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A B S T R A C T

Background: Open water recreation (e.g. swimming, surfing) is growing in popularity alongside concerns about
contracting infections as a result of wastewater (including sewage) and runoff pollution in seas, rivers, lakes, and
other bodies of open water. Previous systematic reviews have found evidence for a positive association between
exposure to open water and infection. However, these syntheses focus on comparisons of recreational water users
and non-recreational water users, and make concessions on key stages of the systematic review process. This
limits their ability to summarise the evidence for an effect of exposure to pollution, specifically.
Methods: We present a peer-reviewed protocol for a systematic review and meta-analysis of exposure to waste-
water and runoff pollution and infection in recreational open water users in the Global North. Eligible studies
must contain at least two groups of recreational water users known or suspected to have been exposed to distinct
levels of pollution, with some estimate of cases of infection in each group. These studies will be obtained via
searches of bibliographic databases (MEDLINE, Web of Science Core Collection, Environment Complete, and
Global Health), grey literature sources, and supplementary search methods. Risk of bias in these studies will be
assessed using Cochrane’s ROBINS-E and RoB 2 tools. Studies’ results will be qualitatively and quantitatively
synthesised, following and reporting to contemporary standards and guidelines (e.g. PRISMA, SWiM). The results
of the review will be summarised with a GRADE certainty assessment of the evidence for different types of in-
fections, presented in a Summary of Findings table.

1. Introduction

1.1. Background

Open water bathing activities such as open water swimming and
surfing are increasingly popular, not least for their physical and mental
health benefits (The Big Blue Swim, 2020; Lemmin-Woolfrey, 2021;
Carroll, 2021; The Nursery Research and Planning, 2021, 2022; Sasse,
2024; Britton et al., 2020). Nonetheless, their rising popularity is
occurring alongside growing concerns about anthropogenic pollution of
natural waters. In the United Kingdom, the issue is particularly high on
the public and policy agenda (Environment Agency, 2024a, 2024b,

2023a; Hammond et al., 2021; Laville et al., 2024; Mathers, 2024; Na-
tional Engineering Policy Centre Working Group, 2024). Concern is
largely due to the consistently high volumes of raw sewage being dis-
charged into UK seas, rivers and lakes via combined sewage overflows
(3.6 million hours’ recorded in 2023; Burnett and Bolton, 2024) − but
also growing concerns about agricultural runoff pollution in iconic
bathing locations such as the Wye and Windermere (DEFRA, 2024;
Environment Agency, 2024c). Beyond the UK, even in countries without
combined sewerage and/or which have invested more heavily in
‘cleaning up’ bathing waters, there is also a risk that treated wastewater
and runoff pollution is still releasing dangerously high numbers of
waste-derived microorganisms into natural waters (National
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Engineering Policy Centre Working Group, 2024). This was recently
highlighted by discussions around the risk that swimming in the Seine as
part of the 2024 Paris Olympics posed to athletes, despite substantial
efforts to improve water quality before the event (Park, 2024; Reynolds
et al., 2024; Tien, 2024).

There is thus renewed public and policy demand for more

information about whether wastewater and runoff pollution pose a
colonisation and infection risk to open water recreational water users –
demand which is only likely to grow as climate change alters rainfall
patterns in ways that put additional pressure on water and waste man-
agement infrastructure (Gogien et al., 2023; Hensyl et al., 2024;
OFWAT, 2008). To some extent, this demand has already been met with

Table 1
Similar systematic reviews published since (and including) Leonard et al. (2018a).

Study Leonard et al. (2018a) Russo et al. (2020) Adhikary et al. (2022)

Pre-registered
protocol

PROSPERO CRD42013005307) Not pre-registered PROSPERO CRD42019145265

Objective “In this systematic review, the aim was to gather,
appraise and synthesize the evidence to answer the
following research questions.
i. Do bathers have an increased risk of experiencing
symptoms of infections following recreational use of
coastal water, compared with non-bathers?
ii. Does the level of increased risk depend on the nature
of exposure to the water?”

“The objectives of this study are to: (1) assess and
summarize the scientific literature on the risk of
illness associated with different types of recreational
activities and different levels of water contact during
recreation; (2) quantitatively estimate the pooled
risk of illness associated with different categories of
recreational activities and levels of water contact;
and (3) evaluate risk of illness across activity and
water contact categories to better understand illness
risk associated with different types of recreation in
ambient surface waters.”

“To examine the health risks associated with
microbial exposure from the recreational use of
untreated freshwater bodies and assess whether the
risks differed by the type of contact (primary,
secondary, no contact) and waterbody.”

Population Healthy people living in OECD countries Any Any

Exposure Recreational exposure to seawater* (full
qualitative and quantitative synthesis);
recreational exposure to more polluted seawater*
(study characteristics table only)

Recreational exposure to seawater or freshwater Recreational exposure to freshwater

Comparator No recreational exposure to seawater (full
qualitative and quantitative synthesis);
recreational exposure to least polluted seawater
(study characteristics table only)

No recreational exposure to seawater?;
recreational exposure to least polluted seawater?

No recreational exposure to freshwater

Outcomes Self-reported symptoms or laboratory infection
(any, ear, gastrointestinal, eye, respiratory, skin,
urinary, and other in narrative synthesis; any, ear,
and gastrointestinal in meta-analyses)

Self-reported symptoms or laboratory infection;
laboratory-confirmed infection (ear,
gastrointestinal, eye, respiratory, skin, urinary,
and other in narrative synthesis; gastrointestinal
and respiratory in meta-analyses)

Self-reported symptoms or laboratory infection
(gastrointestinal, ear, eye, and skin in narrative
synthesis; no meta-analyses)

Study designs Non-randomised; randomised Non-randomised; randomised Non-randomised; randomised

Bibliographic
databases
searched

BIOSIS; EMBASE; Environment Complete;
GreenFILE; MEDLINE; Web of Science

PubMed; Web of Science; TOXLINE CAB Abstracts; PubMed; Scopus; Web of Science

Search dates July 2013 (updated June 2015) Not reported August 2019 (updated June 2021)

Number of
included studies

40 (19 in meta-analyses) 92 in meta-analyses (no narrative synthesis of
studies not included in meta-analyses)

35 (no meta-analyses)

Risk of bias
assessment
method

Critical Appraisal Skills Programme (CASP) tool Ad-hoc, hybrid tool developed with inspiration
from the NTP OHAT tool, Agency for Healthcare
Research and Quality, Cochrane Handbook, and
CLARITY Group

Newcastle-Ottawa Quality Assessment Scale
(NOS) for non-randomised studies†; Newcastle-
Ottawa Quality Assessment Scale (NOS) adapted
for randomised controlled trials

Narrative
synthesis

Study characteristics table; narrative description of
study characteristics

Study characteristics infographic; Study
characteristics table; narrative description of
study characteristics

Study characteristics table; narrative description
of study characteristics; vote counting based on
statistical significant results across studies?

Quantitative
synthesis (meta-
analyses)

Multiple independent random effects models (10)
pooling odds ratios for no seawater exposure/
seawater exposure comparisons in each of 10
symptom categories

Multiple mixed-effects/meta-regression models
(unclear how many) combining odds ratios for
no seawater exposure/seawater exposure and
least pollution exposure/more pollution
exposure comparisons into pooled effects for
many different categories of moderators

None

Certainty
assessment

None None None

Main conclusions Higher risk of experiencing symptoms of any
illness, ear infections (highest risk), and
gastrointestinal infections in those exposed to
seawater versus those not exposed to seawater

Higher risk of experiencing symptoms of
gastrointestinal infection and respiratory
infection in those exposed to seawater versus
those with minimal or no exposure to seawater

Most studies reported higher risk of experiencing
symptoms of infection in those exposed to
freshwater versus those with minimal or no
exposure to freshwater

* Freshwater exposure was originally intended to be included in Leonard et al. (2018a) and as such, freshwater terms were included in the search strategy. However,
as the authors note “Given the scale of the evidence base and resource constraints, the freshwater papers were not fully data-extracted or quality-appraised, and have not been
included in this review.”.
? Inferred as was not clearly reported in the study.
† The Newcastle-Ottawa Scale (NOS) has been criticised for being untransparent in its methods, omitting key elements of bias, and including potentially invalid items

(Stang, 2010; Stang et al., 2018).
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a relatively long history of scientific studies in this area and several
syntheses of their evidence (Tables 1 & 2; Supplementary Data 1). These
syntheses include a systematic review conducted by members of our
own team between 2013 and 2018 (Leonard et al., 2018a), which syn-
thesised evidence from non-randomised and randomised studies avail-
able at the time (last searches conducted 2015). The meta-analyses
emerging from this review found associations between recreational
exposure to seawater and experiencing symptoms of any infection (odds
ratio (OR) = 1.86, 95 % confidence interval (CI): 1.31 to 2.64, P =

0.001), ear infections specifically (OR= 2.05, 95 % CI: 1.49 to 2.82, P <

0.001), and gastrointestinal infections specifically (OR = 1.29, 95 % CI:
1.12 to 1.49, P < 0.001). A more recent systematic review (Russo et al.,
2020) also quantified the association between recreational exposure to
open water and indicators of gastrointestinal infection, and found an
even stronger association (particularly in freshwater).

These syntheses support the notion that bathing in open water is
associated with infection, and in particular have highlighted that the
strongest associations are likely to be found in high-contact activities
such as swimming and surfing (Russo et al., 2020). Nonetheless, as well
as being at least 5 years out of date, these syntheses have focused on
studies that compare groups not exposed to open water with those
exposed to it (which are the most numerous in the literature) and
(probably due to the resulting scale of the synthesis task) make con-
cessions on several key stages of the systematic review process. Whilst
understandable, this limits the extent to which they can be used to assess
the evidence for a relationship specifically between exposure to waste-
water and runoff pollution and infections. It also limits their scope to
explore which sub-exposures/outcomes are most strongly associated
with wastewater and runoff pollution, and the extent to which any re-
lationships found are likely to causative. Here, we propose a more
focussed but more detailed systematic review of the evidence relating to
the role of wastewater and runoff pollution in infection in recreational
open water users specifically, incorporating the latest evidence.

1.2. Rationale for the systematic review

1.2.1. Shifting towards a more direct assessment of the role of wastewater
and runoff pollution

Both Leonard et al. (2018a) and Russo et al. (2020) paid some atten-
tion to studies investigating the effects of exposure to wastewater and
runoff pollution specifically (hereafter ‘pollution exposures’). However,
in both reviews this was obscured by the synthesis of more-studied ex-
posures to open water per se (hereafter ‘water exposures’). Leonard et al.
(2018a) included pollution exposures in its Study Characteristics table,
but the remainder of the synthesis focussed exclusively on (sea)water
exposures. Russo et al. (2020) meanwhile, pooled pollution exposures
together with water exposures, blurring the distinction between the two
in the synthesis results. Both choices are understandable, given that,
compared to those working in clinical fields, synthesists working on
environmental health and toxicology-type questions are often compelled
make the most of a more scant and heterogeneous evidence base (Wikoff
et al., 2020). Nonetheless, there are several reasons why a dedicated
synthesis of the pollution exposures may better clarify the role of
wastewater and runoff pollution specifically.

Primarily, this is because estimating the effect of water exposure
does not directly address the effect of pollution exposure (i.e. inferences
about pollution exposure are confounded by water exposure). Indeed,
Leonard et al. (2018a) found the largest association between exposure to
seawater and reporting symptoms of ear infections, which could be for
reasons other than exposure to pollution. For example, surfer’s ear is an
exostosis associated with open water bathing (including surfing) that
may present similar symptoms to an infection or make outdoor water
users more vulnerable to infection (Kroon et al., 2002). However, its
ultimate cause is exposure to cold wind/water rather than infectious
microorganisms. Recreational water users are also more susceptible to
respiratory and skin conditions that do not have microbial causes but

which may present similar symptoms (Smith et al., 2018; Freiman et al.,
2004). These examples highlight why water exposures may not always
be a reliable proxy for pollution exposures − especially when relying on
self-reported symptoms.

This issue can be mitigated by the synthesising additional evidence
from included studies which further supports the presence of infectious
agents at the suspected site of exposure and/or infection (and ideally a
dose–response relationship between the two). However, compared to
pollution exposures, water exposures are still arguably more vulnerable
to confounding at the population level and lack of blinding. On the
former, recreational water users are a demographically different group
to non-recreational water users (Outdoor Swimmer, 2021; Sport En-
gland, 2024; Surf Industry Members Association, 2024), confounding
the exposure in ways that are hard to fully control for (particularly in the
non-randomised designs that dominate this field; Kay et al., 1994). This
may warrant them being considered a distinct population (as we do in
this review; see Methods: Eligibility Criteria). Regarding lack of blind-
ing, like many exposures in environmental health (Allen et al., 2015),
water exposure is inherently hard to blind; at least to participants, it is
obvious who has been in the water (even in randomised studies). This
may be particularly problematic in this field, since it is known that ‘risk
perception bias’ – a phenomenon in which participants’ likelihood of
reporting symptoms is related to the risk they perceive to be associated
with bathing – can cause those knowingly exposed to water to report
inflated rates of infection (Fleisher and Kay, 2006). Pollution exposures
are probably less vulnerable to this, since the degree of pollution is not
immediately obvious unless pollution is extreme (e.g. obvious visual or
olfactory signs), or participants and researchers have checked water
quality information prior to exposure (though systematic reviewers
should still try to validate and account for this where necessary).

We therefore believe a dedicated synthesis of pollution exposures
could provide a fuller understanding of the evidence for wastewater and
runoff pollution driving infection, and believe there are sufficient studies
of such exposures to justify a review. Leonard et al. (2018a) listed (but
did not synthesise) 6 studies including pollution exposures conducted in
the Global North in its Study Characteristics table. We have further
identified at least 2 studies that may have been omitted from Leonard
et al. (2018a)’s list, and at least 2 new studies that could be included in a
dedicated synthesis of the effect of pollution exposure (Supplementary
Data 2). We have not yet performed a dedicated search for further new
studies (as this is partly the point of the review), but we anticipate this
number to increase once the new search strategy has been executed. It
has previously been estimated that themedian time for systematic reviews
in the medical sciences to become out of date (defined as a change in
statistical significance or relative change in the magnitude of effects
involvingkeyoutcomesof at least 50%) is5.5years (Shojania et al., 2007).
Five years have passed since the publication of Russo et al. (2020) and 7
since the publication of Leonard et al. (2018a), with the searches under-
pinning these reviews evenmore out of date. Especially with an improved
search strategy, we are therefore confident that a new reviewwill identify
sufficient studies to synthesise, and that there is ample opportunity to gain
new insights by synthesising it with more methodological rigour.

1.2.2. Methodological improvement to the systematic review process
Another motivation for conducting a new systematic review in this

area is that syntheses conducted to date make important concessions on
key stages of a systematic review, particularly in the pre-registration and
quality appraisal stages (Table 1, Table 2). Whilst such syntheses still
provide many useful insights that inform the development of this re-
view, this nonetheless limits their ability to provide an unbiased
assessment of the strength of the evidence base (as well as the strength of
effects reported within it).

Regarding pre-registration, several reviews in this field lack a pre-
registered protocol altogether (Mannocci et al., 2016; Russo et al., 2020;
Wade et al., 2003; Yau et al., 2009). Although pre-registration does not in
itself guarantee the quality of a review (though there is some emerging

M.L. Jones et al.
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evidence that it increases the chances of a better quality review; Mei et al.,
2022), it does at least allow the reader to distinguish between pre-specified
and post-hoc synthesis choices that may have an important bearing on the
results. A relevant example in this regard is Russo et al. (2020)’s subgroup
analysis by water quality, in which the water exposures synthesised are
categorised “good,” “intermediate”, or “poor” (deduced from how it was
reported in the studies). This decision has an important bearing on the
conclusion that reported effects of water exposure are likely due to pollu-
tion exposure.However, given the lack of pre-registration, it is not possible
to know whether the choice of water quality categories could have been
implicitly influenced by the synthesists’ knowledge of the outcome data
(especially as it is quite a subjective categorisation). Tominimise such risks
of bias, pre-registration has become the norm in systematic review, and
systematic review guidelines and journals strongly encourage, and in some

cases explicitly require it.Accordingly, protocols for the reviewsofLeonard
et al. (2018a) and Adhikary et al. (2022) were pre-registered, though not
peer-reviewed. Building on this, this protocol is first among the systematic
reviews identified to have also been peer-reviewed prior to its pre-regis-
tration/publication.

There are also significant opportunities to improve upon the risk of
bias and certainty assessment stages of systematic reviews in this area.
These are key stages of a systematic review that enable a systematic
assessment of the strengths and weaknesses of the current evidence base,
and meta-analytical results to be fully contextualised (Izcovich et al.,
2022). Regarding risk of bias, some reviews did not conduct risk of bias
assessment at all (Wade et al., 2003; Yau et al., 2009) and those that did
conducted it using tools that are now considered inadequate (Table 1,
Table 2). For example, our own review (Leonard et al., 2018a) used the

Table 2
Similar systematic reviews published before Leonard et al. (2018a).

Study Wade et al. (2003) Yau et al. (2009) Mannocci et al. (2016)

Pre-registered
protocol

Not pre-registered Not pre-registered Not pre-registered

Objective “Our primary goal in this systematic review was to
evaluate the evidence linking specific microbial
indicators of recreational water quality to specific
health outcomes under nonoutbreak conditions.
Secondary goals were to identify and describe critical
study design issues, to quantify and evaluate sources of
heterogeneity among the studies, and to evaluate the
potential for health effects at or below the current
suggested regulatory standards.”

“The primary goal of this investigation is to quantify
the association between microbial indicators used to
monitor recreational water quality and skin-related
outcomes in non-outbreak conditions in both marine
and freshwater settings.”

“the aim of the present study is to systematically
review and meta-analyze the association between
swimming in recreational water and the
occurrence of respiratory illness.”

Population Swimmers Any Any (other than professional swimmers)

Exposure Recreational exposure to seawater; recreational
exposure to more polluted seawater

Recreational exposure to seawater or freshwater Recreational exposure to seawater;?

Comparator No recreational exposure to seawater?; recreational
exposure to least polluted seawater?

No recreational exposure to seawater?;
recreational exposure to least polluted seawater?

No recreational exposure to freshwater?

Outcomes Self-reported symptoms or laboratory infection
(gastrointestinal in narrative synthesis;
gastrointestinal in meta-analysis)

Self-reported symptoms or laboratory infection
(skin in narrative synthesis; skin in meta-analyses)

Self-reported symptoms or laboratory
infection (respiratory in narrative synthesis;
respiratory in meta-analyses)

Study designs Non-randomised; randomised Non-randomised; randomised Non-randomised; randomised

Bibliographic
databases
searched

BIOSIS; EMBASE; MEDLINE, OLDMEDLINE;
ProQuest

BIOSIS; EMBASE; PubMed; Web of Science;
ProQuest

PubMed; Scopus

Search dates Not reported August 2008? February 2015?

Number of
included studies

27 in meta-analyses (no narrative synthesis of
studies not included in meta-analyses)

20 in meta-analyses (no narrative synthesis of
studies not included in meta-analyses)

14 in meta-analyses (no narrative synthesis of
studies not included in meta-analyses)

Risk of bias
assessment
method

None None Newcastle-Ottawa Quality Assessment Scale
(NOS) for non-randomised studies; Jadad
scale for randomised studies†

Narrative synthesis Study characteristics table; narrative description of
study characteristics; summarising risk ratios; vote
counting based on correlation coefficients and p-
values

Study characteristics table; narrative description
of study characteristics

Study characteristics table; narrative
description of study characteristics

Quantitative
synthesis (meta-
analyses)

Multiple independent random effects models
(unclear how many) combining risk ratios for no
seawater exposure/seawater exposure and least
pollution exposure/more pollution exposure
comparisons into pooled effects for many different
categories of moderators; meta-regression of risk
ratios against indicator bacteria density

Multiple independent fixed and random effects
models (unclear how many) combining risk ratios
for no seawater exposure/seawater exposure and
least pollution exposure/more pollution exposure
comparisons into pooled effects for many different
categories of moderators for many different
categories of moderators

Random effect model pooling risk ratios for no
seawater exposure/seawater exposure

Certainty
assessment

None None None

Main conclusions Higher risk of experiencing symptoms of
gastrointestinal infection in those exposed to
seawater versus those not exposed to seawater. Risk
correlates with microbial indicators of pollution

Higher risk of experiencing symptoms of skin
infection in those exposed to polluted seawater
versus those not exposed to seawater

Higher risk of experiencing symptoms of
respiratory infection in those exposed to
seawater versus those not exposed to seawater

? Inferred as was not clearly reported in the study.
† The Newcastle-Ottawa Scale (NOS) has been criticised for being untransparent in its methods, omitting key elements of bias, and including potentially invalid items

(Stang, 2010; Stang et al., 2018).
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Critical Appraisal Skills Programme tool and others (Mannocci et al.,
2016; Adhikary et al., 2022) used the Newcastle-Ottawa Scale – both of
which have been criticised as being under-sensitive (Hannes et al., 2010;
Stang, 2010; Stang et al., 2018). To be sure, at the time some of these
reviews were conducted, Cochrane’s ROBINS-I (Sterne et al., 2016) and
ROBINS-E (Higgins et al., 2024) tools − which are now considered the
gold standard for assessing observational studies that dominate this field
– were not available. This is probably why such reviews focussed on
more generalist tools that could be applied to both randomised and
non-randomised studies. Nonetheless, there is still an opportunity to
improve synthesis methods by conducting risk of bias assessment with
the best currently available tools. Furthermore, none of the previous
reviews conducted a certainty assessment (e.g. GRADE; Schünemann
et al., 2013) bringing together risk of bias assessments with other evi-
dence from the review to systematically summarise the confidence in the
cumulative evidence. We consider this an especially important omission
when synthesising these environmental health studies, in which it is not
always practical to establish either the exposure or outcome with great
certainty (Morgan et al., 2018). A certainty assessment would greatly
help contextualise the key meta-analytical results for practitioners,
summarising the extent to which the least/most certain studies
contribute to estimates of association.

We also think that there are opportunities to improve upon other stages
of the systematic review process and their reporting such as the framing of
the objectives, search strategy, and meta-analyses (Table 1; Table 2).
Granted, the use of systematic review andmeta-analysis in environmental
health is still relatively nascent, and some standardshavebeen raised in the
field after many of these reviews were initiated (Whaley et al., 2016;
Haddaway et al., 2018; Whaley and Roth, 2022; Nakagawa et al., 2023).
Nonetheless,manyof these standardshaveat least been long-established in
clinical research from which the systematic review process is derived
(Moher et al., 1999, 2009; Shamseer et al., 2015), and we think there is a
clear opportunity for a more focussed review that better adheres to them.

1.3. Objectives

In line with its motivations, the main objective of the systematic
review and meta-analysis we are proposing is to answer the following
PECO-structured research question (Morgan et al., 2018):

Q1. In studies of recreational open water users in Global North locations
(P), what is the association between exposure to open water judged as being
more affected by wastewater and runoff pollution (E) versus exposure to
open water judged as being the least affected by pollution (C) on estimated
cases of infection (including colonisation; O)?

Capitalising on our diverse experience (Supplementary Data 3) we
intend to narratively and quantitatively synthesise the results of studies
sharing these objectives (Table 3). In order to do this, we will carry out
up-to-date searches for relevant studies, summarise study characteristics
and risk of bias, before carrying out quantitative synthesis (meta-anal-
ysis). The quantitative synthesis will primarily provide estimates of the
association between recreational exposure to open water judged as
being polluted and estimated cases of infection of the ear and the
gastrointestinal tract (which we previously assessed for non-seawater
users versus seawater users) – as well as of the eye, skin, respiratory
tract and urinary tract. This will be followed by additional analyses and
certainty assessments that seek to carefully consider the extent to which
the results of these primary analyses are affected by varying definitions
of ‘polluted water’ in the literature and other factors associated with the
included studies. Finally, all of the information from the systematic re-
view and meta-analysis will be drawn together into a ‘Summary of
findings’ table (Schünemann et al., 2023) including certainty assess-
ment. Ultimately, our aim is to provide researchers, policymakers and
other stakeholders with the most robust assessment to date of the evi-
dence for an association between exposure to wastewater and runoff
pollution, and infection by microorganisms.

2. Methods

2.1. Eligibility criteria

Eligibility criteria are closely based on the PECO-structured review
objectives. These criteria will be used during the screening of titles and
abstracts, and full texts of reports (see ‘Selection process’) to identify
primary studies with non-randomised designs (e.g. cohort studies, cross-
sectional studies) and randomised designs (e.g. randomised controlled
trials, cluster-randomised controlled trials). Studies will be included if
they contain study groups meeting the following characteristics.

2.1.1. Population
Recreational open water users: People of any age who have taken

part in immersive water activities in Global North locations in the last 1
month. ‘Immersive water activities’ includes activities like swimming
and surfing, where body immersion is necessary and head immersion
likely. ‘Global North locations’ means bathing and recreational waters
(not that recreational water users are necessarily from these destina-
tions) in Global North countries as defined by UNCTAD (i.e. Europe −

Austria, Belgium, Bulgaria, Croatia, Republic of Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom,
Georgia, Ukraine, Moldova; North America – Canada, United States;
Japan; South Korea; Australia; New Zealand; Israel). Global South and
overseas territories of Global North member countries are excluded (e.g.
Puerto Rico, British Virgin Islands). Nonetheless, reviewers should tag
studies from Global South and other countries during the abstract
screening phase.

Justification: Recreational water users are demographically different to
non-recreational water users, and restricting the definition to activities
where both body and head immersion are unavoidable reduces heteroge-
neity arising from lower contact activities, which have been shown to be
associated with a lower risk of illness in previous reviews (Leonard et al.,
2018a; Russo et al., 2020). A recall period of 1 month is used because of the
varying time-to-onset of different infections and varying recall periods within
and between studies. The population was limited to recreational water users
in Global North destinations to reduce heterogeneity that needs to be dealt
with in the synthesis. Bathing water quality is likely to be established with less
certainty in studies of non-Global North destinations (due to less-funded
studies and lack of secondary data sources) and of lower quality than in
Global North destinations (Malik et al., 2014). We used the UNCTAD
definition of Global North countries as of February 2025 (UNCTAD, 2024,
2023, 2022), because it provides an independent, economically-based cat-
egorisation upon which to base our eligibility criteria. Global South and other
countries will be tagged during the screening phase to create a collection of
these studies that will enable interested readers and future synthesists to
pursue them further, in order to compensate somewhat for the focus on the
Global North.

Table 3
PECO-structured review objectives for the systematic review and meta-analysis.

Category Criteria

Population Recreational open water users in Global North locations
Exposure Open water judged as being more affected by wastewater and runoff

pollution
Comparator Open water judged as being less affected by wastewater and runoff

pollution
Outcomes Estimated cases of different types of infection (ear, eye,

gastrointestinal, skin, respiratory tract, and urinary tract infections)
by microorganisms. The term ‘estimated cases’ covers cases estimated
from self-reported symptoms, diagnostic, or microbiological
confirmation.
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2.1.2. Exposure
Higher pollution: At least one group of recreational water users

known or suspected of having been exposed to open water more affected
by untreated/treated wastewater (including sewage) and runoff pollu-
tion than the Comparator group. Where exposure is not established with
certainty, suspicion of exposure may come from anecdotal or circum-
stantial information (e.g. proximity to likely point sources), bathing
water measures/status from a source external to the study (e.g. envi-
ronment agency), or direct measures of indicator organisms. Assessors
should not include exposures where pollution is reported to be associ-
ated with algae/algal blooms and the outcome is not confirmed to be an
infection (i.e. based only on symptoms).

Justification: Wastewater and runoff pollution are the main forms of
pollution that are on the public and policy agenda regarding human infection,
given their likelihood of carrying human/animal faecal microorganisms and/
or amplifying harmful microorganisms in the environment. In most studies,
we anticipate that participants’ exposure to pollution will not be established
with absolute certainty, and will instead come from indirect signs that lead the
investigators to believe that exposure has occurred. Hence, we are relatively
astringent about the criteria used to establish pollution exposure − especially
as we intend to compensate for this by directly discussing the potential effect
of the directness of the pollution measure through our narrative and quan-
titative syntheses (see Additional analyses). Multiple groups which have
higher exposure than the comparator may be present in studies (e.g. multiple
polluted bathing destinations or ordinal groups of a pollution exposure).
These are eligible to be included, with shared control non-independence
accounted for in the meta-analytical models used in the quantitative anal-
ysis. Regarding the exclusion of algal-mediated exposures without confir-
mation of infection, this is because symptoms may be attributable to toxins in
such cases, and we are specifically interested in infection. Of course, there is a
risk that poorly measured exposures/outcomes will be included even though
they are influenced by algae/toxin-mediated health effects. However, this will
be accounted for in risk of bias/certainty of evidence assessments in the same
way as outcomes only based on symptoms are assigned less certainty.

2.1.3. Comparison
Lowest pollution: A group of recreational water users known or

suspected of having been exposed to open water that is the least affected
by wastewater (including sewage) and runoff pollution. Where exposure
is not established with certainty, suspicion of exposure may come from
direct measures of indicator organisms, bathing water measures/status
from a source external to the study (e.g. environment agency), or
anecdotal or circumstantial information (e.g. proximity to likely point
sources).

Justification: The group of recreational water users with the lowest
pollution exposure in a study offers the most similar comparator between
studies − even if in reality, the actual levels of exposure will differ at least
slightly between studies. However, this is common in environmental health
syntheses, and lowest vs highest/er comparisons combined with a careful
synthesis are regarded as a legitimate way of dealing with this issue (see
PECO Example 2 in Morgan et al., 2018). Regarding the latter, our
quantitative syntheses will include efforts to estimate potential heterogeneity
arising from comparator/baseline differences, and account for this in
drawing conclusions.

2.1.4. Outcome
Estimated cases of infection: Confirmed or suspected cases of ear,

eye, gastrointestinal, respiratory, skin, or urinary tract infection caused
by microorganisms. These may be based either on self-reported cases of
infection (such as gastrointestinal symptoms), diagnosis by a medical
practitioner, and/or microbiological testing of human samples (the term
‘estimated cases’ captures the varying levels of certainty). When based
on symptoms, reported outcomes in the paper will be considered
eligible/classified into the six infection categories according to the
schema presented in Supplementary Data 4. When considering diag-
nostic and microbiological methods of estimating infections, it is

important to note that both symptomatic and asymptomatic infections
are eligible for inclusion – and relatedly, that our definition of ‘infection’
includes ‘colonisation’, as this is the first stage of the infection process
(Dani, 2014).

Justification: In most studies, we anticipate that infection will rarely be
established with absolute certainty, and instead estimated from self-reported
symptoms. For the same reason, we do not specify that certain faecal mi-
croorganisms must be the agents of infection – especially as non-faecal mi-
croorganisms associated with wastewater and runoff may also play a role
(especially in non-gastrointestinal infections). Nonetheless, some confirma-
tory evidence of infection to accompany symptomology is highly desirable,
and we will account for this by: 1) assigning lower risk of bias/higher cer-
tainty to such outcome measures in quality appraisal; 2) exploring the po-
tential quantitative effect of the directness with which cases of infection are
estimated in a dedicated sensitivity analysis.

2.2. Information sources

Recognising that librarian co-authors improve the quality and
reporting of systematic review searches (Rethlefsen et al., 2015), our
information sources (and search strategy, next section) have been
selected in consultation with our librarian/information specialist co-
author (AB; Supplementary Data 3). We selected from and expanded
upon the information sources used in Leonard et al. (2018a), based on an
analysis of whether they were useful information sources for finding the
seawater studies included in this previous review (Supplementary Data
5; Supplementary Data 6). Broadly, they are grouped into bibliographic
databases which will serve as our primary information sources, and grey
literature sources which will serve as our secondary information
sources.

2.2.1. Bibliographic databases
The bibliographic databases that we will search are MEDLINE (via

Ovid), Web of Science (SCI, SSCI, AHCI, CPCI-S, CPCI-SSH, ESCI),
Environment Complete (via EBSCOhost), and Global Health (via Ovid).
Unlike in our previous review, EMBASE, BIOSIS and GreenFILE will not
be searched, as a search summary table of the results indicated that they
did not retrieve any unique results that were not found in other data-
bases (Supplementary Data 6). The process for choosing the primary
information sources is detailed in Supplementary Data 5. We will also
use the citationchaser software (Haddaway et al., 2022) to perform
forwards citation searching of the 2018 review (Leonard et al., 2018a) as
well of the 40 included reports within it. All of the results obtained via
these methods will be downloaded into EndNote (The EndNote Team,
2024).

2.2.2. Google Scholar
Google Scholar indexes scientific papers but cannot be searched

reproducibly (Gusenbauer, 2019; Gusenbauer and Haddaway, 2020),
and indexes research produced by both academic and non-academic
institutions. Following PRISMA2020, we consider it both a biblio-
graphic and grey literature ‘database’ (Rethlefsen and Page, 2022) that
is worth searching despite its limitations, because it can capture results
not captured in searches of select bibliographic databases (Haddaway
et al., 2015).

2.2.3. Grey literature sources
We will also search grey literature sources, which we define ac-

cording to the Luxembourg definition as “information produced on all
levels of government, academia, business and industry in electronic and
print formats not controlled by commercial publishing i.e., where pub-
lishing is not the primary activity of the producing body” (ICGL, 2014).
In the context of this review, grey literature sources are specifically
considered to be searchable websites of non-academic Global North
organisations that have a vested interest in the relationship between
environmental exposures and human health. The following fourteen
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organisational websites will be searched: 1) European Environment
Agency (EU and non-EU member states and cooperating countries); 2)
GOV.UK; 3) Environmental Protection Division (Georgia); 4) Ministry of
Health (Ukraine); 5) Ministry of Environment (Moldova); 6) Health
Canada (Canada); 7) Environmental Protection Agency (United States);
8) Japan Environment Agency (Japan); 9) Ministry of Environment
(South Korea); 10) Water Quality Australia (Australia); 11) Ministry for
the Environment/Manatū Mō Te Taiao (New Zealand); 12) Cabinet of
Israel (Israel); 13) UN Environment Programme; 14) World Health
Organisation. The process for choosing the grey literature sources is
detailed in Supplementary Data 5 and 7. Due to resource constraints, it is
only feasible to search these sources in English, but nonetheless these
countries commonly produce English-language documents on water
quality. As for the primary information sources, forwards and backwards
citation searching will be performed on any new included papers that
emerge from them.

2.3. Search strategy

2.3.1. Bibliographic databases
Our search strategy was also developed in consultation with our

librarian/information specialist co-author (AB), who will also execute
the strategy for the review. To develop this strategy, we tested and
improved upon the search strategy used in Leonard et al. (2018a) to find
studies with water/pollution exposures, before pilot testing the new
strategy (Supplementary Data 8).

For searching the primary information sources (bibliographic data-
bases and PQDT Global), the search terms used in the previous review
have been amended based on the experience and results of Leonard et al.
(2018a). This is to make our searches more efficient at finding all articles
relevant to the review question, whilst minimising the number of irrel-
evant records retrieved from each database. The main changes were the
addition of new search terms and the refinement of existing ones to
avoid redundancy. The titles and abstracts of the seawater studies
included in Leonard et al. (2018a) – and the 70 freshwater studies listed
in the supplementary materials but not synthesised − have also guided
the choice of new search terms, which now take into account any
changes in language over the last 10 years. The process used for
designing this search strategy is detailed in Supplementary Data 8, with
an example search strategy for MEDLINE with these terms in Supple-
mentary Data 9.

The new search strategy was pilot tested in MEDLINE on the basis of
its ability to retrieve the 38 previously-included reports indexed in
MEDLINE of the 40 total reports included in Leonard et al. (2018a). The
new search strategy retrieved all of the 38 previously-included reports,
compared to the 29 found using the previous search (Supplementary
Data 8).

Given that the search strategy (and information sources) was
developed based on Leonard et al. (2018a)’s seawater-focussed review,
we also validated that the search strategy captured relevant freshwater
studies. Among the 70 freshwater studies listed in the supplementary
materials of Leonard et al. (2018a), we identified 9 studies with pollu-
tion exposures. All of these 9 studies were retrieved by our search.

2.3.2. Google Scholar
Given the large number of results a Google Scholar search typically

produces, we will only search for seawater/freshwater/bathing water/
recreational water terms in the titles of indexed reports, via Publish or
Perish (Harzing, 2007). Pilot testing of this search strategy revealed a
practicable number of hits including some of potential relevance to the
review (Supplementary Data 8).

2.3.3. Grey literature sources
A different search strategy will be adopted for searching organisa-

tional websites, given the organisational websites included do not have
search systems that are as sophisticated as those for the primary sources.

Specifically, we intend to search for anything related to bathing or
recreational water, filtering results on a more case-by-case basis
depending on how manageable the number of records retrieved is.
Example search strategies and numbers of hits for each organisational
website detailed in Supplementary Data 8.

The new search strategy was pilot tested by first backcalculating the
original sources of the 13 seawater reports included in Leonard et al.
(2018a) but not identified in any of the bibliographic databases
(Supplementary Data 5; Supplementary Data 6). Subsequently, we
validated that our new search strategy captured the report in this sus-
pected source in a similar manner how the primary information sources
were validated (Supplementary Data 7; Supplementary Data 8).

2.4. Study records

2.4.1. Data management
Search outputs (titles, abstracts and other bibliographic information)

will be downloaded from bibliographic databases as bibliography files
(e.g. .ris, .bib files) and combined in EndNote (The EndNote Team,
2024). Duplicates will be removed via EndNote’s deduplication tool
before exporting as the de-duplicated bibliography file. This dedupli-
cated file will be uploaded to the Rayyan systematic reviewmanagement
software (Ouzzani et al., 2016), in which we will attempt to further
remove duplicates with a combination of automatic duplicate detection
and manual checking, before it is screened.

Data from the studies will be stored in an Excel (Microsoft Corpo-
ration, 2018) spreadsheet/comma separated values files on a shared
university OneDrive during the review, with data and code necessary to
reproduce the meta-analyses (though not raw data from others’ studies)
published alongside the final review paper.

2.4.2. Selection process
Titles and abstracts (and subsequently selected full texts) of the

deduplicated reports will be double-blind screened in Rayyan using the
PECO-structured eligibility criteria. MLJ will screen all reports (acting as
primary reviewer) and one of four second reviewers will screen a
random but unique subset of all the reports (created using the ‘Create
Sample’ feature of Rayyan) blind to MLJ’s decisions. For example, if
there were 1000 reports to screen, MLJ would screen all 1000 whereas
each of the four reviewers would screen a unique subset of 250 of these,
in order to ensure that all reports are double-screened.

Before beginning screening, the ability of all five reviewers to
consistently apply the eligibility criteria will be validated by pilot testing
in which each of the five reviewers screened a random set of 100 reports.
Based on this, we will identify opportunities to makeminor clarifications
to the review criteria in order to minimise conflicts between reviewers at
the end of each screening stage (these will be reported in the final re-
view). Conflicting decisions on the inclusion or exclusion of records will
be resolved by discussion to try to reach a consensus, with a third
reviewer brought in to resolve remaining discrepancies.

2.4.3. Data collection process
Data will be extracted by MLJ to an Excel (Microsoft Corporation,

2018) spreadsheet/comma separated values file in the first instance,
stored on the university OneDrive which will also produce a version-
controlled backup of the data. PDFs will be highlighted to indicate
where extracted data has come from.

Data will be checked by a second reviewer, although this will not be
blinded for practical reasons. Primarily we will extract data from pub-
lished reports. Where a contact is available, we will contact the author(s)
of the included studies for study data in order to obtain more precise
estimates where needed. Authors will be emailed using the corre-
sponding author’s address and/or other authors’ addresses and asked to
share their data for the purposes of inclusion in a systematic review/
meta-analysis, with at least one follow-up email if there is no
response. A second reviewer will check the data extraction and any
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discrepancies resolved through discussion, and if necessary, after
consultation with another member of the review team.

2.5. Data items

We intend to extract the following data items for each study using
information available in reports/from authors, though the exact list is
subject to evolve during the data extraction process (e.g. there may be
sub-categories to each of these items, additional items extracted):

Study name (published name or arbitrary unique identifier); study
funder; year(s) of study period; country of study; study design; population
studied; selection criteria for study population; type of open water (seawater/
freshwater/transitional); sub-type of open water (e.g. coastal, estuary, river,
lake); type of recreational use of water studied (e.g. swimming, surfing);
description of each exposure and comparator group; method of assignment to
each exposure and comparator group; number of participants originally
assigned to each exposure and comparator; number of participants analysed
in each exposure and comparator group (and reasons for loss to follow up);
actual or suspected source of pollution in each exposure and comparator
group; method of characterising the level of pollution in each exposure and
comparator group (e.g. indicator microorganism, water quality status,
rainfall level) in each exposure and comparator group; level of pollution in
each exposure and comparator group; outcome assessment method (e.g. self-
reported, diagnosis by a medical practitioner, microbiological testing); type of
infection assessed in the outcome (e.g. any, ear, gastrointestinal); number of
cases in each exposure and comparator group; number of non-cases in each
exposure and comparator group; estimate of association/effect size type (e.g.
risk ratio, odds ratio); crude value and confidence intervals of estimate of
association/effect size type; adjusted value and confidence intervals of esti-
mate of association/effect size type; covariates adjusted for; statistical
methods used (e.g.model type); bibliographic information (e.g. authors, year
of publication, DOI) of report in which outcome is reported.

2.6. Outcomes and prioritisation

The primary outcomes for which data will be sought are data
comparing estimated cases of different types of infections in open water
users exposed to the lowest level of pollution in a study versus those
exposed to higher levels of pollution in a study (i.e. pollution exposures)
– typically expressed as the number of cases/non-cases in each study arm
or an estimate of association/effect size (e.g. risk ratio, odds ratio). The
six types of infection for which data will be sought are infections of the
ear, eye, gastrointestinal tract, respiratory tract, skin, and urinary tract.
Ideally, published reports will report a maximum of one outcome related
to each of our six categories, with a clear indication of the category to
which each reported outcome belongs (ideally based on diagnostic or
microbiological confirmation). In practice however, this is not always
the case, and typically outcomes are reported based on categories of
(self-reported) symptoms, with multiple outcomes from each category
reported, and/or it is not always clear to which of our 6 categories each
reported outcome belongs. To deal with this, we will use a pre-defined
categorisation system based on NHS symptomatology information to
categorise symptom outcomes into each of our 6 types of infection
(Table S2). If multiple outcomes per infection type exist, these will be
aggregated into a single estimate of association per infection type for the
narrative synthesis, or accounted for through the random effects struc-
ture of our meta-analytical models for the quantitative synthesis.

Our previous review (Leonard et al., 2018a) used a more elaborate
classification system for infection types/symptoms. This system
included different sub-categories of symptoms within different types of
infection and different case definitions within those, resulting in 10
categories emerging from symptoms of any type, the ear, and the
gastrointestinal tract. We consider it undesirable to use this classifica-
tion system in this review, for several reasons. Firstly, dividing the meta-
analytical dataset between many models/levels of a moderator in a
model further depletes the already limited statistical power typical of

this type of meta-analysis. Secondly, our previous pooled estimates of
the association/effect for different case definitions of the same symptom
category/similar types of symptoms were similar − suggesting that at
least some of the original sub-divisions were unnecessary. Finally, the
previous classification system complicates the interpretation the results
for those wanting to use them in an applied context (e.g. it is not
immediately clear which pooled estimates of the association/effect for
each type of infection is most relevant). This third problem would be
exacerbated by the addition of 4 new sites of infection in this review, and
the accompanying factorial increase in the number of sub-categories.
For all these reasons, we choose to use a simpler, infection type-based
classification system in this review, which has only 6 categories.

2.7. Bias in individual studies

We will assess risk of bias in the included studies using Cochrane’s
ROBINS-E and RoB 2 tools for observational and randomised studies,
respectively (Higgins et al., 2024a; Sterne et al., 2019). Risk of bias will
be assessed at the exposure-outcome level, meaning that if a study
contains multiple relevant exposures and outcomes (e.g. infection
types), each relevant outcome within each relevant exposure will be
assessed. Two reviewers will independently assess risk of bias for each
study following the guidance notes available for each tool. Any dis-
crepancies between the two reviewers in risk of bias judgements for each
domain will be resolved through mediation by a third reviewer. If a
consensus cannot be reached, we will conservatively defer to the highest
risk of bias judgement made by the three reviewers.

2.7.1. ROBINS-E
Most studies in this field are non-randomised, due to the difficulties

of running randomised trials to assess the effects of environmental ex-
posures such as exposure to (polluted) open water. Risk of bias of this
majority of non-randomised studies will be assessed using the ROBINS-E
tool (Higgins et al., 2024a), implemented using the Microsoft Excel
template available at riskofbias.info. These studies will be judged as
being of ‘Low’, ‘Moderate’, ‘Serious’ or ‘Critical’ risk of bias (or ‘No
information’) in each domain and overall, in line with the tool’s schema.

2.7.2. RoB 2
There are at least three randomised studies that include pollution

exposures (Kay et al., 1994; Wiedenmann et al., 2006; Fleisher et al.,
2010). Risk of bias of this minority of randomised studies will be
assessed using the RoB 2 tool (Higgins et al., 2024b; Sterne et al., 2019),
implemented using the interactive Microsoft Excel worksheet available
at riskofbias.info. These studies will be judged as being at ‘Low’ risk of
bias, having ‘Some concerns’, or as being at ‘High’ risk of bias in each
domain and overall, in line with the tool’s schema.

When assessing deviations from intended interventions (RoB 2
Domain 2), studies will be assessed for the ‘per protocol’ effect of
adhering to the polluted seawater exposure intervention, rather than the
‘intention-to-treat’ effect. This is because:

1. These trials are not meant to be representative of a real-life medical
intervention. Controlled exposure to (polluted) seawater in these
trails is being used as a proxy to study the effects of real-life exposure
to seawater, which typically takes place in a an entirely self-
controlled recreational context, rather than a clinician-mediated
medical one. Therefore, the effects of ‘non-adherence to therapy’
are less relevant.

2. Related to the above, individuals and other stakeholders in this field
are most often interested in the effect on those who actually expose
themselves to open water, because it most closely relates to the im-
plications of their choice to expose themselves/advise against
exposure to polluted seawater. In this context, ‘per-protocol’ analysis
may more directly inform individual and policy-level decision
making (Higgins et al., 2019 p5-6; Higgins et al., 2024b)
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3. Finally, and perhaps most importantly, the hypothesised effect of
exposure to polluted seawater is a harm/adverse one, and so the
danger of underestimating the effect arguably outweighs the danger
of overestimating it. Therefore ‘per-protocol’ analysis is arguably the
more conservative choice here − rather than ‘intention-to-treat’
analysis, which is expected to underestimate the intervention effect
in a blinded, placebo-controlled trial where there is non-adherence
to assigned interventions (Hernán and Hernández-Díaz, 2012; Hig-
gins et al., 2019 p6).

Given naïve ‘per-protocol’ and ‘as-treated’ analyses can be prob-
lematic because they do not adjust for prognostic factors that may in-
fluence whether individuals receive or adhere to their assigned
intervention, we will assess the ‘per-protocol’ effect as rigorously as
possible. Specifically, using the information presented in trial reports,
we will attempt to assess the occurrence of non-protocol interventions
(Additional signalling question 2.3), failures in implementing the
intervention that could have affected the outcome (Additional signalling
question 2.4), and non-adherence to the assigned intervention by trial
participants (Additional signalling question 2.5). If evidence of
deviation/non-adherence from the intended intervention is found, we
will then assess whether study authors used an appropriate analysis to
assess adherence to the intervention (Additional signalling question
2.6).

2.7.3. Piloting of the two tools
Use of ROBINS-E and RoB 2 for assessing these studies was piloted by

two reviewers (MLJ and EL; Table S1) by assessing one exposure-
outcome combination from 1 non-randomised and 1 randomised study
from the 9 included studies (~20 %) with a pollution exposure assess-
ment in the original review (7 listed in the Study Characteristics table
and a further 2 included in the seawater exposure synthesis but which
also included a polluted seawater exposure assessment – see Supple-
mentary Data 2).

To begin the piloting process, an initial meeting was held between
MLJ and EL to review the use of both tools in the context of this body of
literature, and clarify any initial uncertainties regarding the application
of the tools. Subsequently MLJ and EL independently assessed one
exposure-outcome combination (estimated cases of gastrointestinal
infection) for each of the 2 reports, and then met to discuss and resolve
any discrepancies in risk of bias assessments for each domain. All dis-
crepancies were resolvable and so the introduction of a third reviewer
was not necessary for these 2 reports. Nonetheless, the process provided
a helpful opportunity for training of both reviewers (MLJ had not pre-
viously used ROBINS-E and EL had not previously conducted risk of bias
assessments) and trial their implementation for studies in this field
(Supplementary Data 10-16).

Risk of bias results will be visualised as ‘traffic light’ plots, which we
consider to offer the best study-level visualisation of the results. These
plots will be produced using the ‘robvis’ R package (McGuinness and
Higgins, 2021). Risk of bias judgements will be used in a sensitivity
analysis testing whether risk of bias is driving the results in the primary
analyses, as well as in certainty assessment via GRADE.

2.8. Synthesis

2.8.1. Hypotheses and estimate of the association/effect
The hypotheses we will explore in our syntheses is:

H1. In recreational open water users, there will be a positive association
between confirmed or suspected exposure to water polluted by wastewater
and runoff, and estimated cases of infection by microorganisms.

This hypothesis is formulated as an explicit prediction based on our
overarching PECO-structured research question (Table 1). This hy-
pothesis will be tested 6 times − once for each of the 6 infection types −
for each of the narrative and quantitative syntheses (though only the

latter is a formal test, and hence will be corrected for multiple testing –
see below). Risk ratios representing the difference in estimated cases of
infection between the participant group of recreational water users with
the lowest exposure to wastewater (including sewage) and runoff
pollution in a study, and the group(s) with higher exposure in a study
will be used to assess evidence for/against our hypotheses.

Risk ratios were selected as the estimate of association because of
their collapsibility (meaning that their size does not change if adjust-
ment is made for a variable that is not a confounder; Cummings, 2009)
and associated with this, their greater interpretability (relative to odds
ratios which are more prone to misinterpretation associated with over-
estimating risk; Cummings, 2009; Grant, 2014a). The potentially
includable studies identified during scoping (Supplementary Data 2)
also frequently report associations/effects as risk ratios and/or cases/
non-cases in the exposure and comparator groups. Adjusted risk ratios
are the preferred metric in both our qualitative and quantitative syn-
theses, but we will seek to extract and make use of both where possible
(see sensitivity analyses). This is because whilst there is a strong argu-
ment for adjusting effect estimates for confounding (particularly in non-
randomised studies which we anticipate will make up the majority of
studies in our synthesis), there is also a reasonable counter-argument
that adjusted effect sizes are less comparable because each study ad-
justs for different confounders (Higgins et al., 2023; Reeves et al., 2023;
Chang and Hoaglin, 2017). We will attempt to derive crude and/or
adjusted risk ratios either by: 1) directly extracting crude and/or
adjusted risk ratios and 95 % confidence intervals from reports; 2)
extracting alternative estimates of association (e.g. odds ratios) from
reports and converting them to risk ratios using the average baseline risk
in the comparator/control group (Grant, 2014a, 2014b; Higgins et al.,
2023); 3) extracting or obtaining from authors the estimated numbers of
cases of an incident infection in the exposure groups and comparator/
control group considered from reports, and then using them to calculate
a crude risk ratios and their 95 % confidence interval. Sometimes risk
ratios/odds ratios comparing the least exposed group to more exposed
groups will not be presented in the reports themselves (for example
because groups with different levels of exposure to pollution are instead
compared to the non-bather group e.g. Kay et al., 1994). In such cases,
we will attempt to (re)calculate risk ratios comparing the least with the
more exposed groups, using the case number information extracted from
reports/obtained from authors.

A key decision is to use risk ratios comparing recreational water users
with the ‘lowest’ suspected exposure to pollution in a study, to recrea-
tional water users with ‘higher’ suspected exposure in a study. We have
already outlined our justification for focussing on estimates comparing
recreational water users with one another (i.e. of the effect of pollution
exposure), rather than with non-recreational water users (i.e. of the ef-
fect of water exposures). Nonetheless, pollution exposures might seem a
more subjective to some than water exposures, given that:

1. The cut-off for lowest/higher pollution exposure is less defined than
for non-bather/bather, and hence probably varies more between
studies (heterogeneity in the exposure). Associated with this, there
may be multiple ‘higher’ groups (though this is intended to be dealt
with through grouping in the narrative synthesis and explicitly
explored through random effects and dose–response meta-
regressions in the quantitative synthesis).

2. Exposure to polluted water cannot typically be established with the
same degree of certainty as exposure to water per se (error in the
measurement of the exposure)

3. Whereas in non-bather/bather comparisons there is only one op-
portunity for heterogeneity and/or measurement error to affect the
estimate, in lowest/higher pollution bather comparisons there are
two (i.e. the comparator is affected by heterogeneity and error in the
measurement of the pollution in the comparator, as well as the
exposure).
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We consider these important limitations of focussing on pollution
exposures. Nonetheless, to some extent these are characteristics of the
studies being synthesised, rather than the synthesis per se. For syntheses
of environmental exposures like wastewater and runoff pollution −

which resist straightforward characterisation or for which the choice of
cut-off value is unclear − there is arguably little choice but to define
exposures/comparators in the relatively broad way it is defined in the
literature (see PECO Scenario 2 in Morgan et al., 2018). Of course, this is
likely to result in greater heterogeneity in the estimates included in the
synthesis, which might be seen as particularly problematic for the meta-
analysis stage of the review. However, given the state of the literature,
we believe that trying to use eligibility criteria to eliminate the subjec-
tivity with which these studies define their exposure and comparator
groups is undesirable. Doing so risks excluding studies based on rela-
tively arbitrary cut-offs that may not turn out to be consequential for the
outcome, and does not allow the review sufficient scope to establish
whether sensible cut-offs that are consequential for the outcome do
exist. Hence, we believe it is better to complement looser eligibility
criteria with a more diligent and in-depth execution of all stages of a
systematic review (not just meta-analysis). This allows narrative syn-
thesis, risk of bias assessments, subgroup and sensitivity analyses (tar-
geted at addressing subjectivity in the comparison) to contextualise the
meta-analytical results − brought together in a certainty of evidence (e.
g. GRADE assessment) assessment that allows readers to carefully
interpret the quantitative results. Thus, whilst our review is likely to be
focussed on a narrower set of studies with a less consistent definition of
exposure than previous reviews comparing non-recreational water users
and recreational water users, this will be offset by its focus on a com-
parison more relevant to addressing the role of pollution and a more
detailed assessment of the evidence and its uncertainty.

2.8.2. Qualitative synthesis (narrative synthesis)
A narrative synthesis (supported by a study characteristics table) will

be used to describe the characteristics and relevant reported results of all
included studies. The intended methods for this synthesis are described
below, following the relevant (protocol-stage) parts of the SWiM
reporting guidelines (Campbell et al., 2020; Supplementary Data 17).

Separate narrative (and quantitative) synthesis will be conducted for
seawater, freshwater, and transitional water (e.g. estuaries, fjords),
though some comparison of the results will be made in the Discussion.
Within this, we will group studies in a way which facilitates easier
digestion of the narrative synthesis. ‘Grouping’ refers to the way in
which we will group exposure-outcome combinations when narratively
discussing them in the study characteristics table and main text
(Campbell et al., 2020). The main grouping factor in our narrative
synthesis (reflected in sub-tables in the study characteristics table and
sub-headings in the main text) will be infection type, given that we
expect pollution to have a stronger effect on some infection types than
others. Within this main outcome-level grouping factor, outcomes will
be further grouped and discussed by method of estimating cases of
infection (e.g. self-reported symptoms, diagnosis by a medical practi-
tioner, microbiological testing) − given that diagnosis and microbio-
logical confirmation are expected to produce more accurate estimates of
cases of infection. Exposures will be grouped by the directness of method
of measuring/inferring pollution (e.g. anecdotal/circumstantial infor-
mation, water quality information, direct measures of indirect organ-
isms) and level of pollution, given that the method of characterising the
exposure and the level of pollution are hypothesised to be key influences
on the estimated effect, respectively. We are not primarily interested in
differences between populations, so we do not anticipate grouping our
synthesis by population − though if there are multiple populations
within a study, we will present the exposure-outcome level estimate
derived from meta-analytical aggregation (Supplementary Data 18). At
the top-level, studies will be grouped by whether they are non-
randomised or randomised, in line with our prioritisation of the latter
for drawing conclusions (see below).

We will present will be the crude and adjusted risk ratios (and their
95 % confidence intervals) as the standardised outcome metrics for each
exposure-outcome combination, with adjusted risk ratios prioritised for
drawing conclusions. For adjusted risk ratios, we will also present the
confounders that have been adjusted for alongside the adjusted risk
ratios in the study characteristics table. If studies provide multiple es-
timates per exposure-outcome combination (e.g. due to presentation of
the results at the level of subgroups), we will present the exposure-
outcome level estimate derived from meta-analytical aggregation
(Supplementary Data 18). If risk ratios cannot be derived for any of the
exposure− outcome combinations, we will briefly narratively describe
the result for each exposure-outcome combination in the study charac-
teristics table, based on the information presented in the report.

Narrative synthesis in the main text of the review will consist of
summarising effect estimates (range and distribution of observed ef-
fects) as well as more explicit vote counting based on the direction of the
effects (not the size or significance of results; McKenzie et al., 2023).
Whilst vote counting is a limited synthesis method (Grainger et al.,
2022), we contend that all narrative synthesis resorts to some form of
vote counting, and there is very little alternative for summarising all
included studies when some studies are not amenable to meta-analysis.
At the very least, vote counting provides a basis for discussing the
alignment or misalignment between reported and meta-analytical re-
sults; a benchmark for comparing if the results of studies well-reported
enough for quantitative synthesis align with those that are not (which
could be a form of publication bias). Due to the substantial risk of
confounding and nocebo effects in this field (see Fleisher and Kay,
2006), randomised controlled trials will be prioritised when drawing
conclusions from this synthesis by means of highlighting their results in
contrast those of non-randomised studies. For similar reasons, estimates
of the association/effect judged to be at the lowest risk of bias will also
be prioritised through highlighting them in comparison to those judged
to be at higher risk of bias. Narrative exploration of heterogeneity in
effects will be kept to a minimum as advised (Campbell et al., 2020), and
will consist only of ordering the study characteristics table by study
design (complementing the narrative highlighting/contrasting of results
from randomised and non-randomised studies) and exposure-outcome
combinations within studies in ascending order of the level of pollu-
tion (which is hypothesised to be a key moderator of the effect). Cer-
tainty of the evidence included in the narrative synthesis will be assessed
alongside that included in the quantitative synthesis, as detailed in the
‘Confidence in cumulative evidence’ section of this protocol.

As described above, study characteristics and results will be pre-
sented in a study characteristics table grouped following the grouping
system. This table will present each study’s design, populations, expo-
sures, controls/comparators, outcomes, and the risk of bias judgement
for each exposure-outcome combination (as well as the bibliographic
references for the reports in which each exposure-outcome combination
is reported). Additionally, we also intend describe any potential links
these studies make between these associations/effects and 1) the effects
of climate change; 2) the acquisition of antimicrobial resistant micro-
organisms by study subjects. This is on the basis of concerns about in-
teractions between infections by microorganisms and climate change
(Gogien et al., 2023; Hensyl et al., 2024; OFWAT, 2008) and antimi-
crobial resistance (Honda et al., 2020; Tipper et al., 2024), which are a
focal point for the wider project of which this review is part (Horizon
Europe Grant Agreement No 101057764).

2.8.3. Quantitative synthesis (meta-analyses)

2.8.3.1. Data synthesis criteria. As well including them in the qualitative
synthesis (narrative synthesis), we will seek to include each study
included in the wider review in a quantitative synthesis (meta-analyses).
A study will be included in the quantitative synthesis provided at least
one risk ratio can be obtained from it following the process described for
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the narrative synthesis. As in our narrative synthesis, multiple exposure-
outcome combinations are eligible for inclusion in our quantitative
synthesis. Furthermore, multiple risk ratios per exposure-outcome
combination are eligible for inclusion (e.g. repeated measures for the
same exposure-outcome combination; risk ratios reported separately for
different demographic subgroups of the study population). These rela-
tively relaxed data synthesis criteria prevent the need to arbitrarily
select a single risk ratio from several meeting the PECO criteria in each
study, as well as reduce the loss of information associated with aggre-
gating multiple risk ratios into one (which is especially useful to
conserve for additional and alternative analyses e.g. of dose–response
effects). The resultingly unbalanced number of risk ratios per study
included in our meta-analytical models will be handled through the
random effects included in our mixed-effects models (see below).
Finally, we will include self-reported, clinician-diagnosed and microbi-
ologically deduced infections in the same models, in order to maximise
their statistical power. This may introduce heterogeneity, but this will
be explored using a dedicated subgroup analysis based on method of
outcome assessment.

2.8.3.2. Summary measures
2.8.3.2.1. General approach (response variables and random effects).

Seawater, freshwater, and transitional water data will be modelled (i.e.
synthesised) separately for all primary, additional and alternative ana-
lyses. All models included in our primary, additional and alternative
analyses will be built using the ‘rma.mv’ function of the metafor R
package (Viechtbauer, 2024, 2010).

The random effects included in this model (specified via the
‘random’ argument in ‘rma.mv’):

1. Study ID to account for the study-level effect.
2. Time of sampling nested within exposure to account for temporal

autocorrelation between repeated measures of outcomes within the
same exposure. This will be modelled with a continuous-time
autoregressive structure (“struct = ‘CAR’” option in rma.mv). More
information about this approach can be found in Viechtbauer (2024),
with Stasielowicz (2022) offering an example of its implementation.

3. Unit-level observation ID to account for residual within-study
variance. This is to account for any residual variance between mul-
tiple effect estimates from the same study, after accounting for the
effects of study (e.g. due to different of infection types/sub-types, or
case definitions within the same study). Examples of this approach
and its implementation can be found in Konstantopoulos (2011),
Credé, Roch and Kieszczynka (2010), Viechtbauerr (2022), Viecht-
bauer (2007a).

The response variables included in these models will be log risk ra-
tios and their variances (specified via the ‘yi’ and ‘V’ argument in ‘rma.
mv’), transformed from the risk ratios and their 95% confidence interval
derived the reports. Adjusted (log) risk ratios and their variances will be
preferentially chosen over the crude (log) risk ratio where both are
available, since these adjust for confounders (with the exception of a
sensitivity analysis explicitly exploring the consequences of this
modelling choice; see Alternative analyses: Alternative modelling ap-
proaches). Variance will be modelled as a variance–covariance matrix
accounting for shared-control non-independence, following Lajeunesse
(2011) and Moran et al. (2021). This is to account for non-independence
between multiple estimates of the association/effect based on the same
comparator group, which emerge from studies with multiple exposure
arms but only a single comparator arm (Lajeunesse, 2011; Noble et al.,
2017; Nakagawa et al., 2023).

2.8.3.2.2. Primary analysis. As an initial test of our hypothesis, we
will build a random effects model (Model H1a) including the random
effects already described. This ‘intercept-only’ model will assess the
direction, strength and variability of the overall effect. By characterising

overall effect before accounting for infection type in this way, this model
acts as a precursor to testing the hypothesis formally for each infection
type.

For formally testing our hypothesis, we will build a mixed-effects
models (i.e. meta-regression or a multivariate/multilevel model;
Model H1b) including the random effects already described, as well as a
fixed effect representing the six types of infection. This differs from the
approach used in Leonard et al. (2018a) in that it uses one (mixed-ef-
fects) model for all infection types/symptom categories, instead of one
(random effects) model for each. We adopt this approach here because it
statistically preferable under most scenarios (Rubio-Aparicio et al.,
2020, Rubio-Aparicio et al., 2017). Furthermore, it simplifies the
implementation and communication of the models and their results,
since there are fewer models to build and present − especially when one
considers that the number of sensitivity and subgroup factorially
multiply from the number of primary models.

2.8.3.2.2.1. Interpretative criteria
The pooled estimate for each infection type (i.e. the fixed effect/

predictor/moderator estimates from the meta-regression) from these
models will be back-transformed from a log risk ratio to an easier-to-
interpret risk ratio, before being used to assess the direction, strength
and variability of the effects. When interpreting these effects, the first
indicator for the presence of an effect that we will use will be the p-value
(significance threshold of 0.05). However, in order to contextualise this
result, we will also consider the degree to which the point estimate and
95 % confidence interval of each pooled estimate surpasses negative
effect (less than 1)/no effect (1)/positive (more than 1) risk ratio
thresholds (i.e. strength of the association/effect) – especially where p-
values are only marginally insignificant.

Residual heterogeneity will be characterised using the Qe test for
heterogeneity, pseudo-I2 statistic sensu Jackson, White and Riley
(2012), and the 95 % prediction intervals of each estimate. The Qe test
for heterogeneity and pseudo-I2 will be used to assess residual hetero-
geneity at the level of the whole model (i.e. to what extent random ef-
fects − and in the case of Model H1b, fixed effects − explain differences
between individual estimates). The prediction interval will be used to
assess heterogeneity at the level of the outcome (i.e. all outcomes for
Model H1a and each type of infection for Model H1b). This is following
the recommendation of IntHout et al. (2016), who argues that prediction
intervals are an easier-to-interpret metric of heterogeneity than τ2 or I2
(which are also unreliable in small meta-analyses; von Hippel, 2015).
Prediction intervals are also a far more convenient-to-generate metric of
heterogeneity for individual levels of a moderator.

For Model H1b, to understand whether type of infection is generally
is good at explaining variance in the effect across studies (i.e. whether
the strength of the association/effect differs between infection types),
we will use the Qm test of moderators and the pseudo-R2 statistic of the
model (Viechtbauer, 2022).

Model fit overall will be assessed using profile likelihood plots of the
variance components of the models, as well as sensitivity analyses (see
‘Additional analyses’).

2.8.3.2.2.2. Visualisation
The two models will be visualised orchard plots (Nakagawa et al.,

2021) using the ’orchaRd’ R package (Nakagawa et al., 2023). These
plots show the overall and per-infection type pooled risk ratio estimates,
helpfully and succinctly displaying not only the point estimate and
confidence interval, but also the prediction intervals and individual risk
ratios underpinning each pooled estimate. The plot will display this
information on a log risk ratio-scale but with annotations on a risk ratio
scale to facilitate interpretation (Fig. 1).

2.8.3.2.3. Additional analyses
2.8.3.2.3.1. Sensitivity analyses
2.8.3.2.3.1.1. Risk of bias
Estimates of the association/effect deemed to be at high risk of bias

may be less reliable and lead to misleading conclusions if these estimates
are driving meta-analytical results. Accordingly, The Cochrane
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Handbook of Systematic Reviews of Interventions recommends
restricting primary analyses to estimates judged to be at the low risk of
bias where possible (Boutron et al., 2024). However, for systematic re-
views of environmental exposures this is rarely feasible, given the
number of included studies is typically small relative to that in sys-
tematic reviews of clinical interventions (and the number of low risk of
bias studies is even smaller). In such circumstances, restricting the pri-
mary analysis to the lowest risk of bias studies or stratifying it into
multiple analyses (which also has other problems; Boutron et al., 2024)
is likely to result in a primary analysis that is underpowered (Cuijpers
et al., 2021). Furthermore, it may be unnecessarily underpowered, since
even when conducted rigorously, risk of judgements are to some extent
necessarily subjective (Frampton et al., 2022).

Therefore, instead of restricting our primary analysis to low risk of
bias studies, our first, most important sensitivity analysis will explicitly
test whether high risk of bias studies are driving the results of our pri-
mary analysis, and adjust estimates accordingly. Specifically, we will
remove studies with a high risk of bias (High risk of bias in RoB 2 or High
risk of bias/Very high risk of bias in ROBINS-E), before re-running
Model H1b (see Hill et al., 2022; Izcovich et al., 2022 for similar
sensitivity analyses). For each infection type, we will then compare the
risk of bias-uncorrected and risk of bias-corrected pooled estimates to
understand the extent to which high risk of bias studies drive the results
in our primary analysis. For infection types for which the confidence
intervals of the uncorrected and corrected estimates do not overlap, we
will remove high risk of bias studies for all downstream analyses. The
more consequential nature of this sensitivity analysis for the systematic
review reflects the importance of accounting for risk of bias emphasised
in the Cochrane Handbook (Boutron et al., 2024), as well as previous
cases of high risk of bias studies apparently driving misleading conclu-
sions in systematic reviews (Hill et al., 2022; Izcovich et al., 2022). An
additional, more conservative check on risk of bias is also built into our
GRADE assessment in the certainty of the estimates, providing an
additional opportunity to account for the (potential) effects of risk of

bias when drawing conclusions.
2.8.3.2.3.1.2. Directness of the indicator of pollution exposure
Another factor that could have an important bearing on the con-

clusions of our quantitative analysis is the directness of the indicator
used to establish pollution exposure in participant groups. Theoretically,
the lack of an effect in the least confirmed exposures (where participant
exposure to wastewater and runoff may not actually have taken place)
could obscure an effect in the most confirmed exposures to wastewater
and runoff, causing us to mistakenly accept the null hypothesis of no
effect. This should partly be addressed in risk of bias assessments’ do-
mains covering characterisation of the exposure, but nonetheless given
its potential importance we will also conduct a dedicated sensitivity
analysis to try to quantitatively validate that such a phenomenon is not
biasing our results. This will consist of restricting our analysis to
exposure-outcome combinations where the investigators have based the
exposure category on environmental microbiology directly collected
from the site of purported exposure. This will usually be data collected
by the study investigators themselves as part of the study, but could also
come from environmental agencies if the data is of a high enough spatial
and temporal resolution to suggest exposure of all participants in the
‘exposed’ group.

2.8.3.2.3.1.3. Directness of the indicator of infection
Similarly to the indicator of exposure, the indirectness of the indi-

cator of infection could affect the reliability of our quantitative con-
clusions. It is our impression that most studies in this literature rely on
self-reported symptoms, which could either result in under- or over-
estimation of the number of cases of infection (Fleisher and Kay,
2006). In this sensitivity analysis we will therefore restrict our data to
exposure-outcome combinations that have been confirmed by a clinician
or microbiological testing. This will provide some indicator of whether
pooled estimates of association are different for confirmed cases of
infection.

2.8.3.2.3.1.4. Leave-one-out-analysis
We will conduct a standard ‘leave-one-out’ analysis, in which one

Fig. 1. Example orchard plots demonstrating the meta-analytical (left) and mixed-effects models approach using the (sea)water exposure data from members of this
groups’ previous review (Leonard et al., 2018a, 2018b). This plot is based on the results of a random-effects model (i.e. meta-regression or a multivariate/multilevel
model) using infection type the moderator (right). In these plots, the pooled overall or per-infection type risk ratio is represented by the ’trunk’ of the tree (black
circle), with its 95% confidence interval represented its ’branch’ (shorter, thicker line through it), and its prediction interval represented by its ’twig’ (longer, thinner
line through it). Individual points represent the risk ratios for each exposure − outcome combination from which these pooled estimates are derived, coloured ac-
cording to the study from which they are derived. Risk ratio information is displayed on a log scale.

M.L. Jones et al.



Environment International 200 (2025) 109371

13

study is removed at a time, rerunning Model H1b and comparing
‘before’ and ‘after’ estimates each time. This sensitivity analysis at-
tempts to check for the presence of influential studies, recognising that
certain studies may have a disproportionate effect on the pooled effect
(s).

2.8.3.2.3.1.5. Replacing adjusted risk ratios with crude risk ratios
The third planned sensitivity analysis is an analysis that seeks to test

the extent to which adjusted risk ratios are driving the pooled estimates.
The preferential use of adjusted risk ratios in our primary analysis is
motivated by the fact that adjusted risk ratios attempt to account for
confounders (Higgins et al., 2023; Reeves et al., 2023). However, a
critique of this approach is that this is not appropriate to combine these
risk ratios because studies typically adjust for different sets of cova-
riates/confounders, reducing their comparability. Therefore, in this
sensitivity analysis we intend to replace adjusted risk ratios with crude
risk ratios where available/calculable, before rerunning model H1b and
comparing the estimates.

2.8.3.2.3.1.6. Assuming different degrees of correlation between
effect sizes from the same study

The fourth planned sensitivity analysis is an analysis assuming
different degrees of correlation between risk ratios from the same study.
Aside from repeated measures (accounted for via a random effect),
studies may contribute multiple risk ratios to our meta-analyses if they
report estimates of the association/effect at the level of subgroups (e.g.
demographic subgroups, sub-outcomes). These risk ratios are not sta-
tistically independent since they come from the same study. Whilst this
non-independence will be somewhat accounted for already by our
model’s random effect estimates for observations nested within each
study, one can also explicitly specify different degrees of assumed cor-
relation between estimates of association from the same study by fitting
the model as a variance–covariance matrix assuming different degrees of
independence (sensu O’Dea et al., 2019). Following this approach, we
will assume correlations of 0.2, 0.4, 0.6, 0.8 in order to see how sensitive
the detected effects in our primary analyses are to differing degrees of
assumed correlation.

2.8.3.2.3.2. Subgroup analyses
Subgroup analyses will be used to explore factors that potentially

explain the residual heterogeneity observed in the pooled estimates for
each infection type, after removing high risk of bias estimates where
necessary. Subgroup analyses will consist of splitting the dataset into
subgroups before re-running Model H1b for each subgroup. Given the
limited statistical power of subgroup analyses, we will follow advice to
limit subgroup analysis to a small number of pre-specified analyses with
a limited number of subgroups within them (Burke et al., 2015; Cuijpers
et al., 2021). These analyses will focus on trying to deduce the extent to
which the type of pollution and infectious agent mediates any associa-
tions found. Specifically, in three subgroup analyses we will split and
model the dataset according to:

1. Suspected of being exposed to human waste pollution (Exposed
to human waste/Not exposed to human waste). Human waste (e.
g. faeces) is likely to be infectious than animal waste. This subgroup
analysis will therefore compare meta-analytical results according to
whether the authors report that the pollution exposure was likely to
include human waste. If this is unclear, we will omit the data from
the analysis.

2. Predominant source of pollution (runoff/untreated waste-
water/treated wastewater). The type of pollution may affect the
estimate of the association, due to differences in volume, frequency
and content (Gasperi et al., 2010; Pistocchi, 2020; Environment
Agency, 2023b). Perhaps the most basic hypothesis is that the largest
effect will be seen in untreated wastewater, as is commonly assumed
in public and policy discussions of this issue. This subgroup analysis
will therefore investigate the potential effect of the predominant
source of pollution in the exposure reported by investigators. If this is
unclear, we will omit the data from the analysis.

3. Type of infectious agent (virus/bacteria/fungi/eukaryote).
Where there is microbiological confirmation of the agent of infec-
tion, it is potentially informative to split estimates of the association
according to broad taxonomic division of the infectious agent. This
could help understand which broad group is likely to be causing the
most infections for each infection type, for example – especially
when paired with dose–response investigation of levels of these mi-
croorganisms in the water (see below). This subgroup analysis will
therefore split the meta-analytical dataset according to broad taxo-
nomic unit.

These analyses will primarily be exploratory, again in recognition of
the limited statistical power of subgroup analyses in meta-analyses
(Cuijpers et al., 2021). However, if there is evidence that residual het-
erogeneity in Model 1b is substantially reduced within certain sub-
groups, then these analyses will also inform the choice of estimates for
summarising the findings of the review (see ‘Confidence in cumulative
evidence’). Specifically, we will consider whether one or more of the
subgroups containing at least two studies (the minimum needed for a
‘meta-analysis’) moves the original pseudo-I2 estimate from a higher to a
lower Cochrane interpretative category (Deeks et al., 2024). If this is the
case, then we will assess certainty for these subgroup estimates and
present in them in the Summary of Findings table (instead of assessing
the original pooled estimates). For example:

• If the pseudo-I2 for Model 1b in the primary analysis was 20 %, then
certainty would be assessed for the original pooled estimates for each
type of infection. This is because this falls within the “0% to 40 %:
might not be important” interpretive category of Deeks et al. (2024),
implying there is limited evidence for residual heterogeneity in the
first place.

• If the pseudo-I2 for Model 1b in the primary analysis was 80 % (“50
% to 90 %: may represent substantial heterogeneity”), but none of
the subgroup models had a pseudo-I2 below 50 %, then certainty
would be assessed for the original pooled estimates for each type of
infection. This is because although the pseudo-I2 is reduced, it stays
within the “50 % to 90 %: may represent substantial heterogeneity”
interpretative category of Deeks et al. (2024).

• If the pseudo-I2 for Model 1b in the primary analysis was 80 % (“50
% to 90 %: may represent substantial heterogeneity”), but the
pseudo-I2 for the subgroup model for ‘Exposed to human waste’
(from subgroup analysis 1) was 40 %, then for each type of infection,
certainty would be assessed for estimates related to “Exposed to
human waste”. This is because the subgroup moves the pseudo-I2

down an interpretive category (to “30 % to 60 %: may represent
moderate heterogeneity”).

• If the pseudo-I2 for Model 1b in the primary analysis was 80 % (“50
% to 90%: may represent substantial heterogeneity”, but the pseudo-
I2 for the subgroup model for ‘Exposed to human waste’ (from sub-
group analysis 1) was 40 %, and the pseudo I2 for the subgroup
model for ‘Untreated wastewater’ (from subgroup analysis 2) was 25
%, then certainty would be assessed for estimates for those exposed
to human waste and those exposed to ‘untreated wastewater’ for
each type of infection. This is because both subgroups move the
pseudo-I2 down an interpretive category (though to differing de-
grees; to “0% to 40 %: might not be important” and “50 % to 90 %:
may represent substantial heterogeneity”, respectively).

Such splitting of the main outcomes into important subgroups before
GRADE assessment and making the Summary of Findings table is rec-
ommended in the Cochrane Handbook (Schünemann et al., 2023).

2.8.3.2.4. Meta-regressions
2.8.3.2.4.1. Dose-response relationships
As the basis of our primary analysis, risk ratios comparing the group

with the lowest exposure to polluted seawater and groups with higher
exposures in a study provide a standardised metric of the association/
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effect across studies, without relying on studies measuring pollution
exposure in the same way (Morgan et al., 2018). Nonetheless for studies
that do measure pollution exposure using the same indicators, it may be
possible to derive dose–response type relationships between the pollu-
tion indicator and risk ratios. This could be useful for increasing cer-
tainty in the effect (see ‘Confidence in cumulative evidence’;
Supplementary Data 19). It could also be useful for policymakers and
other stakeholders − for example, to understand whether water quality
guidelines are likely to prevent illness, which Wade et al. (2003) pre-
viously attempted to understand for gastrointestinal illness using syn-
thesis methods.

In order to estimate these dose–response type effects, we will fit
meta-regressions of the level of pollution to which exposure group was
exposed (e.g. in faecal coliform CFU/ml water) against risk ratio.
Following a similar logic to the subgroup analyses, suchmodels will only
be fit only for subsets of the data in which there remain at least two
studies (the minimum needed for a ‘meta-analysis’) after splitting the
data according to type of infection and pollution indicator (since we
expect dose–response effects to differ according to both; Fleisher et al.,
1996). The effect of dose will be fit as a linear term in the first instance,
but if there is no significant linear effect we will attempt to fit dose as a
restricted cubic spline (Desquilbet and Mariotti, 2010; Viechtbauer,
2023).

Again, like subgroup analyses, these analyses will primarily be
exploratory, in recognition of the limited statistical power of subgroup
analyses in meta-analyses (Cuijpers et al., 2021). However, if one of the
dose–response models for an outcome indicates a significant dos-
e–response relationship, then we will upgrade the certainty rating
assigned to the pooled estimate in GRADE accordingly (Supplementary
Data 19).

2.9. Meta-biases

Selective reporting within studies will be assessed at the outcome
level (type of infection or important subgroup within type of infection)
as part of risk of bias assessments (see ‘Bias in individual studies’).
Publication bias will be assessed for the quantitative synthesis, for the
pooled estimates remaining after sensitivity and subgroup analyses (i.e.
per type of infection, per type of infection after removal of high risk of
bias studies, or per important subgroups within each type of infection).

To assess publication bias, we will first generate funnel plots of the
individual estimates underpinning each pooled estimate as an initial
method of exploring small study publication bias, for continuity with
previous work. However, this method is now considered an unreliable
way of testing for publication bias – for example because funnel plot
interpretation is subjective, funnel plot shape is heavily influenced by
the relatively arbitrary choice of method used to construct the plot, and
funnel plot inspection is prone to mistakenly detecting bias where
studies are heterogeneous (Sterne, Gavaghan and Egger, 2000; Tang and
Liu, 2000; Terrin et al., 2003). Therefore, we will formally assess small
study publication bias for each pooled estimate using the more quanti-
tative method of Egger’s regression, correcting our estimates for this if
detected, following the method of Nakagawa et al. (2022). Results of this
more quantitative analysis/correction will still be interpreted with
caution, however, given the limitations of even this quantitative test
(Sterne, Gavaghan and Egger, 2000).

Time-lag publication bias will be also assessed for each pooled esti-
mate and accounted for if detected − again following the regression
method of Nakagawa et al. (2022). Time-lag publication bias tests test
for a relationship between reported estimates of the association/effect
and the year of the study/publication from whence they are derived. A
negative relationship is theoretically expected to occur because more
“exciting”, big effects are more likely to be published earlier on in the
timeline of research on a particular question. However, in this context
declines or increases in reported estimates of association over time could
also be indicative of changing wastewater management practices,

awareness, or climate, for example. We will therefore also consider these
alternative explanations when interpreting our time-lag publication bias
test results and look for additional circumstantial evidence to support
the idea of publication bias (see ‘Confidence in cumulative evidence’;
Supplementary Data 19).

P-values for publication bias tests for a particular outcome will be
Bonferroni-corrected for multiple tests for publication bias (i.e. 2 tests –
for one small study publication bias, and one for time-lag publication
bias.

2.10. Confidence in cumulative evidence

Confidence in the cumulative evidence will be assessed separately for
seawater, freshwater, and transitional water for each of the 6 infection
types using the GRADE approach for systematic reviews, with the results
presented in a Summary of Findings table (Balshem et al., 2011; GRADE
Working Group, 2004, 2004; Schünemann et al., 2023). Specifically, we
assess confidence in the pooled estimates from the quantitative synthesis
for infections of the ear, eye, gastrointestinal tract, skin, respiratory
tract, and urinary tract (though certainty will be assessed at the level of
subgroup estimates if subgroup(s) appears to explain residual hetero-
geneity between types of infection; see Synthesis: Additional analyses:
Subgroup analyses). GRADE assessment is limited to the quantitative
synthesis because 2 of the 5 GRADE domains rely heavily on a pooled
estimate (Inconsistency and Imprecision), and 2 others benefit from
additional quantitative analyses to confirm their effects (Risk of Bias and
Publication Bias).

To begin our implementation of the GRADE approach, the pooled
estimate(s) for each type of infection will be assigned a ‘high’ initial
level of certainty. It is anticipated that each body of evidence used in our
review will be dominated by evidence from non-randomised studies,
which is sometimes a reason given for assigning a lower initial level of
certainty to bodies of evidence. However, we recognise that observa-
tional evidence is sometimes considered an especially helpful type of
evidence in environmental health (Woodruff and Sutton, 2014). Com-
bined with our assessments of risk of bias in non-randomised studies
using the ROBINS-E tool − which can be used to downgrade the level of
certainty appropriately (Schünemann et al., 2023) − this justifies our
assignment of a ‘high’ initial level of certainty for evidence from both
randomised and non-randomised studies.

Subsequently, we will consider whether to lower and, if necessary,
raise the level of certainty in each pooled estimate. Following the
Cochrane guidance (Schünemann et al., 2023) for the implementation of
GRADE for systematic reviews, will first consider 5 downgrading do-
mains (risk of bias, inconsistency, indirectness, imprecision, and publi-
cation bias), followed by 3 upgrading domains (large effects,
dose–response, plausible confounding). We have developed pre-defined
criteria to guide the implementation of downgrading/upgrading in each
domain, which are based heavily on Cochrane and GRADE guidance
(Supplementary Data 19). However, in developing these criteria we
found that GRADE (perhaps purposefully) does not always make clear
whether it is the estimate itself or its direction for which certainty is
being assessed (see also Anttila et al., 2016). At least in this context, we
think that assessing certainty in the estimate itself is more useful, and
therefore tailor certain domains accordingly using Cochrane and GRADE
guidance where possible (namely imprecision, and plausible con-
founding). Readers can then make their own judgements about whether
the direction of the effect is sufficiently convincing, based on the esti-
mate information and GRADE judgement presented in the Summary of
Findings table.

This GRADE-assessment process will be piloted by two reviewers
before full implementation by assessing one of the 6 types of infection.
To begin the piloting process, an initial meeting will be held between the
two reviewers to clarify the use of both tools in the context of this body
of literature, and clarify any initial uncertainties regarding the appli-
cation of the tools. The two reviewers will then independently assess the
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body of evidence for the type of infection considered. Finally, the two
reviewers will meet to discuss and resolve any discrepancies in certainty
assessments for each domain, and clarify the guidance accordingly (with
adjustments to the guidance reported in the final publication).

After the piloting process, GRADE assessments for all pooled esti-
mates will be carried out in a double-blind manner by two reviewers
working independently to populate the same Excel template (Microsoft
Corporation, 2018). Any discrepancies between the two reviewers in
GRADE rating for each pooled estimate will be resolved through medi-
ation by a third reviewer. If a consensus cannot be reached, we will
conservatively defer to the lowest certainty rating made by the three
reviewers. A final ‘certainty of the evidence’ rating for each pooled es-
timate for each type of infection will be presented in the ‘Summary of
findings’ table, alongside information on number of participants/
studies, the estimate and its confidence intervals, and illustrative
comparative risks (Schünemann et al., 2023).

Registration

This publication (DOI: https://doi.org/10.1016/j.envint.2025.10
9371) serves as the registration of this review, with the full review
intended to be published in Environment International in line with the
Registered Report format (Nosek and Lakens, 2014).
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Other

This systematic review protocol has been reported according to
PRISMA-P guidelines (Shamseer et al., 2015; Supplementary Data 20).
The subsequent review will be reported according to PRISMA2020
guidelines (Page et al., 2021), unless more up to date PRISMA guidelines
become available. Deviations from this protocol in the final review will
be reported and justified via the tool of Willroth and Atherton (2024). A
glossary of terms used in this review protocol can be found in Supple-
mentary Data 21). A bibliography of references cited in the Supple-
mentary Data files can be found in Supplementary Data 22.
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Data availability

Code for the analyses planned for this systematic review update is
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SRMA_protocol/), with the version used for this manuscript permanently
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