold 𝑇𝑆𝐼 , based on the observed historical data of massive 
breeding failures. When an extreme event occurs, reproductive success 
may be reduced to zero during those years, modeled using a binomial 
distribution.

The third scenario accounts for the projected decrease in sea ice 
concentration under future climate conditions. Because climate models 
do not explicitly project the frequency of glacier or ice shelf calving, we 
combined recent observational data on breeding failures from 2018 to 
2022 with sea ice projections (Antarctic Treaty Consultative Meeting, 
2023). For each climate model, we calculated a SIC threshold corre-
sponding to the number of extreme events historically observed. Years 
in which SIC fell below this threshold were considered extreme. For 
these extreme years, we sampled a proportion 𝑝 to simulate a fraction 
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of these colonies experiencing total breeding failure. The value of 𝑝 was 
calibrated for each climate model to ensure that the number of colonies 
experiencing at least one total breeding failure between 2018 and 
2022 matched the observed rate of 42% (Antarctic Treaty Consultative 
Meeting, 2023).

3. Results

3.1. IUCN criterion A: Global population reduction

Despite differences in the timing and magnitude of predicted de-
clines, all three ecological models individually project global emperor 
penguin population declines throughout the 21st century (Fig.  2). Our 
SPCMR model projects a stable, slightly increasing population from 
1950 until 2000, followed by a sharp decline (Fig.  2a). The SPIPM 
model projects a growing population from 1950–1970, before a very 
steep decline beginning in the 1980s and culminating in global popu-
lation extinction by 2100 (Fig.  2b). Lastly, the SCDSAT model projects 
a slightly decreasing population, with the rate of decline accelerating 
from 1980 onwards (Fig.  2c). Taken together, the eco-ensemble projects 
a population decline of 59% (95% credible interval: −98%, −30%) over 
the next three generations. This decline is consistent with an IUCN Red 
List Endangered (EN) assignment.

To further explore the details of climate and scenarios uncertainties, 
we use the SPCMR model, which provided the best out-of-sample 
predictive performance relative to other models based on the reported 
weights and produced mid-range projections. In terms of climate, the 
greatest uncertainties arise from the range of future projected emission 
scenarios (Figs.  3a, 4a). In our ecological models, we use environmental 
data as anomalies relative to a historical period (Table A.1). This 
approach helps reduce biases from different climate models because it 
focuses on relative changes rather than absolute values, allowing for a 
more standardized comparison (Box 8.b on Fig.  1). This standardiza-
tion minimizes differences amongst climate models by accounting for 
their varying baseline states (Fig.  3a, B.2). As a result, the projected 
environmental variable anomalies do not differ as much compared 
with the raw projections (Figure B.2). Moreover, even though natural 
climate variability can lead to uncertainty in projections, especially 
for intricate non-linear demographic models such as the SPCMR model 
(Figs.  3 b,c,d, F.1), the difference in trajectories with or without natural 
variability is less than the difference between low and high emissions 
scenarios (Fig.  4).

In addition, extreme climate events add uncertainty to our projec-
tions. An increase in the frequency of extreme events will considerably 
exacerbate the decline in population (Fig.  4 b,c,d). In high emissions 
scenarios, a rise in the number of extreme events, proportional to 
the anticipated declines in sea ice concentration, could result in the 
extinction of emperor penguins by 2100 (scenario 3 on Fig.  4 b,c).

Table  1 presents the probability of classifying the emperor penguin 
at three different levels of threat according to criteria A3 (b). The IUCN 
recommends a precautionary approach: a threat status is designated if 
the probability of decline exceeds 40%. Table  1 highlights the range 
of uncertainties in assignment, based on different models. Projections 
from the SCDSAT model categorize the species as Vulnerable, while 
the SPIPM model classifies it as Critically Endangered. Under a high-
emission scenario, all three climate models consistently project an
Endangered status, whereas a low-emission scenario suggests a listing 
of Vulnerable. Projections that account for historical extreme events 
or exclude them both indicate an Endangered status. However, an 
increased frequency of extreme events is expected to raise the status 
to Critically Endangered.
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Fig. 2. Projections of emperor penguin (Aptenodytes forsteri) global population based on three different ecological models from 1950 to 2100. (a,b) The metapopulation 
models (SPCMR and SPIPM) both project year-to-year variations of the number of mature individuals. (c) The space-for-time substitution model (SCDSAT) projects the number 
of adults in spring. (d) Estimates of the percentage change in population size compared to the observed number averaged from 2009 to 2018, for the three models combined. 
The black thick line shows the observations of the global adult population size in spring, estimated from satellite data collected between 2009 and 2018 (LaRue et al., 2024). 
Thick lines show medians, colored area show the 95% confidence intervals. Thin lines are 3 random projections. The projections were derived using climate projections from the 
Community Earth System Model version 2 (CESM2) Large Ensemble Community Project (LENS2) model, applying the Shared Socioeconomic Pathway 3 (SSP3.7-0) high emission 
climate scenario spanning the years 1900 to 2100. The first fifty years have been excluded to eliminate the transient effects of the initial conditions.
3.2. IUCN criterion E: Quantitative analysis to estimate the probability of 
extinction

Sea ice concentration is projected to decrease around Antarctica 
(Fig.  5), but with some areas such as the Weddell Sea and the Ross Sea 
remaining comparatively unaffected. These areas continue to support 
the largest colonies, which show the lowest probabilities of extinction 
(Table A.3). In contrast, the Indian and East Pacific sectors are expected 
to undergo the most substantial declines in sea ice concentration, with 
the highest risks of extinction.

Extinction for each penguin colony was defined as the population 
size falling below a huddling threshold, rather than reaching zero, to 
account for the species’ reliance on huddling to survive harsh winter 
conditions. According to the SCDSAT model, 6% of the colonies are pro-
jected to reach a Critically Endangered status with a huddling threshold 
of 10, while this percent increases to 20% when the threshold is 100 
(Figs.  5, B.1, Table A.3). In contrast, the SPIPM model projects a risk of 
extinction greater than 50% for most colonies within three generations, 
resulting in a Critically Endangered status for 64% of colonies with a 
huddling threshold of 10 and 94% with a threshold of 100. According to 
the SPCMR model, 20% of colonies are expected to attain the status of
Critically Endangered when the huddling threshold is 10, rising to 74% if 
the threshold increases to 100. Furthermore, the SPCMR model projects 
that 77% (huddling threshold of 10) and 89% (huddling threshold of 
100) of colonies will be classified as Endangered. These large differences 
in patterns between huddling thresholds arise because many emperor 
penguin colonies are small (Table A.4), making them more susceptible 
to falling below the higher huddling threshold.

4. Discussion

Our study presents a comprehensive framework for integrating eco-
logical models with climate projections to assess extinction risks for 
7 
species under climate change (Fig.  1). This framework represents the 
first application of a Multi-Model Large Ensemble (MMLE) approach 
to project the impacts of climate change on a species, effectively cap-
turing a more complete spectrum of anticipated future environmental 
conditions while accounting for structural differences between models. 
Results under Criterion A show that Red List classifications for the 
emperor penguin global population range from Vulnerable to Critically 
Endangered, depending upon the ecological model used, and the emis-
sions and extreme events scenario (Table  1). Results under Criterion 
E indicate that up to 100% of colonies could be listed as Endangered, 
depending on the huddling threshold for extinction probability and the 
ecological models used under a high-emissions scenario (Figs.  5, B.1).

Uncertainty in assessments necessitates outlining the range of poten-
tial classifications, but a single category must finally be selected based 
on a documented, precautionary rationale (IUCN, 2024; Akçakaya 
et al., 2000). The IUCN emphasizes that assessors should adopt a 
precautionary yet realistic position on uncertainty. Given the range of 
projections, the emperor penguin is likely to be classified as Endangered, 
balancing the risks across climate and extreme scenarios (Table  1).

4.1. Accounting for ecological model structural uncertainty in projections

Our analyses include three distinct demographic models (Table 
A.1) that encompass natural variability to represent annual natural 
fluctuations in population and measurement errors. All three models 
project a decline in penguin populations, but differ in the magnitude 
of that decline (Fig.  2). Estimates of population decline are greatest 
with SPIPM, intermediate with SPCMR and least with SCDSAT (Table 
1, Table A.3). The different model structures introduce uncertainty 
leading to differences in Red List assessment. The SPIPM model projects 
a global decline of over 90% in the population of mature individuals 
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Fig. 3. Projections of emperor penguin (Aptenodytes forsteri) global population abundances from 2009 to 2100 based on three different general circulation climate 
models with or without natural climate uncertainty using the SPCMR metapopulation model. (a) Climate model comparison where large ensemble climate projections from 
the Canadian Earth System Model (CanESM), Commonwealth Scientific and Industrial Research Organisation model (CSIRO) and the Community Earth System Model Community 
Atmosphere Model version 1 (CESM1) were executed using the Representative Concentration Pathway (RCP8.5) high emission climate scenario integrated with the SPCMR 
metapopulation model. For each general circulation climate model, solid lines show the median and 95% confidence interval of abundance projections using all ensemble members 
to represent natural climatic variability. Panels (b) CanESM: 50 members, (c) CESM1: 40 members, and (d) CSIRO: 30 members detail those projections for each model where gray 
lines are 5 random projections depicting natural climate variability. In addition, dashed lines show the median abundances and 95% confidence interval of abundance projections 
based on the mean of the climate ensembles for each model, which ignores natural climate variability. All projections include the three extreme event scenarios (Fig.  4).
within three generations, with a 100% probability, which meets the 
criteria for listing the species as Critically Endangered. In contrast, the 
SCDSAT model projects a decrease of more than 30%, corresponding 
to a classification of Vulnerable (Table  1). Hindcasts from all models 
match observed data closely, supporting their dependability (Figure 
B.3). Using a Bayesian model-averaging approach, the probability that 
the global population decline projected by the ecological ensemble 
is greater than 50% by 2073 is 45%, supporting an IUCN status of
Endangered.

4.2. Accounting for climate uncertainty in projections

While the ecological ensemble provides robust global projections, to 
explore uncertainties related to climate and extreme events we focus 
on SPCMR, the model with moderate projections and the strongest 
alignment with observed data in our analysis relative to other models 
(i.e highest weight). SPCMR indicates that a range of threat categories 
is plausible under different climate scenarios (Fig.  4, Table  1).

We considered two high-emission scenarios (RCP8.5 and SSP3-7.0) 
and a low-emission scenario aligned with the Paris Agreement’s goal. 
There is ongoing debate about the plausibility of high-emission scenar-
ios. Schwalm et al. (2020b, 2020a) argue RCP8.5 remains valuable for 
near- to mid-term risk quantification due to alignment with historical 
emissions. Pielke et al. (2022), however, suggest the world may be on a 
lower emissions trajectory, though still off track from limiting warming 
to below 2 ◦C. This uncertainty highlights the need to consider both 
high and low emissions scenarios (IUCN, 2024, Box 6a on Fig.  1).
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Under the high-emission scenarios, the emperor penguin is pro-
jected to fall into the Endangered category. In contrast, with strong 
international constraints on emissions, consistent with the Paris Agree-
ment, the species would be classified as Vulnerable. A conservative 
approach might classify the species as Vulnerable, while a more pre-
cautionary stance could suggest Endangered.

While climate scenarios are the primary drivers of variation in our 
classifications, model structure and internal natural variability also 
influence projections. However, all models converge on an Endangered
status under high emissions. This convergence occurs because we have 
minimized climate biases in the mean state by using climate anomalies, 
which standardizes the differences amongst models (Figure B.2).

Including internal natural climate variability affects projections, 
which if omitted could lead to underestimation of extinction risk (Fig. 
3). Internal climate variability will lead to effects on population dynam-
ics that depend upon the functional relationship between population 
growth rate and the environment (Appendix F, Jenouvrier et al., 2012; 
Barraquand and Yoccoz, 2013).

Extreme events are a critical source of uncertainty that can influence 
the Red List status of the emperor penguin. Events such as exceptionally 
low sea ice concentration, early breakup of fast ice, and iceberg calving 
have been shown to severely impact emperor penguin colonies, some-
times resulting in entire colonies forgoing breeding or experiencing 
nearly complete chick mortality, leading to total breeding failure in 
certain years (Fretwell and Trathan, 2019; Fretwell et al., 2023). The 
frequency and intensity of such extreme events are difficult to predict, 
and future projections remain highly uncertain (Siegert et al., 2023). 
However, recent trends show an increase in such occurrences, with four 
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Fig. 4. Projections of emperor penguin (Aptenodytes forsteri) global population abundances using the SPCMR metapopulation model under different combinations of 
extreme event and climate scenarios from 2009 to 2100. (a) Abundance projections under the Representative Concentration Pathway (RCP 8.5), Shared Socioeconomic Pathway 
3 (SSP3.7-0), and Paris Agreement (Paris 2 ◦C) climate scenarios, including all extreme event scenarios for each climate scenario. Thick lines represent median abundances and 
shaded envelopes show 95% confidence intervals of abundance projections. (b,c,d) For each climate scenario, results for different extreme event scenario are shown, where scen 1 
refers to a scenario without extreme events, where reproduction is not affected by extreme conditions; scen 2 has a fixed frequency of extreme events, where the historical frequency 
of extreme events is held constant and these events cause complete reproductive failure ; and scen 3 simulates an increasing frequency of extreme events, where the frequency 
of extreme events increases proportionally to sea ice decline, affecting reproduction. Each line represents the median projected abundance for one extreme event scenario and the 
envelope shows the 95% confidence interval for the three extreme event scenarios combined.
of the lowest sea ice minima recorded since 2016 (National Snow and 
Ice Data Center, 2024) and a rising number of colonies affected by early 
fast ice disintegration between 2018 and 2022 (Fretwell et al., 2023). 
Excluding these events results in an Endangered status, but increased 
frequency could shift the classification to Critically Endangered. Im-
proved forecasting of extreme events (Frölicher et al., 2018) is essential 
for guiding conservation strategies.

4.3. Extinction risks across antarctic regions

Over the 21st century, Antarctic sea ice is projected to decline, but 
the extent and rate of this decline will vary across different regions due 
to complex interactions between atmospheric, oceanic, and cryospheric 
processes (Lefebvre and Goosse, 2008) (Appendix G, Fig.  5). For ex-
ample, the Weddell Sea and Ross Sea regions, which currently hold 
the largest emperor penguin populations (Fretwell et al., 2012), are 
expected to experience slower rates of decline compared to other areas 
(e.g. the Amundsen and Bellingshausen Seas), where sea ice loss may 
be more rapid (Appendix G) (Parkinson, 2019; Lefebvre and Goosse, 
2008). Such variation is evident in the regional assessments using 
criteria A (Appendix G), and the extinction risks under criteria E (Fig. 
5, Figure B.1). Areas experiencing faster sea ice loss show more rapid 
declines in emperor penguin populations and higher extinction risks, 
whereas regions with slower sea ice reduction exhibit more gradual 
population declines and lower extinction risks.

Applying IUCN Criterion E at the colony level, rather than at the 
global level, is essential for emperor penguins due to their unique 
reliance on huddling behavior for survival. Our results show that 
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extinction risks vary with huddling thresholds: at the more conser-
vative 10-individual threshold, up to 64% of colonies are projected 
to reach Critically Endangered status. This rises to 94% with the 
more precautionary 100-individual threshold, highlighting the range of 
uncertainties in extinction risk estimates.

4.4. Limitations and opportunities in species adaptation

To persist under climate change, species must either disperse to 
more favorable conditions or adapt to the changing conditions within 
their current habitats. Indeed, dispersal is a key ecological response to 
climate change, enabling species to shift their ranges to track suitable 
habitats and avoid extinction (Travis et al., 2013). Dispersal capacity 
can reduce extinction risks through range expansion, whereas limited 
dispersal exacerbates habitat loss, placing species in higher extinction 
risk categories (Mancini et al., 2024). For emperor penguins, our results 
suggest that dispersal alone does not sufficiently mitigate climate-
induced population declines. While semi-informed dispersal with low 
emigration rates and a mean distance of 414 km provides a modest 
population increase under high-emission scenarios, it offers little bene-
fit and may even reduce population size under low-emission scenarios 
(Appendix D, Jenouvrier et al., 2017). This suggests that dispersal is 
insufficient to offset the severe impacts of climate change on emperor 
penguin populations. Therefore, our findings underscore that effective 
climate change mitigation remains critical for conserving this species.

An important property of species, but one not included in our mod-
els, is that they have the potential to adapt (Bonnet et al., 2022), switch-
ing behavior or diet in novel ways (Divoky et al., 2015). One plausible 
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Fig. 5. Map of extinction risks under International Union for Conservation of Nature (IUCN) Criteria E. Extinction probabilities for emperor penguin (Aptenodytes forsteri) 
colonies are shown for 2073 and 2100, along with the annual mean change in sea ice concentration between 2024–2073 and 2024–2100. Extinction probabilities are defined for 
a huddling threshold of 100 individuals. Panels show the SPCMR and SPIPM metapopulation models or the SCDSAT bioclimatic model, where sea ice concentration projections 
were obtained from the Community Earth System Model Large Ensemble version 2 (CESM2) under the Shared Socioeconomic Pathway 3 (SSP 3.7-0) climate scenario. Dots show 
the location of colonies (Table A.4), dot colors show the projected extinction risk (Table A.3), and dot size represents the average colony size from 2009–2018 (Table A.4).
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Table 1
Likelihood of emperor penguin population declines under the International Union for Conservation of Nature (IUCN) 
Red List Criterion A. The probabilities of decline for emperor penguins were assessed across the SPIPM (Structured Population 
model parametrized with Integrated Population Model), SPCMR (Structured Population model parametrized with Capture-
Mark-Recapture), and SCDSAT ecological models (Scalar Count-based Dynamic model parametrized with SATellite data), the 
Canadian Earth System Model (CanESM), Community Earth System Model (CESM), and Commonwealth Scientific and the 
Industrial Research Organisation Model (CSIRO) general circulation models, the Representative Concentration Pathway (RCP 
8.5), Shared Socioeconomic Pathway 3 (SSP3.7-0), and Paris Agreement (Paris 2 ◦C) climate scenarios, as well as different 
extreme events scenarios, and with and without natural climate variability. These probabilities are reported as the proportion 
of simulations that fall below the decline IUCN threshold over three generations (i.e., 2073). The IUCN thresholds correspond 
to population declines of 30%, 50%, and 80% of mature individuals relative to the average between 2009 and 2018. See 
Tables A.1 and A.2 more details on ecological models and climate projections used.

Ecological Models
 Vulnerable Endangered Critically Endangered 
 SPCMR 100 97 30  
 SPIPM 100 100 100  
 SCDSAT 68 6 0  

Climate Models
 Vulnerable Endangered Critically Endangered 
 CanESM 100 85 32  
 CESM 100 96 33  
 CSIRO 98 56 26  

Climate Scenarios
 Vulnerable Endangered Critically Endangered 
 RCP8.5 100 96 33  
 SSP 3.7-0 100 97 30  
 Paris 2 ◦C 95 38 0  

Extreme Events (EE) Scenarios
 Vulnerable Endangered Critically Endangered 
 No EE 100 93 0  
 Historical EE 100 98 0  
 Increase EE 100 100 90  

Natural Climate Variability
 Vulnerable Endangered Critically Endangered 
 With 100 97 30  
 Without 100 85 33  
adaptation is the possibility of breeding on ice shelves (Fretwell et al., 
2014), something which could facilitate breeding success in the ab-
sence of reliable sea ice. Even though this adaptation is unlikely to 
change our projections since breeding success is reduced with de-
creasing sea ice, other adaptations could potentially have an impact. 
Speculation about such futures is challenging, and outside the realms of 
evidence-based assessment. Importantly, all our population projections 
are conditional upon a set of estimated parameters, which incorporate 
a set of hypothetical assumptions (Table A.1).

While recognizing that all models are simplifications of reality and 
come with inherent uncertainties, our climate and population models 
are grounded in robust scientific frameworks and have demonstrated 
skill in capturing observed changes and trends in both environmental 
and population dynamics. Given the increasing rates of climate change 
and biodiversity loss, employing these tools is essential to provide sci-
entists, managers, and decision-makers with data on future extinction 
risks and to guide conservation strategies (IPBES, 2019).

4.5. Future directions

To provide the most comprehensive analysis possible, we have 
incorporated key elements of emperor penguin habitat in our environ-
mental models (SST, SIC, winds). However, we acknowledge that some 
critical factors — such as fast ice and polynyas (Labrousse et al., 2021, 
2023) — are not yet predicted by climate models and are therefore not 
included. For emperor penguins, future work could prioritize integrat-
ing fast ice dynamics and polynya formation into climate models, as 
these factors play critical roles in colony persistence but are currently 
underrepresented in projections.
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4.6. A framework to assess risks for other species

While our study focuses on the emperor penguin, the framework 
developed here (Fig.  1) has broad applicability for assessing extinction 
risks in other species. The flowchart provides a structured framework 
for assessing species extinction risks under climate change by integrat-
ing ecological and climate modeling with IUCN Red List criteria (Fig. 
1). This framework aligns primarily with an evidence-based decision-
making model, where ecological predictions serve as an external input 
to inform policy and conservation actions (Maris et al., 2018). By 
systematically addressing uncertainties — such as structural model 
differences, natural variability, and measurement errors — we aim to 
improve the robustness of anticipatory projections.

The process begins with determining whether climate change im-
pacts species persistence by analyzing demographic, habitat, and phe-
notypic traits (Step 1). Next, the appropriate IUCN Red List crite-
ria (A–E) are selected based on the type of risk being evaluated, 
such as population size reduction or quantitative extinction risk (Step 
2, Akçakaya et al., 2000). Ecological models tailored to these criteria 
are then developed (Step 3), employing a range of approaches, such as 
population viability analysis or species distribution modeling, to cap-
ture the complexities of ecological dynamics (IUCN, 2024; Mace et al., 
2008). These models are rigorously validated using hindcasting and/ 
or out-of-sample methods to ensure their transferability and reliability 
in replicating observed trends (Step 4) (Wenger and Olden, 2012; Şen 
et al., 2023; Willis et al., 2007). Simultaneously, climate models are 
selected (Step 6, Tebaldi and Knutti, 2007; Stock et al., 2011) and pro-
cessed (Step 7) to provide relevant data for ecological analyses (Snover 
et al., 2013), ensuring alignment with observed climate patterns and 
addressing biases. Uncertainties are systematically addressed at mul-
tiple stages: structural differences between models (Araújo and New, 
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2007; Pearson et al., 2006; Buisson et al., 2010; Tittensor et al., 2021), 
measurement error and natural variability (Rueda-Cediel et al., 2018), 
are incorporated through advanced techniques like MMLE (Deser et al., 
2020) (Steps 5 and 9). Finally, climate and ecological models are 
integrated (Step 10, Jenouvrier, 2013) to generate outputs relevant to 
IUCN Red List assessments, allowing for a comprehensive evaluation of 
species status and informing evidence-based conservation actions.

4.7. Conclusion

Building on the demonstrable success of the IUCN Red List, our 
framework enhances its utility by systematically addressing uncer-
tainties and promoting a precautionary yet pragmatic approach to 
decision-making. This integration strengthens the link between ecolog-
ical forecasting and conservation practice.
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