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A B S T R A C T

Improvements in public geospatial datasets provide opportunities for deriving urban drainage networks and
simulation models of these networks (UDMs). We present SWMManywhere, which leverages such datasets for
generating synthetic UDMs and creating a Storm Water Management Model for any urban area globally.
SWMManywhere’s modular and parameterised approach enables customisation to explore hydraulicly feasible
network configurations. Key novelties of our workflow are in network topology derivation that accounts for
combined effects of impervious area and pipe slope. We assess SWMManywhere by comparing pluvial flooding,
drainage network outflows, and design with known networks. The results demonstrate high quality simulations
are achievable with a synthetic approach even for large networks. Our sensitivity analysis shows that manholes
locations, outfalls, and underlying street network are the most sensitive parameters. We find widespread
sensitivity across all parameters without clearly defined values that they should take, thus, recommending an
uncertainty driven approach to synthetic drainage network modelling.

Software availability statement

Name of software: SWMManywhere.
Contact information: b.dobson@imperial.ac.uk.
Year first available: 2024.
Licence: BSD-3-Clause.
Programming language: Python (version ≥ 3.10).
Hardware required: Windows, MacOS, Linux, 8 GB RAM.
Size: 700 MB (Windows).
Availability:
Code: https://github.com/ImperialCollegeLondon/SWMManywher

e (last accessed 2024-10-11, open source).
Documentation: https://imperialcollegelondon.github.io/SWMM

anywhere/(last accessed 2024-10-11, open source).
Experiments and results: https://github.com/barneydobson/swmm

anywhere_paper (last accessed 2024-10-11, open source).

1. Introduction

Urban drainage models (UDMs) are representations of land and pipes

that can be simulated with hydraulic models such as Storm Water
Management Model (SWMM) (Rossman, 2010). UDMs are essential for
managing stormwater, preventing flooding, and ensuring the sustain-
ability of urban water systems (Butler and Davies, 2004). UDM simu-
lations capture the behaviour of drainage networks under various
rainfall scenarios, enabling planners to design effective infrastructure
and mitigate risks (Bach et al., 2014). However, the development of
UDMs typically requires extensive infrastructure records on the con-
nectivity, geometric properties, and elevations of underground pipes
(Bach et al., 2020; Chahinian et al., 2019). In cases where these records
are unavailable, whether due to ownership issues or simply that they do
not exist, the expense of creating a UDM becomes significant because of
costly surveying requirements. To forgo this expense, it may be prefer-
able to synthesise a UDM based on the underlying information govern-
ing the placement and sizing of drainage pipes, most generally, surface
elevation, building locations, and road locations (Chegini and Li, 2022).

The earliest methods to create synthetic UDM exploited the fractal
nature of a drainage network and, while simulations were not tested,
demonstrated that the broad statistical properties of the network, i.e.,
distribution of flow path lengths, could be estimated (Ghosh et al.,
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2006). When road network and elevation data were incorporated, the
accuracy of synthesised UDMs improved and simulations approached
those of a real UDM for the same locale (Blumensaat et al., 2012).
Generally, UDM synthesis involves three main tasks: delineating surface
characteristics, deriving network topology, and hydraulic design, each
of which will be reviewed below.

First, surface characteristics, hereafter referred to as sub-catchments,
quantify the spatial distribution of stormwater drainage from imper-
vious areas to manholes. Sub-catchment delineation has received the
least attention in UDM synthesis literature andmost commonly follows a
watershed delineation approach (Blumensaat et al., 2012; Warsta et al.,
2017). The drained impervious area within a delineated sub-catchment
is typically calculated from the area covered by roads and buildings
(Mair et al., 2017; Chegini and Li, 2022). However, another simpler
method is to assign impervious areas to drain to a nearest manhole
(Reyes-Silva et al., 2023). Both methods require identification of man-
holes, highlighted as critical future work in Blumensaat et al. (2012), but
has received little attention since (Bertsch et al., 2017; Chahinian et al.,
2019). We place sub-catchment delineation and manhole identification
as the first tasks to perform during UDM synthesis, since network to-
pology and hydraulic design should account for the impervious area
contributing to a given pipe.

Second, network topology describes the spatial layout of a UDM,
connectivity of pipes, and connectivity of the sub-catchments to UDM, i.
e., through manholes. Network topology is typically derived by asserting
that pipes follow roads, thus dramatically reducing the dimensionality
of deriving network topology (Mair et al., 2017; Xu et al., 2021). An
efficient network that visits all manholes without redundant pipes can
be derived using a shortest path-based algorithm. This algorithm mini-
mizes the total graph cost, with each edge (i.e., a plausible pipe)
assigned an individual cost that represents some penalty associated with
retaining that edge. Chahinian et al. (2019) provide a detailed explo-
ration minimising costs based on pipe length, pipe adjacent angle, and
slope, and highlighting the importance of slope as a cost. Reyes-Silva
et al. (2023) derive the UDM by applying the minimum spanning tree
(MST) to a full street network to minimise the number of pipes. This
approach, however, does not inherently consider slope in the deriving
network topology step since MST is only applicable to undirected net-
works, instead gravitational slope along pipes is enforced as a post-
processing correction. A minimum spanning arborescence is an
alternative approach to solve such a problem for a directed network
(Ray and Sen, 2024; Tarjan, 1977), although has not yet been demon-
strated in UDM synthesis. Furthermore, an additional cost to be mini-
mised that has not been tested in the literature is the need to minimise
the impervious contributing area to a given pipe and thus more evenly
distribute flow throughout the network, much in the manner of the
original proposed fractals for network topology (Ghosh et al., 2006).

Third, hydraulic design refers to the selection of pipe diameter,
invert levels, and other pipe hydraulic parameters in a synthetic UDM,
which typically follows local standards (Chegini and Li, 2022; Duque
et al., 2022; Reyes-Silva et al., 2023). Duque et al. (2022), present a
methodology for designing sanitary sewer networks by starting from the
most upstream pipes, iteratively working downstream, and designing
each pipe by minimising the costs subject to the feasibility of design
constraints; such an approach could be equally valid for a UDM. If the
impervious contributing area of a given pipe is known or has been
synthesised, a Rational Method could be applied for determining pipe
size. A variety of more extensive global optimisation methods exist for
hydraulic design to both minimise costs (e.g., Sun et al. (2011)), or
calibrate to observations (e.g., Huang et al. (2022); Sytsma et al.
(2022)). However, these calibration studies highlight the inherent
equifinality in parameter selection, meaning similar results can be
achieved with very different parameters, thus suggesting the un-
certainties in such a high dimensionality problem may outweigh any
‘optimal’ algorithm.

Because UDM synthesis requires a hydraulic design, equifinality

must also be inherent to UDM synthesis. We argue that this has been
under-recognised in existing UDM synthesis, primarily because of a lack
of data and the absence of an automated, end-to-end workflow to assess
the impact of parameter selection. A reader may observe results from the
supplement of Duque et al. (2022), which demonstrates that small
changes in their grid scale for the synthesis algorithm can generate
dramatically different sanitary sewer networks.

An equally valid line of inquiry is, therefore, to examine UDM syn-
thesis with sensitivity analysis to quantify the importance of various
factors in generating more realistic networks (Pianosi et al., 2016).
Sensitivity analysis provides verification by revealing ranges of
‘behavioural’ parameter values that produce acceptable model outputs,
thus informing application of UDM synthesis in data-sparse regions.
Additionally, it reveals the dominant controls and key processes gov-
erning UDM synthesis by quantifying the relative importance of
different parameters. In turn, revealing where uncertainty reduction
may be most beneficial. We do not assume that accurate UDM synthesis
is possible in every location using solely building, road, and elevation
data, particularly given the complexities involved in the gradual
expansion of a UDM (Rauch et al., 2017). However, it is impractical to
improve UDM synthesis by capturing every possible element involved in
network evolution. Instead, sensitivity analysis provides an objective
way to guide improvement; prioritising measurements and processes
that relate to the most sensitive parameters.

Continual improvements in development and accessibility of remote
sensing and open geospatial data at global scale facilitates applicability
of UDM synthesis in many locations. Chegini and Li (2022), demonstrate
an approach that can perform network topology and the dimensioning
part of hydraulic design anywhere in the continental United States.
Montalvo et al. (2024) implement the UDM synthesis algorithm pre-
sented by Reyes-Silva et al. (2023), in a GIS tool, however this approach
does not acquire/process the necessary geospatial data nor is it
open-source at time of writing. We believe that a global tool, that is
open-source, and tailored to accommodate the uncertainty inherent in
the UDM synthesis problem would be of great value to the urban
drainage community. Such a tool would enable hydrodynamic method
developers to bypass the reproducibility crisis (Stagge et al., 2019;
Hutton et al., 2016), by demonstrating their tools on an unlimited suite
of UDMs synthesised in cities worldwide, improving on the entirely
theoretical test suites that presently exist (Möderl et al., 2009, 2011;
Sweetapple et al., 2018). Furthermore, it would contribute towards
better representation of urban environments in the regional hydrologi-
cal cycle, which is a critical and under-represented component of such
applications (Coxon et al., 2024).

In this paper we present a workflow, called SWMManywhere, to
synthesise UDMs anywhere in the world. We show its versatility by
applying it to multiple case studies (i.e. sewer systems of different sizes
in two different countries) and to facilitate its global usage we deploy it
as an open-source Python tool (Dobson et al., 2024a) with extensive
documentation (SWMManywhere documentation, 2024). SWMMany-
where provides a parameterised and easy to customise approach for
UDM synthesis which allows us to perform sensitivity analysis of syn-
thesised UDMs. We ensure SWMManywhere responds to the need for
worldwide application by using open global datasets and including the
retrieval and preprocessing of these datasets as part of the algorithm.
The methods implemented in SWMManywhere also include a variety of
technical novelties in the field of UDM synthesis, including use of a
minimum spanning arborescence to derive topology, enabling mini-
misation of contributing area during this process, and implementing
Duque et al. (2022)’s pipe-by-pipe design method for urban drainage
networks.

2. Methodology

A high-level overview of our proposed SWMManywhere workflow is
shown in Fig. 1.

B. Dobson et al.
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We present an end-to-end workflow for UDM synthesis and com-
parison against a real UDM, if available, anywhere in the world. The goal
of UDM synthesis identified in literature is to set up a hydraulically
correct model. The first step in this, for an identified region, is data
acquisition and preprocessing, which we specify as part of the workflow.
The ‘generate hydraulic model’ step, is the key step that should ulti-
mately create sub-catchments, a network topology, and hydraulic de-
signs of pipes that together fully describe the synthesised drainage
network. Such a drainage network, i.e., the synthetic UDM, will be valid
for simulation in a widely used software for design and analysis of
drainage networks, such as SWMM, enabling studying different precip-
itation events and inspecting state variables such as pipe flows and
pluvial flooding. In Section 2.1, we describe the theory and processes in
our workflow, also explaining how it can be customised with parameter
choices and additional processes to vary the nature of the synthesised
UDM.

A key hypothesis that must underlie any synthetic UDM approach is
that results may be valid in places where a real UDM is not available or
not trusted. Because we observed the sensitivity to parameter selection
in previous UDM synthesis literature, we intentionally specify
SWMManywhere to be highly parameterised and customisable. We use
sensitivity analysis on these parameters to demonstrate how they impact
synthesised networks. In Section 2.2, we describe how sensitivity anal-
ysis can guide the use of SWMManywhere in areas where parameters
cannot be estimated a priori based on field data and provide a deeper
understanding of UDM synthesis. We apply this analysis to eight UDMs
in two different locations.

We discuss UDM synthesis using graph theory terminology:

• A graph represents the UDM, consisting of nodes (manholes) that are
connected by edges (pipes). The graph can be either undirected or

directed, indicating that connections are between two nodes (undi-
rected) or from one node to another (directed). Pipes are undirected
since head may drive uphill flow, however, treating the graph as
directed enables better description of preferential flow paths and is
also the format required by SWMM, SWMManywhere makes use of
both directed and undirected graphs.

• In graph theory, a subgraph refers to a sub-selection of the graph and
is called a connected component if every node is in the subgraph
reachable from every other node within that subgraph. Connected
components are used in SWMManywhere to describe a collection of
manholes and pipes that drain to a common outfall.

• The topology of the graph captures the overall arrangement and
relationships of nodes and edges and can be thought of as the pipe
layout in a UDM. The edges can have costs, for example length,
which may be minimised by shortest path algorithms to minimise
flow routes. Flow routes should be minimised in any drainage
network to drain the catchment as efficiently as possible, preventing
the accumulation of water and flooding of manholes. A minimum
spanning tree is a subgraph that connects all nodes with the mini-
mum possible total edge cost for an undirected graph, a minimum
spanning arborescence is the same for a directed graph, thus these
represent the most cost-efficient pipe layouts that may exist for a
given area. We will refer to a graph of potential pipe-carrying edges
as the street graph, while the optimised layout is the UDM topology.

2.1. SWMManywhere

2.1.1. Data and preparation
Our SWMManywhere approach uses automatically acquired datasets

that are of sufficient level of detail to be used in global application: road

Fig. 1. Overview of the SWMManywhere workflow.
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locations, river locations, elevation, and building footprints. We stress
that these datasets, in particular road locations and building footprints,
vary in quality from location to location, thus, the downloaded data for a
given case study should always be inspected carefully. Additionally, we
enable manually sourced, higher quality data for input, if available, as
described in the online documentation (SWMManywhere documenta-
tion, 2024). The default datasets are visualised for one of our case
studies in Fig. 2, and described in further detail in this section.

2.1.1.1. Streets and rivers. Assuming pipes can only exist in pre-
specified plausible locations will dramatically reduce the dimension-
ality of the shortest-path UDM topology derivation. Thus, we assume
that pipes can only exist in certain locations, typically streets due to the
common validity of this assumption (Mair et al., 2017). In addition,
paved streets constitute one of the key impervious surfaces which must
be drained in a UDM. Rivers are also downloaded as these are potential
outfall locations of the drainage network, described in further detail in
Section 2.1.2. OpenStreetMap (OSM) provides street and river data
worldwide and is used in this study.

2.1.1.2. Impervious areas. To calculate the impervious area of a sub-
catchment, and thus enable runoff generation, we use road locations,
their number of lanes, which are contained within OSM, and building
footprints. Recent advances in machine learning have enabled identifi-
cation of building perimeters from high-resolution satellite data
worldwide. Two large datasets, provided by Google and by Microsoft,
are now combined and available at (Google-Microsoft Open Buildings,
2024). Both datasets use convolutional neural networks to classify pixels
as buildings (Tan and Le, 2019; Sirko et al., 2021) and custom methods
to polygonise these pixels into buildings (Sirko et al., 2021); Computer
generated building footprints for the (United States, 2024). The authors
would note that, although global, this dataset has varying quality in
different regions due to the nature of the training data that was used and
resolution of satellite imagery. Although other impervious surfaces

besides roads and buildings, such as car parks, that must be drained in a
UDM are common, we could not identify global datasets describing
these, and thus consider them currently outside the scope of this study.

2.1.1.3. Elevation. Elevation data, in the format of a Digital Elevation
Model (DEM), is essential to delineate manhole sub-catchments, to
calculate the slope along edges, and to identify if there are paths in the
street graph that should be ignored, for example, those at that span
different hydrological catchments. We use NASADEM, which is a pub-
licly available radar-based global DEM at 30m resolution (Crippen et al.,
2016), from Microsoft Planetary Computer (Source et al., 2022).
Although higher resolutions around 2m are recommended for UDM
(Arrighi and Campo, 2019), such datasets do not yet exist openly at
global scales.

2.1.2. Pipe network generation
A key innovation of our approach is to iteratively process a street

graph and gradually transform it into a UDM with full hydraulic design.
These processes must take a graph and return a graph. The key tasks that
they perform are summarised in Fig. 3, discussed further in this section
and used for the experiments in this paper.

Table 1 lists all tuneable parameters of our proposed workflow, with
reasonable default values for these parameters and their ranges provided
in the online documentation (SWMManywhere documentation, 2024).
We carry out an extensive sensitivity analysis (see Section 2.2) to
identify any behavioural ranges of these parameters and identify their
relative importance in UDM synthesis.

2.1.2.1. Data cleaning and manhole identification. As explained in Sec-
tion 2.1.1, OpenStreetMap (OSM) is the default data source for obtaining
street and river graphs. However, the raw OSM data are not directly
suitable for UDM generation, so we perform a variety of data cleaning
operations to create a more suitable graph for UDM synthesis, as illus-
trated in Fig. 3a–b. The first significant process in data cleaning is

Fig. 2. Visualisation of downloaded data in the Cran Brook, UK. See main text for citations.
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enforcing a maximum edge length, splitting edges that are longer than
max street length parameter (pXS, Table 1). The second is merging of
nodes, which joins nodes together if they are within a specified distance
of each other (node merge distance, pNM). These two processes jointly
control where manholes are located along edges and the frequency with
which they occur. The final significant task in data cleaning is buffering
street paths in proportion to the number of lanes to create a shapefile of
impervious street area. The remainder of processing in this stage is
perfunctory, performing tasks such as ensuring consistent geometries, a
consistent identification scheme, removing parallel edges, and con-
verting the directed street graph to an undirected graph (as a pipe may
flow in a direction opposite to road travel).

2.1.2.2. Sub-catchment outline and surface characteristics. We begin the
sub-catchment delineation, by first burning the road network into the

DEM of an urban area. This burning process is a common practice in
UDM sub-catchment representation (Gironás et al., 2010) and involves
lowering the elevation of grid cells in the DEM that contain roads. Then,
we hydrologically condition the DEM by breaching depressions
(Lindsay, 2016a). Upon conditioning the DEM, we compute the flow
direction, using the D8 method (O’Callaghan and Mark, 1984), and
slope. Because our workflow includes generation of a SWMM model, a
sub-catchment width parameter is required. We follow the approach
proposed by InfoWorks (Subcatchment Data Fields (InfoWorks), 2024)
to compute the width of a sub-catchment based on the radius of a circle
with area equal to the area of the sub-catchment.

2.1.2.3. Outfall identification. Another key feature of a UDM is outfall
locations. The first step in identifying outfalls requires assessing the
topology of the graph to ensure its hydrologic feasibility (Seo and
Schmidt, 2013; Li andWillems, 2020). To achieve this, we remove edges
that cross the boundaries of hydrological catchments (defined as the
largest non-overlapping drainage basins in the study region), because
these are unlikely to carry a pipe. Then, we identify potential outfall
locations by assuming that outfalls may only exist within a specified
distance of a river (river buffer distance, pRB). Although other factors
such as environmental considerations affect selection of the outfall
location, in this study, we only account for the vicinity of water bodies.
We incorporate the relative construction cost of outfalls in our work-
flow, by assigning weights to the identified outfall locations based the
length of the pipe that connects the network to the river (outfall length,
pOL). If no potential outfalls are identified the node with the lowest
elevation is used as the outfall. On the other hand, in cases where
multiple plausible outfalls are identified, we retain them all at this step
and determine the outfall during the network topology derivation step.

2.1.2.4. Calculating weights and network topology. The network topology
can be derived as a minimisation problem of overall graph cost. This
minimisation should start with a graph of potential edges (i.e., the graph
up to this point) and return a directed graph of edges (pipes) that visit all
nodes (manholes), minimising overall graph cost, without retaining
redundant edges, which is also referred to as a minimum spanning
arborescence (MSA).

The first step to take in network topology derivation is to identify

Fig. 3. Visualisation of key iterations to the graph as different processes are applied. Catchments (D) are coloured by the manhole that they drain to.

Table 1
SWMManywhere user adjustable parameters that are tested in sensitivity anal-
ysis for this work, a full list of parameters is available in the online documen-
tation (SWMManywhere documentation, 2024). If the variable is described
differently from its use in the software to improve clarity, the software term is
indicated in brackets.

GROUP VARIABLE KEY

SYSTEM DESCRIPTION
(MANHOLES AND OUTFALLS)

node merge distance pNM
outfall length pOL
max street length pXS
river buffer distance pRB

TOPOLOGY DERIVATION chahinian slope scaling pSS
chahinian angle scaling pAS
length scaling pLS
contributing area scaling pCS
chahinian slope exponent pSE
chahinian angle exponent pAE
length exponent pLE
contributing area exponent pCE

HYDRAULIC DESIGN max filling ratio (max fr) pFR
min v pMV
max v pXV
min depth pMD
max depth pXD
design precipitation (precipitation) pDP

B. Dobson et al.
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how each edge contributes to the overall graph cost. As identified by
Chahinian et al. (2019), it is plausible that each of pipe length, pipe
slope and pipe adjacent angle (the angle at which two joining pipes
meet) are important to consider for minimisation. We further propose
that the total contributing area carried by pipes in the derived network
should also be minimised. As with ibid., these factors do not necessarily
contribute to the overall graph cost symmetrically or proportionally. For
example, while both negative slopes and overly steep positive slopes are
penalised, the penalisation on negative slopes increases with slope more
sharply than for positive slopes, because the former becomes hydrauli-
cally impractical more quickly than the latter. It is not apparent which of
these factors (slope, angle, area, and length) are more important to
minimise than others and so we combine each factor to be varied, as in
ibid. We deviate from ibid. by assigning both a linear and exponential
scaling parameter to each factor (rather than solely linear), enabling
high customisation of how overall graph cost is calculated (i.e., pa-
rameters in the topology derivation group). We calculate each individual
factor, apply scaling parameters, and sum these into an overall cost for
each edge in the graph, producing a graph such as that visualised in
Fig. 3e.

The network topology is then derived using an implementation based
on the shortest-path algorithm proposed by Tarjan (1977), to find the
MSA of the graph. The algorithm starts from a designated “waste” node
that all potential outfall locations are connected to, either directly or
through river paths, thus enabling all connected component subgraphs
to be handled in a single pass. The algorithm initializes a priority queue
with the waste node’s incoming edges, sorted by their costs. At each
step, the minimum cost edge is extracted from the priority queue. If the
node it leads to is not already included in the arborescence being con-
structed, that node and edge are added to the arborescence. The node is
marked with its parent, and any edges incoming to that node are added
to the priority queue. This process continues until all nodes are included
in the arborescence. The final arborescence represents the UDM network
topology, where the selected edges correspond to the pipes that must be
hydraulically designed.

2.1.2.5. Hydraulic design. Duque et al. (2022), propose a “pipe-by-pipe”
method to design sanitary sewer network pipes, the method starts at the
most upstream pipes, designing each pipe in terms of diameter and
depth under a set of design constraints (see hydraulic design group), and
continues iterating downstream. They demonstrate that this method is
comparable to an optimal dynamic programming-based approach,
although is significantly more efficient. We adapt the pipe-by-pipe
approach to make it suitable for a SWMManywhere approach:

• Rather than deriving the design flow from household waste genera-
tion, we use a Rational method that calculates the design flow as the
entire impervious area in sub-catchments upstream of the pipe being
designed multiplied by a design precipitation, pDP, amount.

• Inspection of any large real UDM will commonly reveal pipes trav-
elling in an uphill direction, as measured by surface elevation.
Wherever possible the pipe’s elevation will be such that they flow
downhill despite the surface elevation, however there is no guar-
antee that any hydraulically feasible design will exist. Because
Duque et al. (2022) derive network topology using hydrological flow
paths a feasible design will always exist, however this is not the case
for SWMManywhere, which uses streets for pipe locations and ac-
counts for factors besides slope during network topology derivation.
To accommodate this, we include a surcharge feasibility constraint,
which allows a pipe to be designed for flow under surcharge, pro-
vided this is the only way to reach a feasible hydraulic design.

• To provide better performance, we assess all designs for a pipe rather
than selecting the first feasible design. The selected design first aims
to satisfy feasibility constraints, and if no feasible design exists,

picking the most feasible design. It then minimizes depth, diameter,
and excavation cost, as calculated in Duque et al. (2022).

The final product is a fully described UDM, complete with sub-
catchments and hydraulic designs, thus sufficient to be simulated in
software such as SWMM.

2.1.3. Measuring effectiveness of UDM synthesis
The question of ‘how realistic is a synthesised UDM’ is most sensibly

assessed by comparing synthesised results against a real UDM. UDM
synthesis in a sensitivity analysis context requires understanding why
we see the results that we see. Thus, an extensive suite of allowable
performance metrics is provided covering a variety of different measures
and variables, see Table 2 for a list of the metrics used in this study. We
define metrics that measure performance for different elements of UDM
synthesis. System description metrics assess the synthesised UDM in
terms of properties that describe infrastructure, topology metrics
investigate the layout of the graph, and design metrics assess the derived
diameter of pipes. Furthermore, the UDM is simulated in SWMM and
thus simulated flow, and flooding can also be compared.

Comparing flow and/or flooding simulations is typical in the UDM
synthesis literature (Reyes-Silva et al., 2023; Blumensaat et al., 2012).
We create a timeseries of total flooded volume to assess flooding simu-
lation performance across the entire network. Meanwhile, flows are
assessed at the system outfall, as with (Blumensaat et al., 2012). How-
ever, unlike existing literature, which assumes that the outfall locations
of the network being synthesised are known, we do not make this
assumption, as this information is not globally available. Instead, we
identify where synthetic manholes fall inside sub-catchments of the real
network. From these classified manholes we identify the most
commonly represented outfall, and sub-select only that connected
component for comparison purposes.

Because the reasons for performing sensitivity analysis are to un-
derstand how parameters change behaviours in UDM synthesis, the most
common measure of performance we use is the relative error (relerror
measure in Table 2, equation (1)), which is simple to understand and
provides directionality in terms of over/under estimation,

relerror=
mean(synthetic) − mean(real)

mean(real)
(1)

where synthetic is the synthetic UDM data to be compared against the
real data. We omit a conventional time component of the metric because
the same equation can equally be used for timeseries or design proper-
ties (such as average diameter) alike. In cases of comparing flow or
flooding timeseries, we also include the Nash-Sutcliffe Efficiency and
Kling-Gupta Efficiency, because these are commonly used and so will
provide users who are familiar with them a more nuanced grasp of the

Table 2
List of metrics implemented in SWMManywhere.

CATEGORY MEASURE VARIABLE KEY

SYSTEM DESCRIPTION relerror length mRL
relerror npipes mRP
relerror nmanholes mRM

TOPOLOGY deltacon0 – mD0
laplacian distance – mLD
vertex edge distance – mVD
kstest edge betweenness mKE
kstest node betweenness mKN

DESIGN relerror diameter mRD
kstest diameter mKD

SIMULATION nse flow mNQ
kge flow mKQ
relerror flow mRQ
nse flooding mNF
kge flooding mKF
relerror flooding mRF
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synthetic UDM’s performance.
A further set of measures that can be used for synthetic networks are

those that test the topological similarity of the derived vs real network,
we implement a variety of those presented in existing literature (Wills
and Meyer, 2020; Chegini and Li, 2022), see topology category in
Table 2.

2.1.4. Implementation
SWMManywhere is a highly modular workflow and in this study, we

implement it in Python and publish it as an open-source tool (Dobson
et al., 2024a). We note that the workflow is general and can be imple-
mented in any other programming language. In our implementation of
SWMManywhere the minimal required user input is the bounding box of
the target urban area, and all remaining steps Fig. 1 are automated. The
bounding box should be provided in terms of latitudes and longitudes in
WGS 84 geographic coordinate system (EPSG:4326). SWMManywhere
will reproject all downloaded data into the Universal Transverse Mer-
cator (UTM) coordinate system. UTM uses a coordinate system with
metre as its unit, and thus can provide accurate distance and area cal-
culations in contrast toWGS 84. The UTM is split into zones and the zone
ultimately used in a SWMManywhere run is calculated based on the
UTM zone of the bounding box.

As we described in Section 2.1.2 the most complex step in the
workflow is the pipe network generation, i.e., iteratively applying
various graph operations to the initial graph street to generate the final
UDM. These operations, referred to in our implementation as graph
functions, have a variety of parameters that need to be specified, as
listed in Table 1. Considering the importance of graph functions and to
accommodate flexibility in applying them, our implementation allows
adding, removing, or changing their order without modifying the code.
Structuring code into graph functions enable easy reuse of code, cus-
tomisation, and introduction of new processing steps. Graph functions
are wrapped in a class for validation, enabling SWMManywhere to
identify if a set of graph functions to be applied is valid a priori. Graph
functions are stored in a registry object to enable easy access. We pro-
vide a description of all graph functions in the documentation online
(SWMManywhere documentation, 2024). However, users may also
customise the selection and order of graph functions, or create new ones,
as described in the online documentation, to fit their requirements.

Processes or operations described in Sections 2.1.1 and 2.1.2 that are
used by but not implemented natively within the tool are described in
Table 3.

To accommodate ease of use for a wide range of users with different
levels of programming experience, we provide a command-line interface
(CLI) for the software. More experienced users can take advantage of the
modularity of SWMManywhere for more advanced customisation of the
workflow. The CLI works with a configuration file that enables a user to
change parameter values and functionality. The minimal essential re-
quirements that this file must contain are a project name, a base direc-
tory, and a bounding box. The configuration file provides a centralised
location to perform customisations including changing the selection/
ordering of graph functions, changing parameter values (see Table 1),
file locations of a real network to compare against (see Section 2.1.3)
and which metrics to calculate (see Table 2), a starting graph if not using
downloaded street data, and any running settings for the SWMM

simulation. A variety of online tutorials explain the procedure to make
such customisations.

SWMManywhere provides a capability to write simple SWMMmodel
files (typically with a .inp file extension) that have been synthesised via
the various graph functions used. It also provides a wrapper of the
PySWMM software (McDonnell et al., 2020), which enables calling the
SWMM software and interacting with its simulations from Python. Thus,
in addition to the UDM synthesis, writing, running, and calculating
metrics if real network information exists are carried out during the
command line call.

Precipitation data is frequently identified as a critical factor in UDM
simulations (Ochoa-Rodriguez et al., 2015), however, there are
currently no open global datasets that provide the high frequency
monitoring needed to drive these models and so precipitation must be
user-provided if deviating from the default storm provided as part of the
tool.

2.2. Sensitivity analysis

Sensitivity analysis is a critical tool for assessing how variations in
model outputs can be attributed to variations in input parameters, often
quantified through sensitivity indices that describe the relative impor-
tance of each parameter (Pianosi et al., 2016). In this study we employ
the Sobol method (Sobol, 1993), a widely adopted global sensitivity
analysis known for its robustness, particularly when a sufficiently large
number of samples is used to ensure reliable results (Pianosi et al.,
2016). The Sobol method is a model-independent technique that de-
composes the total variance of the output into contributions from indi-
vidual input parameters and their interactions (Saltelli et al., 2008,
2019; Pianosi et al., 2016). In this study, we use the Sobol method to
calculate first-order indices, which quantify the direct impact of indi-
vidual parameters on the output; second-order indices, which represent
the joint effects of parameter pairs; and total-order indices, which
encompass the overall contribution of a parameter, including its indi-
vidual impact and all interactions with other parameters. This decom-
position enables a comprehensive understanding of the parameter
contributions to model variability, making the Sobol method particu-
larly suitable for exploring complex, high-dimensional systems. As
defined in Table 1, there are a wide variety of parameters that must be
selected, many of which do not have values that could be easily
measured or derived, and thus are useful candidates for sensitivity
analysis. We note that SWMManywhere is a workflow rather than a
model, however, sensitivity analysis is equally applicable to a para-
meterised workflow as to a model.

In general, it is recognised that, to robustly conduct sensitivity
analysis, a global method should be used, and the variability of the
calculated indices should be checked to ensure that the number of
samples is sufficient (Saltelli et al., 2019). Because of the presumed high
level of dependency in the SWMManywhere workflow (for example,
hydraulic design depends entirely on network topology, which in turn
depends on outfall andmanhole identification), we also calculate second
order indices to better capture interactions between parameters
(Herman and Usher, 2017). To implement sensitivity analysis for
SWMManywhere, we use the SALib software (Herman and Usher, 2017),
which provides a variety of global methods for sampling parameter
ranges and calculating sensitivity indices natively in Python. 18 pa-
rameters are sampled, indicated in Tables 1 and 16 metrics, Table 2, are
evaluated. Thus, the overall approach is to perform parameter sampling,
run SWMManywhere with the parameters of each sample, calculate the
performance metrics between the synthesised and real UDMs, and
calculate sensitivity indices.

Sobol sensitivity analysis that includes second order interactions
with SALib requires taking samples equal to,

N= n*(2m+ 2) (2)

Table 3
List of tools for specific tasks in our SWMManywhere implementation.

Task Software Reference

DEM conditioning Whitebox Lindsay (2016b)
Flow direction calculations Whitebox Lindsay (2016b)
Sub-catchment delineation from flow
directions

PyFlwDir Eilander (2022)

Sub-catchment slope calculation PyFlwDir Eilander (2022)
OSM data retrieval OSMnx Boeing (2017)
Graph operations Networkx Hagberg et al. (2008)
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where N is the total number of samples (or SWMManywhere calls), m is
the number of parameters, and n is the number of Sobol sequence
samples to generate (preferably a power of 2). In this experiment we set
n to 210 (1024), m is 18, resulting in N of 38912. As demonstrated in
Pianosi et al. (2016), this many evaluations (m * 1000) are towards the
upper limit of what is found in the literature. We take this opportunity to
note a further benefit of sensitivity analysis in the context of SWMMa-
nywhere as a global tool, which is that testing it under such a large and
diverse range of parameters further guarantees robustness of the soft-
ware implementation in locations not tested.

3. Case studies

In this study, we evaluate our proposed workflow by comparing the
SWMM simulation results obtain from using the synthetic UDM with
those of the real UDM for the Cran Brook, London, UK (Babovic and
Mijic, 2019). We then perform sensitivity analysis in other locations to
examine the transferability of results and parameters. We use seven
UDMs around the town of Bellinge, Denmark, as delineated by Farina
et al. (2023). These data were selected because they are openly available
and demonstrate results over a wide range of scales (Pedersen et al.,
2021). The properties of the case study networks are presented in
Table 4.

A key feature of many UDM is the presence of hydraulic structures
such as weirs, orifices, storages, or pumps. There is extensive evidence
from the sewer network simplification literature that capturing and
parameterising these structures is critical towards reproducing the
behaviour of the real network (Thrysøe et al., 2019; Dobson et al., 2022).
However, SWMManywhere currently does not attempt to estimate the
locations or hydraulic properties of any such structures. We acknowl-
edge that this could be a significant limitation and hope to add this
behaviour in future work. In this paper, we replace the hydraulic
structures and storage nodes in the real models with simple and uniform
nodes to better assess the SWMManywhere workflow as designed.
Furthermore, the hydraulic properties of sub-catchments (specifically,
the Manning’s roughness coefficient and depression storage of both
impervious and pervious areas) are a significant source of uncertainty
and typically calibrated or set arbitrarily (Deletic et al., 2012), thus we
set these at the same values for all networks to ensure comparability.

The precipitation event we use to demonstrate SWMManywhere is
the largest storm in the openly available Bellinge data (Pedersen et al.,
2021).

While SWMManywhere is designed to run on consumer-grade com-
puter systems, the computational demands of sensitivity analysis, which
require many model evaluations, necessitated the use of High-
Performance Computing environments. These systems provided the
processing power and scalability needed to efficiently execute the
extensive simulations required for robust sensitivity analysis. Workflow
evaluations were performed on the Imperial College High Performance
Computing facilities (see Acknowledgements). Hardware used was
typically AMD EPYC 7742 (128 cores, 1 TB RAM per node), although
this varied based on availability. On a single core of one of these ma-
chines, for a single workflow evaluation in the Cran Brook case study,
downloading and data preprocessing takes 10 s (except for buildings,

which are national datasets and so download speeds will vary signifi-
cantly depending on the country), evaluating graph functions and
writing the UDM to SWMM format takes around 2 min (deriving sub-
catchments and deriving network topology are the slowest individual
steps at 20 s each), simulation in SWMM takes 8 min, and evaluating
metrics takes 2 min (dominated by the K-S test for node betweenness,mKN
which took over 1 min). Run times for all Bellinge case studies were
dramatically quicker owing to the far smaller UDM sizes.

The code used to perform this experiment and results required to
reproduce the figure results in Section 4 are openly shared in a separate
repository (Dobson et al., 2024b).

4. Results

4.1. Proof-of-concept examination

We focus this section on a synthesised model selected from our
sensitivity analysis sampling (Section 4.2) that performed well across a
range of metrics to assess SWMManywhere’s ability to generate a high-
quality UDM and raise methodological points of interest. Fig. 4 plots a
flow and flooding timeseries and diameter, elevation, slope, and travel
time distributions for the Cran Brook network to provide a detailed
comparison of the real and synthetic UDM.

Fig. 4a shows flow at the network outfall, while Fig. 4b shows the
total flooded volume across the network. We see that the maximum
values of both are captured with accuracy, however, the falling limb for
both recedes more quickly in the synthetic network than in the real UDM
simulations. The synthetic network has consistently larger diameters
(Fig. 4f) than the real, while chamber floor elevations (Fig. 4d) are well
matched. Synthetic pipe slopes (Fig. 4e) are lower, although we observe
that these are primarily within the grey dashed lines which show the
target design range (Chahinian et al., 2019). The average travel time
from each node to the outfall (Fig. 4c) shows distinctively different
patterns across the distribution, with a good match for the quickest third
of nodes, the synthetic UDM quicker for the middle third (because of the
larger diameters), and the real UDM quicker for the slowest third.
Although not shown, the total runoff from manhole sub-catchments in
both the real and synthetic models is within 2% of each other, which is
true for all synthesised UDMs.

4.2. Sensitivity analysis, Cran Brook

SWMManywhere parameters, see Table 1, were sampled using a
Sobol sampling scheme, see Section 2.2, to enable a global sensitivity
analysis using the Sobol method. The findings of this analysis for Cran
Brook, the sensitivity indices, are presented in Fig. 5a–b. Two other
locations (Fig. 5c–f) are discussed in Section 4.2, with other locations in
full presented in Supplemental Fig. S1.

In Fig. 5 we show the first order variance (S1) of each metric (as
listed in Table 2) attributable to each parameter (Fig. 5a), and the total
variance (ST) attributable (Fig. 5b). We see that sensitivity is wide-
spread, with every parameter exhibiting at a total variance attributable
of >1% for at least one metric. We also see that sensitivity is over-
whelmingly occurring through interactions (i.e., sensitivities present in
Fig. 5b but not in Fig. 5a), with some notable exceptions: node merge
distance (pNM), minimum velocity (pMV), minimum (pMD) and maximum
chamber depth (pXD). First order sensitivity indicates that the parameter
is sensitive regardless of other parameter values, pMV, pXD, and pMD are
evidently dominant in their influence on pipe design while pNM is dis-
cussed below. Second order variance indices were also calculated, but
not included because their confidence intervals were prohibitively large.

Across metrics the node merge distance is the most sensitive param-
eter, impacting both system description metrics (top rows), topology
metrics (middle rows), and simulation metrics (bottom rows). It is a
sensitive parameter because it interacts with three key elements in
SWMManywhere:

Table 4
Summary of networks tested and their properties.

Network Number of nodes Number of edges Impervious percentage

Cran Brook 6931 6965 27
Bellinge 1 142 150 36
Bellinge 2 118 117 33
Bellinge 3 52 51 25
Bellinge 4 46 45 32
Bellinge 5 45 46 40
Bellinge 6 36 35 32
Bellinge 7 15 14 34
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- It influences manhole placement, which is also impacted by max
street length (pXS, another sensitive parameter).

- It impacts which nodes can drain to where, which is also impacted by
river buffer distance (pRB, another sensitive parameter).

- It can significantly alter how the road layout is translated into po-
tential pipes, which no other parameter does. For example, two
adjacent roads running parallel may not have a driving connection
between them, and thus no potential pipe may span them, but if these
nodes are merged then a pipe could span them.

In addition to the dominance of these three parameters (node merge
distance, max street length and river buffer distance), we see many other
intuitively appropriate sensitivities. System metrics are sensitive to
system parameters, topological metrics to topological parameters, and
design metrics to design parameters. We also find that flow simulation
metrics are sensitive to parameters relating to network topology, indi-
cating that topology is primarily influencing the global behaviour of the
UDM. In contrast, we see that flood simulation metrics are more sensi-
tive to design parameters, indicating that design is primarily influencing
the local behaviour of the UDM.

We provide a specific examination of node merge distance, selected
because it is the most sensitive parameter, to illustrate how SWMMa-
nywhere can be used to provide a detailed parametric exploration. We
plot the parameter value of node merge distance against each metric value
for all sampled points in Fig. 6. We see clear evidence of first order
sensitivity in line with those reported in Fig. 5a–b.

Fig. 6 indicates some evidence of identifiable parameter values, e.g.,
we observe that the node merge distance should fall around 25m for the
simulation flow metrics. However, this value can vary depending on
which metric is used, for example, System metrics (mRL, mRP, and
mRM) and some topology metrics (mVD, mKE, mKN) indicate better

performance when node merge distance is around 0–15m.
It can be more informative to investigate whether parameters are

identifiable using a Gaussian kernel density estimate (KDE), which can
be used to create a cumulative density function for each parameter and
can be weighted by different metrics. For example, in Fig. 7, top left
panel (node merge distance, pNM), weighting the KDE by flow simula-
tions (red lines), we can see that 75% of the distribution indicates that
node merge distance should be greater than 20m, agreeing with Fig. 6.
The KDE plots further highlight identifiability for a range of other pa-
rameters, however, as with node merge distance, in most cases there can
be disagreement depending on which metric is used for weighting.

4.3. Sensitivity analysis, other locations

In Fig. 5c–f we show the sensitivity analysis results for the Bellinge 1
and 7 networks, which are the largest and smallest networks in the
Bellinge dataset, respectively. Results for the other Bellinge UDMs are
shown in Supplemental Fig. S1, although do not meaningfully differ
from the observations below.

In general, we see many similarities between the two analyses,
including high sensitivity of node merge distance, more sensitivity
occurring through interactions (Fig. 5 c and e) than in first order (Fig. 5
d and f). In contrast, we see less significance of network topology pa-
rameters across all metrics, which can likely be attributed to smaller
sizes of both Bellinge networks compared to the Cran Brook network
resulting in availability of fewer topological configurations, thus less
significance in terms of impacting metrics. We note that no indices for
flooding metrics could be calculated because the networks did not
experience flooding under the precipitation timeseries used.

In Fig. 8 we show the KDE estimates of parameter distributions for
each network, weighted by the NSE flow metric (mNQ). In contrast to

Fig. 4. Demonstration plot of a high performance synthetic UDM in the Cran Brook case study. Red dashed lines represent synthetic data, while solid blue represents
the real UDM simulations. Grey lines on the slope plot (e) show the target design range. (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)
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Fig. 7, we see stronger agreement across networks than across metrics
for weighting. For example, max fr (pFR), precipitation (pDP), max depth
(pXD), tend towards aligned parameter distributions across most net-
works. Despite this, we also see some sensitive parameters with less
agreement across networks. For example, min v (pMV), max street length
(pXS), and node merge distance (pNM) have unaligned but identifiable
parameter values. We also see that many parameters do not have clearly
defined distributions for most networks but do for one/few. For
example, river buffer distance appears to have a clearly defined distri-
bution for Cran Brook and Bellinge 2, while no other networks do. We do
not see clear parameter distributions for network topology parameters,
despite their sensitivity demonstrated in Fig. 5.

5. Discussion

5.1. Development of SWMManywhere

In this study, we provide new insight into the intricacies of UDM
synthesis through application of our proposed SWMManywhere work-
flow and performing extensive sensitivity analysis.

We demonstrate in Fig. 4 that reasonable simulations are achievable,
with NSE values of >0.7 for both outfall flow and flooding, Fig. 6. The
implementation based on Duque et al. (2022)’s pipe-by-pipe method
results in high efficiency UDMs, although we observe that the syn-
thesised UDMs are perhaps too efficient as they drain the network too
quickly, see flow and flood simulations in Fig. 4. This finding suggests
that inefficiencies seen in the real network reflect the additional con-
straints not captured by data sources that we employ in our workflow,
for example, incremental construction of the network (Rauch et al.,
2017). Despite such shortcomings, we recommend that sensitivity

analysis is a necessary precursor to introducing any further complexity.
The sensitivity analysis results, Fig. 5, show widespread and intui-

tively sensible sensitivity of all parameters, including those introduced
as technical innovations of this paper: enabling slope inclusion within
the MSA and contributing area as a factor in the network topology
derivation (pSS, pCS, pSE, pCE). We also highlight the dominant sensi-
tivity of node merge distance (pNM), which influences manhole locations,
outfall locations, and underlying street graph preprocessing. Manhole
locations are well established to be important factors (Chahinian et al.,
2019; Blumensaat et al., 2012), while to our knowledge this is the first
UDM synthesis study that treats outfall locations as an explicit unknown.
The importance of the underlying street graph that node merge distance
controls is intuitively sensible, as a UDM synthesis can only ever be as
good as the potential pipe-carrying locations that it begins with. These
findings indicate a promising outlook for UDM synthesis, as manhole
locations, outfall locations, and the street graph are all surface elements
whose estimation will only improve with improved satellite imagery and
machine learning. Furthermore, in cases where SWMManywhere is to be
applied to a local area, surveying these surface elements is likely to be
far less costly than a below-ground network survey.

5.2. Transferability of SWMManywhere

A key motivation for performing sensitivity analysis is in identifying
behavioural parameter ranges. In an ideal case, behavioural parameter
ranges align across metrics and locations, thus implying that parameter
choices are good under any condition. Figs. 7 and 8 demonstrate that we
do not see clear evidence of this for either metrics or locations respec-
tively. Fig. 5 demonstrates that parameters are generally sensitive
through interactions, rather than through first order effects, which limits

Fig. 5. Heatmap demonstrating the sensitivity indices (a) of first order variance (S1) of a metric (y-axis) attributable to a parameter (x-axis) based on simulations in
the Cran Brook network, (b) of total variance (ST) attributable to a parameter based on simulations in the Cran Brook network. Red indicates more sensitive and
yellow less sensitive. Blue indicates less than 1% variance explained. (c, d, e, f), shows equivalent of (a) and (b) respectively, but for the Bellinge 1 and Bellinge 7
networks. Grey indicates no sensitivity indices could be calculated because no flooding occurred. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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the ability to provide clear advice on behavioural ranges. Although
second order effects were calculated, the confidence intervals were such
that no conclusions could be drawn, and we estimate that multiple
magnitudes more samples would be required to provide definitive re-
sults, which is outside the scope of this paper, but future work may
investigate. Parameters that have high first order sensitivity provide
some clear advice, for example, node merge distance values should be
between 20m and 35m to provide good flow simulation metrics in a
variety of locations. However, the dominant finding on parameter
transferability is that the panacea of arriving to a single ‘correct’ UDM
through a synthesis approach is false. Indeed, we believe that wide-
spread findings of equifinality in hydraulic calibration of real UDMs
(Huang et al., 2022; Sytsma et al., 2022), supports that the idea of
having a single ‘correct’ UDM that is based on survey information
(rather than synthesis) is also false. We propose that data uncertainty
will remain a fundamental element of UDM, synthetic or otherwise, for
the foreseeable future.

We therefore advocate for an approach to UDM that is uncertainty
driven. Rather than narrowly focussing on aligning synthetic with real
UDMs, a synthetic UDM may most appropriately be considered one
hypothesis for the underlying system. Further developments to

SWMManywhere should thus seek to synthesise UDMs that are plausible
hypotheses, possibly through a more iterative approach that refines the
UDM based on simulation data only, for example, by assessing SWMM
continuity errors. In a no field data setting, the focus could shift to, for
example, various climate scenarios or future urban development, to
study an ensemble of plausible UDMs and explore their likely outcomes.
If such studies would prohibitively increase simulation time, a range of
network complexity reduction techniques have been demonstrated for
UDMs (Farina et al., 2023; Palmitessa et al., 2022), including as part of
an uncertainty ensemble approach (Dobson et al., 2022; Thrysøe et al.,
2019).

To ensure that our proposed workflow is applicable anywhere, we
have deliberately avoided some data, for example design regulations or
a higher resolution DEM, that are commonly available at national scales.
In local applications, however, we do recommend exploring utilising the
best quality data available and adapting the underlying datasets or
parameter assumptions, which our SWMManywhere implementation
supports. Nevertheless, we caution that this may not provide the cer-
tainty that one might expect. For example, as our KDE parameter esti-
mates demonstrate in Bellinge, Denmark (Fig. 8), design regulations,
which are parameters that are country and region specific, do not show

Fig. 6. Node merge distance parameter value plotted against all evaluated performance metrics. Based on simulations in the Cran Brook network. Panels showing
NSE or KGE are clipped at 0.0 and − 0.41 respectively, which indicates the performance of taking the mean value of observations as the simulation. Dashed lines for
KGE, NSE, relative error indicate a region of ‘behavioural’ performance, that is, values > 0.7 (KGE, NSE) or within ± 0.1 (relative error).
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agreement across UDMs in the same locale.

5.3. Outlook and limitations

The modular graph function-based architecture of SWMManywhere
makes it easy to extend or customise, thus we hope that it may become a
centralised location for the synthetic UDM community. We see a variety
of potential improvements that may be introduced to increase the re-
alism of synthesised UDMs, although we stress the importance of per-
forming sensitivity analysis before investing time in creating
complicated customisations. As highlighted by the importance of pipe-
carrying locations above, a key starting point for reducing uncertainty
would be to improve street location surveying, particularly in regions
poorly served by OSM. In addition, other surface factors such as hy-
draulic structures are well established to play a dominant role in UDM
behaviour (Thrysøe et al., 2019; Dobson et al., 2022). SWMManywhere
does not attempt to synthesise these structures, and they are omitted
from the analysis performed in this paper. However, structures such as
weirs may be identifiable from satellite imagery, while including pumps
may form an additional element in the network topology derivation, as
has been demonstrated for sanitary sewer networks (Khurelbaatar et al.,
2021).

An immediate extension to the behaviour of SWMManywhere that
we are exploring is around water quality. Recent literature demonstrates
the feasibility of quantifying urban pollution deposition on roads (Revitt
et al., 2022), which could be included as an optional extension, thus
providing the much-needed transport element to link deposition with
in-river pollution. We anticipate that a key difficulty of such an
approach would be in identifying validation data, since sampling water
quality at urban drainage outfalls during a storm is dangerous to do in
person. For example, while the English Environment Agency’s
harmonised water quality sampling database contains over 60 million
pollution sample records since 2000 (Open water quality archive data-
sets (WIMS), 2024), just 0.4% are of urban drainage outfalls, and only
25% of these have occurred since 2010, reflecting the diminishing focus
on non-compliance monitoring observed across England (Dobson et al.,
2021). Further improvements towards capturing water quality may also
focus on representing combined or misconnected systems, linking with
the synthetic sanitary sewer network literature (Duque et al., 2022).

A clear limitation of the case studies demonstrated in this paper is
that they are based in temperate and wealthy European countries, this is
particularly problematic when considering that street graph and build-
ing footprint data uncertainty will be more significant in nearly any
other type of region. We reached out to a variety of urban drainage

Fig. 7. Gaussian KDE cumulative density functions for parameters, weighted by different metrics evaluated on the Cran Brook network. Metrics are grouped by
colour to highlight different behaviours. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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modellers in both industry and research but were not able to extend our
case study selection further and instead identified a significant paucity
of publicly available reliable SWMM models. While the SWMM website
hosts a variety of useful example models, these aim to build under-
standing about representing different elements of drainage networks,
rather than providing a suite of real test cases. Ultimately, SWMMany-
where and other synthetic UDM tools will not be trusted at global scales
until they have been demonstrated on a wide variety of case studies.
Thus, we call for collaborators who can either share their SWMMmodels
openly or are willing to demonstrate SWMManywhere for their models
to reach out that we may create a more robust demonstration of UDM
synthesis and verify that understandings created are sustainable.

6. Conclusion

In this paper we present a workflow, SWMManywhere, that can
synthesise an urban drainage network model (UDM) and simulate it in
SWMM, anywhere globally. We test the parameters of SWMManywhere
using sensitivity analysis to understand the dominant processes involved
in synthesising UDMs. Our results revealed three key findings:

1. The SWMManywhere workflow can synthesise high quality UDM at a
range of spatial scales. The parameters that can be used to tune

SWMManywhere behave in intuitively sensible ways, verifying its
implementation.

2. We find that parameters controlling surface elements such as
manhole locations, street layout, and network outfalls are the most
sensitive, and thus should be the key focus of uncertainty reduction.
Encouragingly, the identification of these elements is also the most
likely to improve in the foreseeable future.

3. UDM synthesis is sensitive to all parameters and these parameters
primarily influence outputs through second order or higher in-
teractions, revealing UDM synthesis to be a more complex process
than previously recognised. Additionally, we recommend that an
ensemble approach would be appropriate for practical applications
to better reflect the inherent uncertainty of the underlying system.

We hope that the urban drainage community will use SWMMany-
where to further explore the complexity of UDM synthesis, develop
robust interventions in areas without existing UDM data, and do so in a
more open and reproducible scientific environment.
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