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Emerging technologies for pollinator monitoring☆ 

Toke T Høye1,2, Matteo Montagna3,4, Bas Oteman5 and  
David B Roy6,7   

Efficient tools for monitoring pollinator populations are urgently 
needed to address their reported declines. Here, we review 
advanced technologies focusing on image recognition and 
DNA-based methods to monitor bees, hoverflies, moths, and 
butterflies. Insect camera traps are widely used to record 
nocturnal insects against uniform backgrounds, while cameras 
studying diurnal pollinators in natural vegetation are in early 
stages of development. Depending on context, insect camera 
traps can assess occurrence, phenology, and proxies of 
abundance for easily recognisable and common species. DNA- 
based techniques can drastically decrease the costs of sample 
processing and speed of specimen identification but strongly 
depend on the completeness of reference DNA databases, 
which are continually improving. Molecular analyses are 
becoming more affordable as uptake increases. Image-based 
methods for identification of dead specimens show promising 
results for some invertebrates, but image reference databases 
for pollinators are far from complete. Building image reference 
databases with expert entomologists is a priority. Lidar and 
acoustic sensors are emerging technologies although it is still 
uncertain which insect taxa can be separated in data from these 
sensors and how well. By improving accessibility to novel 
technologies and integrating them with existing approaches, 
monitoring of pollinators and other insects could deliver richer, 
more standardised and possibly cheaper data with benefits to 
future insect conservation efforts. 

Addresses 
1 Department of Ecoscience, Aarhus University, 8000 Aarhus C, 
Denmark 
2 Arctic Research Centre, Aarhus University, 8000 Aarhus C, Denmark 
3 Department of Agricultural Sciences, University of Naples Federico II, 
80055 Portici, Italy 
4 Interuniversity Center for Studies on Bioinspired Agro-Environmental 
Technology (BAT Center), University of Naples Federico II, 80138 
Naples, Italy 
5 Dutch Butterfly Conservation, Wageningen, the Netherlands 
6 UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, United 
Kingdom 
7 Centre for Ecology and Conservation, University of Exeter, Penryn 
TR10 9EZ, United Kingdom   

Corresponding author: Høye, Toke T (tth@ecos.au.dk)  

Current Opinion in Insect Science 2025, 69:101367 

This review comes from a themed issue on Global change biology 

Edited by Toke Høye and Eliza Grames 

For complete overview about the section, refer “Global change 
biology (2024)”  

Available online 12 March 2025 

https://doi.org/10.1016/j.cois.2025.101367 

2214–5745/© 2025 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http:// 
creativecommons.org/licenses/by/4.0/).  

Assessing emerging technologies 
In this paper, we evaluate emerging technologies for 
insect monitoring by assessing to what extent they can 
deliver data on pollinator abundance and species rich-
ness as this is currently requested by the European 
Commission as part of plans to install an EU Pollinator 
Monitoring Scheme [1]. We base the review on expert 
and stakeholder input to the EuropaBON and MAMBO 
projects on technology for biodiversity monitoring [2,3]. 
In addition, we have compiled recently published pa-
pers, websites, and services supporting the monitoring of 
pollinators. We focus on emerging technologies that 
could mature sufficiently to contribute to continental- 
scale monitoring within the next 5–10 years. The tech-
niques either perform nonlethal monitoring in the field 
or taxa identification of specimens in the lab based on 
imaging and DNA-based methods. 

There are additional technologies developing of relevance 
to pollinator monitoring. These include LiDAR [4], spectral 
analysis of thin-film wing interference signals [5], miniature 
tags [6], malaise traps with automatically interchanging vials, 
and moth freezers for conserving specimens after trapping  
[7,8]. It also remains to be demonstrated that the sounds-
cape can effectively be translated into observations of pol-
linators at the species level or even higher taxonomic units, 
but see [9,10]. 
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Insect camera traps for in situ pollinator 
monitoring 
Description 
Insect camera trap technologies are maturing rapidly  
[11–13]. To monitor pollinators, camera traps can focus 
on natural vegetation or introduced floral resources as so- 
called phytometer plants to standardise the floral re-
source across study sites [14,15]. Other baits or even 
artificial flowers can also be introduced to attract and 
monitor pollinators. The FAIR device integrates a 
camera into a malaise trap [16], which avoids the use of 
attractants and could be particularly relevant for mon-
itoring hoverflies. The most mature insect camera traps 
involve recording images against standardised back-
grounds (either sticky or nonsticky). These usually 
comprise a uniform background such as a yellow sticky 
trap [17], a screen [18] or an illuminated white sheet and 
a UV light [19], or the inside of a plastic pheromone trap  
[20]. Already, such systems are delivering season-wide 
and very rich monitoring data for moths at the species 
level [21]. 

Key advantages and drawbacks 
Insect camera traps can collect data at unprecedented 
temporal resolution over long timescales in an auto-
mated and standardised way [11,22]. High-frequency 
imaging can record foraging behaviour, such as floral 
preference, diurnal patterns, as well as the sensitivity of 
pollinator activity to short-term weather fluctuations  
[15,17,23,24]. Insect camera traps are nonlethal and en-
able observation of elusive insect species while mini-
mising labour costs of monitoring [25]. Field sensors 
deployed across entire seasons can capture detailed in-
sect phenology data, which is valuable context when 
comparing abundance or the occurrence of specific spe-
cies monitored using other means (e.g. line transects or 
light trapping). Image-based approaches are often simple 
to validate as experts can immediately check relevant 
morphological characters from images if images are of 
sufficient quality. Insect camera traps also reduce the 
expertise required for fieldwork. 

With camera traps, it is possible to record a single in-
dividual multiple times, which makes estimating abun-
dance challenging. Also, some traps will attract 
pollinators (e.g. when fitted with a yellow screen or ar-
tificial flowers), and the strength of the attractant may 
depend on the dynamics of similar resources in the 
surroundings (e.g. flower abundance). For instance, pan 
traps relying on attraction have been reported to attract 
more insects in landscapes with few flowers [26]. Sys-
tems for nocturnal insects (e.g. moths) use a light as the 
attractant and may be less affected by bias from flower 
availability although are sensitive to changes in local 
artificial light at night levels [27]. The performance of 
deep learning models is increasing rapidly and performs 
well for moths in Europe and North America [21,28] but 

are much less developed for other regions and other 
pollinator taxa. While image quality in these systems can 
be improved, tests with higher quality cameras still have 
limitations regarding costs, durability and automation  
[29]. Finally, theft and vandalism of equipment might be 
a problem for field equipment fitted with solar panels 
and batteries or lights to attract and record insects as this 
makes them more conspicuous. 

Future research needs 
To process images from insect camera traps, efficient 
localisation algorithms are needed as insects are typically 
small compared to the image size [13]. Classification 
models also need to cope with the high diversity and 
large proportion of undescribed species. Bees and ho-
verflies are particularly difficult to identify from images, 
although new results show how images of wing patterns 
can enhance existing training data sets [30]. It will be 
important to evaluate how representative the data from 
insect camera traps are compared to other methods in 
terms of visitation rates and taxonomic bias. For traps 
with attractants, it is important to test the effect of dif-
ferent recording schedules on the data collected. This is 
because the attractant may prevent the insects from 
carrying out their normal behaviour and since predation 
risk may increase with the duration of trapping. 

Systems for monitoring pollinators in natural vegetation 
need further development, although some success has 
been achieved on low stature vegetation [15,31] or even 
constructed standardised flower beds for pollinator 
monitoring [32,33]. Insect camera traps with onboard 
processing are developing slowly as the available data 
sets to train deep learning models to locate and identify 
pollinators are still small and covers only small subsets of 
common species. Such functionality is needed as the 
systems are capable of generating very large volumes of 
data (e.g. [18,21]). This also calls for user-friendly in-
terfaces to ensure efficient uptake. 

DNA-based approaches for pollinator 
monitoring 
Description 
Unlike in situ observations, DNA-based methods sepa-
rate insect sampling (which is typically a lethal proce-
dure, except in the case of airborne DNA) from 
identification. Identification requires specimen proces-
sing in a laboratory, appropriate facilities to store the 
collected specimens, and basic bioinformatic analyses. 
Pollinators can be collected through netting or trapping; 
the obtained bulk samples are then identified by DNA- 
based methods. DNA barcoding and metabarcoding 
leverage short, selected, and standardised DNA se-
quences (barcodes) to identify organisms [34]. DNA 
barcoding requires four main steps: (i) DNA extraction; 
(ii) DNA barcode amplification by polymerase chain 
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reaction (PCR); (iii) sequencing of the PCR product 
using Sanger or Oxford Nanopore Technology; (iv) 
taxonomic assignment by comparing the obtained bar-
code with reference databases of orthologous sequences 
(their completeness influences the accuracy of the 
taxonomic assignment). 

The primary marker for animal DNA barcoding is a 
fragment of 658 bp at the 5′ region of the mitochondrial 
gene cytochrome c oxidase subunit I (COI) [35]. Once the 
barcode sequence is generated, the organism can be 
identified using tools such as the Barcode of Life Data 
(BOLD) system (https://v4.boldsystems.org/). BOLD 
currently includes ∼14 million insect COI sequences, 
corresponding to 264 301 species (June 2024). Among 
them, COI sequences of 105 572 Lepidoptera, 2643 
Syrphidae, and 51 169 Hymenoptera species, covering 
60.5%, 44%, and 33% of the described species for these 
groups, respectively. Importantly, reference barcodes are 
missing for a large number of pollinator species in many 
regions of Africa, Asia, and South America limiting the 
potential of this approach for species identification, 
globally. DNA metabarcoding extends DNA barcoding 
allowing the simultaneous identification of multiple taxa 
in samples containing DNA from more than one or-
ganism. The method combines DNA-based identifica-
tion and high-throughput next-generation sequencing 
(NGS) technologies. The DNA sequences generated 
using DNA barcoding and metabarcoding can also pro-
vide useful information on the intraspecific genetic di-
versity of selected taxa (e.g. [36,37]). 

Volunteers with basic training can collect and preprocess 
the samples. However, DNA extraction and PCR or li-
brary assembly require a molecular biology lab. The 
analyses of the results of Sanger sequencing do not re-
quire specific bioinformatic expertise, while the analyses 
of NGS data do. Nonetheless, user-friendly apps are 
available to analyse NGS output (e.g. mBRAVE, https:// 
mbrave.net/). Additionally, well-curated insect barcode 
databases enhancing the taxonomic identification of 
NGS data are being developed, for example, COIns [38]. 
However, the adoption of DNA metabarcoding will be 
constrained in regions where reference databases poorly 
represent the local insect fauna. The interpretation of 
DNA barcoding and metabarcoding results needs 
minimal effort. 

Key advantages and drawbacks 
A key advantage of DNA-based tools is their flexibility 
in collection methods. Pollinators can be collected by 
volunteers with moderate training or through expert 
networks; however, it is crucial to standardise data col-
lection protocols. Additionally, DNA-based methods 
enable the identification of pollinators at any develop-
mental stage, even starting from partial specimens, 
something that is typically not possible through 
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morphological examination. A promising approach relies 
on the characterisation of specimens collected by pan 
traps or Malaise traps starting from the DNA they re-
leased in the preservative solution (e.g. absolute ethanol)  
[39]. Airborne DNA can be utilised to identify insects 
inhabiting a specific environment [40]. One significant 
advantage of DNA-based methods is that they do not 
require expert taxonomists for their application in 
monitoring programmes, although such expertise re-
mains essential for developing the reference DNA se-
quence database. Notably, the costs associated with 
these approaches are currently moderate (Table 1) and 
expected to decrease further in the future. The entire 
process of data generation and analysis is likely to be-
come more efficient, user-friendly, and require less 
personnel effort. 

DNA metabarcoding (PCR-based) is effective for de-
termining species presence or absence; however, se-
lecting appropriate PCR primers is crucial to ensure 
accurate detection of target species. Despite its effec-
tiveness, DNA metabarcoding is not reliable for esti-
mating species abundance, also due to potential biases 
introduced during the PCR process [41]. Nonetheless, a 
correlation between the number of NGS sequences 
obtained and the organism biomass in the initial bulk 
sample has been observed [42]. These limitations must 
be carefully considered to avoid drawing erroneous 
conclusions [43,44]. At present, DNA barcoding and 
metabarcoding remain promising approaches primarily 
for species presence–absence monitoring. A further 
challenge is represented by reference database com-
pleteness. Well-curated reference databases are essential 
for the accurate taxonomic assignment of DNA se-
quences, yet they do not currently include all described 
species. In particular, rare species are often absent, and 
the gaps are much bigger in the most diverse regions 
globally. However, initiatives at the national and EU 
levels, such as iBOL Europe, and global initiatives, in-
cluding the iBOL Consortium, have been established to 
address these gaps. Finally, for DNA barcoding and 
metabarcoding to be effectively implemented in large- 
scale monitoring programmes, it is essential to standar-
dise sample collection and processing procedures 
(e.g. [45,46]). 

Future research needs 
We envision three main areas of development to im-
plement DNA-based methods in pollinator monitoring 
programmes and overcome their current limitations. 
First, eDNA metabarcoding, along with innovative and 
promising PCR-free approaches such as sequence cap-
ture [47], must be adopted in large-scale pollinator pilot 
monitoring programmes and compared with the current 
state-of-the-art monitoring approaches. Second, the in-
tegration of DNA-based methods with image-based 
technologies, such as BIODISCOVER or 

DiversityScanner [48–50], could allow for the automa-
tion of specimen sorting and accelerate the identification 
process. Moreover, if a newly obtained DNA sequence 
does not match any in the reference databases, either the 
specimen or high-quality images of it can be shared with 
expert taxonomists for morphological identification, 
helping to improve the reference databases. Finally, it is 
vital to develop targeted programmes aimed at ex-
panding the reference sequence databases for pollinator 
species, with a special focus on rare species and under-
represented regions. 

Image-based approaches for studying 
preserved pollinator specimens 
Description 
Imaging of pinned specimens and individuals in bulk 
insect samples can facilitate rapid counting and identi-
fication of pollinators in historical collections or collected 
as part of monitoring programmes. Technologies include 
systems for bulk photography of museum collection 
drawers [51], petri dishes or trays [48,52]; photography of 
parts of insects, such as their wings [30,53,54] or multi-
angle imaging of insects in a liquid medium [50] or 3D 
imaging [53,55]. Specimen imaging can generate high- 
resolution images for potential identification to species- 
level taxonomic resolution. 

Among the image-based tools, the BIODISCOVER 
system [50] allows for detailed close-up images of in-
dividual specimens using a robotics-enabled framework, 
where bulk samples are processed individually with a 
collaborative robot and imaged. The DiversityScanner  
[48] offers principally the same functionality but is cur-
rently not relevant for pollinator samples as it only takes 
presorted specimens smaller than 3 mm length. Re-
cently, the Entomoscope has been presented as a low- 
cost solution for close-up photography of specimens [56]. 
This system is mainly proposed for species discovery but 
could potentially be adapted for imaging specimens after 
collection and submitting image data to a central data-
base for subsequent species identification. There are 
also commercially available microscopes, but these are 
currently prohibitively expensive for most organisations 
and do not integrate any robotics for automation of 
specimens handling [57]. 

Key advantages and drawbacks 
Specimens-based imaging solutions can facilitate the 
rapid identification of specimens in wet insect bulk 
samples. Such samples are typically collected with pan, 
vane, or malaise traps. Bees and hoverflies are the most 
common pollinator taxa in such samples. With automa-
tion, it is conceivable that insect bulk samples can be 
brought to centralised processing labs, where specimens 
can be identified, counted, and sorted. Hard-to-identify 
specimens could then identified by taxonomic experts or 
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potentially through DNA barcoding. In this way, auto-
mated imaging can allow experts to concentrate on 
identification of the most challenging species. Such 
imaging systems are relatively expensive, technically 
sophisticated, and require maintenance by people with 
different skills to those traditionally involved with pol-
linator species identification. 

Future research needs 
Traditional identification or nondestructive DNA bar-
coding can contribute to building reference collections 
for image-based identification. However, more work is 
needed to design workflows that leverage different 
technologies for cost-efficient and accurate identification 
of pollinator specimens. While image classification 
models for butterflies and moths are quite well devel-
oped, more image data are needed for bee and hoverfly 
species. Robot-enabled image-based identification of 
bulk samples also need to be further developed and 
evaluated for their cost-efficiency and complementarity 
to DNA barcoding and metabarcoding. 

Conclusions and recommendations 
Emerging technologies are rapidly developing and can 
potentially have a large effect on future pollinator 
monitoring schemes. Statistical models to integrate data 
types from multiple monitoring approaches can max-
imise their combined value [58]. Insect camera traps for 
nocturnal insects attracted to UV lights and DNA-based 
species identification show greatest promise. However, 
their usefulness strongly depends on the availability of 
image reference databases. These are rapidly being de-
veloped but have pronounced gaps in the most species- 
rich regions worldwide. Citizen science portals have an 
important role in developing reference collections of 
images that have been labelled by entomologists [59]. 
Insect camera traps for diurnal pollinators need further 
study into the visitation rates at the traps and the effects 
of temporally dynamic floral resources in the surround-
ings of the trap. Establishing how repeatedly counting 
individuals affect abundance estimates is also important. 
The lab-based specimen identification based on image 
recognition could drastically decrease the costs of pan, 
vane, or malaise trap bulk sample processing. Gap filling 
in image and DNA reference databases for pollinators 
will support specimens-based identification in the lab. 
Already identified specimens in collections are critical 
resources in this respect. Capacity building and the de-
velopment of user-friendly interfaces, will help ensure 
that these emerging technologies can be applied at scale 
to deliver standardised monitoring data on pollinators. 
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