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Abstract 

Efficient tools for monitoring pollinator populations are urgently needed to address their reported 

declines. Here, we review advanced technologies focusing on image recognition and DNA-based 

methods to monitor bees, hoverflies, moths and butterflies. Insect camera traps are widely used to 

record nocturnal insects against uniform backgrounds, while cameras studying diurnal pollinators in 

natural vegetation are in early stages of development. Depending on context, insect camera traps 

can assess occurrence, phenology and proxies of abundance for easily recognizable and common 

species. DNA-based techniques can drastically decrease the costs of sample processing and speed of 

specimen identification but strongly depend on the completeness of reference DNA databases, 

which are continually improving. Molecular analyses are becoming more affordable as uptake 

increases. Image-based methods for identification of dead specimens show promising results for 

some invertebrates but image reference databases for pollinators are far from complete. Building 

image reference databases with expert entomologists is a priority. Lidar and acoustic sensors are 

emerging technologies although which insect taxa can be separated in data from these sensors and 

how well is still uncertain. By improving accessibility to novel technologies and integrating them with 

existing approaches, monitoring of pollinators and other insects could deliver richer, more 

standardized and possibly cheaper data with benefits to future insect conservation efforts. 

Assessing emerging technologies 

In this paper, we evaluate emerging technologies for insect monitoring by assessing to what extent 

they can deliver data on pollinator abundance and species richness as this is currently requested by 

the European Commission as part of plans to install an EU Pollinator Monitoring Scheme 1. We base 

the review on expert and stakeholder input to the EuropaBON and MAMBO projects on technology 

for biodiversity monitoring 2,3. In addition, we have compiled recently published papers, websites 

and services supporting the monitoring of pollinators. We focus on emerging technologies that could 
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mature sufficiently to contribute to continental-scale monitoring within the next five to ten years. 

The techniques either perform non-lethal monitoring in the field or taxa identification of specimens 

in the lab based on imaging and DNA-based methods.  

There are additional technologies developing of relevance to pollinator monitoring. These include 

LiDAR 4, spectral analysis of thin-film wing interference signals 5, miniature tags 6, malaise traps with 

automatically interchanging vials and moth freezers for conserving specimens after trapping 7,8. It 

also remains to be demonstrated that the soundscape can effectively be translated into observations 

of pollinators at the species level or even higher taxonomic units but see 9,10.  

Insect camera traps for in situ pollinator monitoring 

Description 

Insect camera trap technologies are maturing rapidly 11-13. To monitor pollinators, camera traps can 

focus on natural vegetation or introduced floral resources as so-called phytometer plants to 

standardise the floral resource across study sites 14,15. Other baits or even artificial flowers can also 

be introduced to attract and monitor pollinators. The FAIR-device integrates a camera into a malaise 

trap 16, which avoids the use of attractants and could be relevant for monitoring hoverflies in 

particular. The most mature insect camera traps involve recording images against standardized 

backgrounds (either sticky or non-sticky). These usually comprise a uniform background such as a 

yellow sticky trap 17, a screen 18 or an illuminated white sheet and a UV light 19, or the inside of a 

plastic pheromone trap 20. Already, such systems are delivering season-wide and very rich 

monitoring data for moths at the species level 21. 

Key advantages and drawbacks 

Insect camera traps can collect data at unprecedented temporal resolution over long timescales in 

an automated and standardised way 11,22. High-frequency imaging can expose foraging behaviour 
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such as floral preference, diurnal patterns as well as the sensitivity to short-term weather 

fluctuations in pollinator abundance 15,17,23,24. Insect camera traps are non-lethal and enable 

observation of elusive insect species, while minimizing labour costs of monitoring 25. Field sensors 

deployed across entire seasons can capture detailed insect phenology data, which is valuable 

context when comparing abundance or the occurrence of specific species monitored using other 

means (e.g. line transects or light trapping). Image-based approaches are often simple to validate as 

experts can immediately check relevant morphological characters from images, if images are of 

sufficient quality. Insect camera traps also reduce the expertise required for fieldwork. 

With camera traps, it is possible to record a single individual multiple times, which makes estimating 

abundance challenging. Also, some traps will attract pollinators (e.g. when fitted with a yellow 

screen or artificial flowers), and the strength of the attractant may depend on the dynamics of 

similar resources in the surroundings (e.g. flower abundance). For instance, pan traps relying on 

attraction have been reported to attract more insects in landscapes with few flowers 26. Systems for 

nocturnal insects (e.g. moths) use a light as the attractant and may be less affected by bias from 

flower availability although are sensitive to changes in local artificial light at night levels 27. The 

performance of deep learning models is increasing rapidly and performs well for moths in Europe 

and North America 21,28 but are much less developed for other regions and other pollinator taxa. 

While image quality in these systems can be improved, tests with higher quality cameras still have 

limitations regarding costs, durability and automation 29. Finally, theft and vandalism of equipment 

might be a problem for field equipment fitted with solar panels and batteries or lights to attract and 

record insects as this makes them more conspicuous. 

Future research needs 

To process images from insect camera traps, efficient localisation algorithms are needed as insects 

are typically small compared to the image size 13. Classification models also need to cope with the 

high diversity and large proportion of undescribed species. Bees and hoverflies are particularly 
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difficult to identify from images, although new results show how images of wing patterns can 

enhance existing training datasets 30. It will be important to evaluate how representative the data 

from insect camera traps are compared to other methods in terms of visitation rates and taxonomic 

bias. For traps with attractants, it is important to test the effect of different recording schedules on 

the data collected. This is because the attractant may prevent the insects from carrying out their 

normal behaviour and because predation risk may increase with the duration of trapping. 

Systems for monitoring pollinators in natural vegetation need further development, although some 

success has been achieved on low stature vegetation 15,31 or even constructed standardised flower 

beds for pollinator monitoring 32,33. Insect camera traps with onboard processing are developing 

slowly as the available datasets to train deep learning models to locate and identify pollinators are 

still small and covers only small subsets of common species. Such functionality is needed as the 

systems are capable of generating very large volumes of data e.g. 18,21. This also calls for user- 

friendly interfaces to ensure efficient uptake. 

DNA-based approaches for pollinator monitoring  

Description 

Unlike in situ observations, DNA-based methods separate insect sampling (which is typically a lethal 

procedure, except in the case of airborne DNA) from identification. Identification requires specimen 

processing in a laboratory, appropriate facilities to store the collected specimens, and basic 

bioinformatic analyses. Pollinators can be collected through netting or trapping; the obtained bulk 

samples are then identified by DNA-based methods. DNA barcoding and metabarcoding leverage 

short, selected, and standardized DNA sequences (barcodes) to identify organisms 34. DNA barcoding 

requires four main steps: (i) DNA extraction; (ii) DNA barcode amplification by PCR; (iii) sequencing 

of the PCR product using Sanger or Oxford Nanopore Technology; (iv) taxonomic assignment by 
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comparing the obtained barcode with reference databases of orthologous sequences (their 

completeness influences the accuracy of the taxonomic assignment).  

The primary marker for animal DNA barcoding is a fragment of 658 bp at the 5’ region of the 

mitochondrial gene cytochrome c oxidase subunit I (COI) 35. Once the barcode sequence is 

generated, the organism can be identified using tools such as the Barcode of Life Data (BOLD) system 

(https://v4.boldsystems.org/). BOLD currently includes ~14 million insect COI sequences, 

corresponding to 264,301 species (June 2024). Among them, COI sequences of 105,572 Lepidoptera, 

2,643 Syrphidae and 51,169 Hymenoptera species, covering 60.5%, 44%, and 33% of the described 

species for these groups, respectively. Importantly, reference barcodes are missing for a large 

number of pollinator species  in many regions of Africa, Asia and South America limiting the 

potential of this approach for species identification, globally. DNA metabarcoding extends DNA 

barcoding allowing the simultaneous identification of multiple taxa in samples containing DNA from 

more than one organism. The method combines DNA-based identification and high-throughput Next 

Generation Sequencing (NGS) technologies. The DNA sequences generated using DNA barcoding and 

metabarcoding can also provide useful information on the intraspecific genetic diversity of selected 

taxa e.g. 36,37.  

Volunteers with basic training can collect and pre-process the samples. However, DNA extraction 

and PCR or library assembly require a molecular biology lab. The analyses of the results of Sanger 

sequencing does not require specific bioinformatic expertise, while the analyses of NGS data do. 

Nonetheless, user-friendly apps are available to analyze NGS output (e.g., mBRAVE, 

https://mbrave.net/). Additionally, well-curated insect barcode databases enhancing the taxonomic 

identification of NGS data are being developed e.g., COIns 38. However, the adoption of DNA 

metabarcoding will be constrained in regions where reference databases poorly represent the local 

insect fauna. The interpretation of DNA barcoding and metabarcoding results needs minimal effort. 
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Key advantages and drawbacks 

A key advantage of DNA-based tools is their flexibility in collection methods. Pollinators can be 

collected by volunteers with moderate training or through expert networks; however, it is crucial to 

standardize data collection protocols. Additionally, DNA-based methods enable the identification of 

pollinators at any developmental stage, even starting from partial specimens, something that is 

typically not possible through morphological examination. A promising approach relies on the 

characterization of specimens collected by pan traps or Malaise traps starting from the DNA they 

released in the preservative solution (e.g., absolute ethanol) 39. Airborne DNA can be utilized to 

identify insects inhabiting a specific environment 40. One significant advantage of DNA-based 

methods is that they do not require expert taxonomists for their application in monitoring programs, 

although such expertise remains essential for developing the reference DNA sequence database. 

Notably, the costs associated with these approaches are currently moderate (Table 1) and expected 

to decrease further in the future. The entire process of data generation and analysis is likely to 

become more efficient, user-friendly, and require less personnel effort.  

DNA metabarcoding (PCR-based) is effective for determining species presence or absence; however, 

selecting appropriate PCR primers is crucial to ensure accurate detection of target species. Despite 

its effectiveness, DNA metabarcoding is not reliable for estimating species abundance, also due to 

potential biases introduced during the PCR process 41. Nonetheless, a correlation between the 

number of NGS sequences obtained and the organism biomass in the initial bulk sample has been 

observed 42. These limitations must be carefully considered to avoid drawing erroneous conclusions 

43,44. At present, DNA barcoding and metabarcoding remain promising approaches primarily for 

species presence-absence monitoring. A further challenge is represented by reference database 

completeness. Well-curated reference databases are essential for the accurate taxonomic 

assignment of DNA sequences, yet they do not currently include all described species. In particular, 

rare species are often absent and the gaps are much bigger in the most diverse regions globally. 
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However, initiatives at the national and EU levels, such as iBOL Europe, and global initiatives, 

including the iBOL Consortium, have been established to address these gaps. Finally, for DNA 

barcoding and metabarcoding to be effectively implemented in large-scale monitoring programs, it is 

essential to standardize sample collection and processing procedures e.g. 45,46. 

Future research needs 

We envision three main areas of development to implement DNA-based methods in pollinator 

monitoring programs and overcome their current limitations. First, eDNA metabarcoding, along with 

innovative and promising PCR-free approaches such as sequence capture 47, must be adopted in 

large-scale pollinator pilot monitoring programs and compared with the current state-of-the-art 

monitoring approaches. Second, the integration of DNA-based methods with image-based 

technologies, such as BIODISCOVER or DiversityScanner 48-50, could allow for the automation of 

specimen sorting and accelerate the identification process. Moreover, if a newly obtained DNA 

sequence does not match any in the reference databases, either the specimen or high-quality 

images of it can be shared with expert taxonomists for morphological identification, helping to 

improve the reference databases. Lastly, it is vital to develop targeted programs aimed at expanding 

the reference sequence databases for pollinator species, with a special focus on rare species and 

underrepresented regions. 

Image-based approaches for studying preserved pollinator 

specimens 

Description 

Imaging of pinned specimens and individuals in bulk insect samples can facilitate rapid counting and 

identification of pollinators in historical collections or collected as part of monitoring programs. 
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Technologies include systems for bulk photography of museum collection drawers 51, petri dishes or 

trays 48,52; photography of parts of insects, such as their wings 30,53,54 or multi-angle imaging of insects 

in a liquid medium 50 or 3D imaging 53,55. Specimen imaging can generate high-resolution images for 

identification potential to species level taxonomic resolution. 

Among the image-based tools, the BIODISCOVER system 50 allows for detailed close-up images of 

individual specimens using a robotics enabled framework, where bulk samples are processed 

individually with a collaborative robot and imaged. The DiversityScanner 48 offers principally the 

same functionality, but is currently not relevant for pollinator samples as it only takes pre-sorted 

specimens smaller than 3mm length. Recently, the Entomoscope has been presented as a low-cost 

solution for close-up photography of specimens 56. This system is mainly proposed for species 

discovery but could potentially be adapted for imaging specimens after collection and submitting 

image data to a central database for subsequent species identification. There are also commercially 

available microscopes, but these are currently prohibitively expensive for most organisations and do 

not integrate any robotics for automation of specimens handling 57. 

Key advantages and drawbacks 

Specimens-based imaging solutions can facilitate the rapid identification of specimens in wet insect 

bulk samples. Such samples are typically collected with pan, vane or malaise traps. Bees and hover 

flies are the most common pollinator taxa in such samples. With automation, it is conceivable that 

insect bulk samples can be brought to centralized processing labs, where specimens can be 

identified, counted and sorted. Hard-to-identify specimens could then identified by taxonomic 

experts or potentially through DNA barcoding. In this way, automated imaging can allow experts to 

concentrate on identification of the most challenging species. Such imaging systems are relatively 

expensive, technically sophisticated and require maintenance by people with different skills to those 

traditionally involved with pollinator species identification. 

Jo
ur

na
l P

re
-p

ro
of

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13428
https://onlinelibrary.wiley.com/doi/full/10.1111/1755-0998.13567


10 
 

Future research needs 

Traditional identification or non-destructive DNA barcoding can contribute to building reference 

collections for image-based identification. However, more work is needed to design workflows that 

leverage different technologies for cost-efficient and accurate identification of pollinator specimens. 

While image classification models for butterflies and moths are quite well developed, more image 

data is needed for bee and hoverfly species. Robot-enabled image-based identification of bulk 

samples also need to be further developed and evaluated for their cost-efficiency and 

complementarity to DNA barcoding and metabarcoding.  

Conclusions and recommendations 

Emerging technologies are rapidly developing and can potentially have a large effect on future 

pollinator monitoring schemes. Statistical models to integrate data types from multiple monitoring 

approaches can maximise their combined value 58. Insect camera traps for nocturnal insects 

attracted to UV lights and DNA-based species identification show greatest promise. However, their 

usefulness strongly depends on the availability of image reference databases. These are rapidly 

being developed but have pronounced gaps in the most species-rich regions worldwide. Citizen 

science portals have an important role in developing reference collections of images that have been 

labelled by entomologists 59. Insect camera traps for diurnal pollinators need further study into the 

visitation rates at the traps and additional study into the effects of temporally dynamic floral 

resources as their attractive nature causes them to compete with local floral resources. Establishing 

how repeatedly counting individuals affect abundance estimates is also important. The lab-based 

specimen identification based on image recognition could drastically decrease the costs of pan, vane 

or malaise trap bulk sample processing. Gap filling in image and DNA reference databases for 

pollinators will support specimens-based identification in the lab. Already identified specimens in 

collections are critical resources in this respect. Capacity building and the development of user-
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friendly interfaces, will help ensure that these emerging technologies can be applied at scale to 

deliver standardized monitoring data on pollinators. 
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Table 1 Overview of the main emerging technologies for pollinator monitoring, their technology 

readiness levels (TRL), advantages and disadvantages, costs and future research needs. Costs of 

equipment and DNA-methods are estimated by the authors and are likely to decrease in the future. 

Name 

T
R
L 

Advant
ages 

Disadvanta
ges Costs 

Future 
research 
needs 

In situ insect camera 
traps 

5-
7 

• Non
-
leth
al 
sam
plin
g 

• Hig
h 
tem
por
al 
reso
luti
on 

• Vali
dati
on 
pos
sibl
e, 
ima
ges 
stor
ed 

• Req
uire
s 
limi
ted 
exp
erti
se 

• No 
single 
solutio
n for all 
pollinat
ors 

• Not all 
individ
uals 
can be 
identifi
ed to 
species 

• Risk of 
theft 

• The 
same 
individ
ual can 
be 
recorde
d 
multipl
e times 

€3,000-€5,000 per camera Moth 
camera 
traps are 
ready for 
pilot testing. 
For diurnal 
pollinators, 
attraction 
dependence 
needs 
further 
study. 

DNA-based methods 8 • Coll
ecti
on 
req
uire
s 
limi

• Lethal 
sampli
ng 

• Time 
consu
ming 

€2-€10 per barcode, €18-€80 
per meta-barcode sample 

Reference 
databases 
currently 
cover only 
33-60% of 
known 
species, 
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ted 
exp
erti
se 

• Onl
y a 
sma
ll 
part 
of 
spe
cim
en 
req
uire
d  

• Sam
ples 
can 
be 
pro
cess
ed 
quic
kly 

• Poll
en 
DN
A 
can 
also 
be 
extr
acte
d 

collecti
on of 
field 
sample
s 

• Experti
se 
require
d to 
interpr
et 
results 
(metab
arcodin
g) 

• Strongl
y 
depend
ent on 
referen
ce 
databa
ses 

• Primers
-
induce
d bias 

depending 
on the 
taxonomic 
group. 
Potentially 
pair with 
expert 
identificatio
n to expand 
databases 
and verify 
identificatio
ns.  

Image-recognition of 
preserved specimens 

5 • Coll
ecti
on 
req
uire
s 
limi
ted 
exp
erti
se 

• Red
uce
s 
taxo
no

• Require
s 
experti
se in 
mecha
nical 
and 
electric
al and 
softwar
e 
engine
ering 
for 
mainte
nance 

€5,000-€20,000 per machine Large 
potential, 
further 
testing and 
developmen
t required. 
Next step is 
to build a 
pollinator 
reference 
library and 
test image 
recognition 
performance 
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mic 
exp
erti
se 
and 
pot
enti
ally 
red
uce
d 
cost
s 

• Like
ly to 
iden
tify 
mos
t 
indi
vidu
als 
to 
spe
cies 

• Strongl
y 
depend
ent on 
referen
ce 
databa
ses 
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