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For years, a main focus of ecological research has been to better understand the complex13

dynamical interactions between species which comprise food webs. Using the connectance14

properties of a widely explored synthetic food web called the cascade model, we explore15

the behavior of dynamics on Lotka-Volterra ecological systems. We show how trophic16

efficiency, a staple assumption in mathematical ecology, affects species extinction. With17

clustering analysis we show how straightforward inequalities of the summed values of18

the birth, death, self-regulation and interaction strengths provide insight into which food19

webs are more enduring or stable. Through these simplified summed values, we develop20

a random forest model and a neural network model, both of which are able to predict21

the number of extinctions that would occur without the need to simulate the dynamics.22

To conclude, we highlight the death rate as the variable that plays the dominant role in23

determining the order in which species go extinct.24
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A food web describes the complex dynamical relationships between species or groups of25

species. While these relationship interactions can be mathematically modelled using the26

Lotka-Volterra equations, ecologists often analyze a food web system via the community ma-27

trix, i.e. the Jacobian of the nonlinear system evaluated at equilibrium. To better understand28

the interaction dynamics, we instead consider the full, nonlinear dynamics associated with29

a type of synthetic food web (the cascade model), and examine various properties associated30

with the extinction dynamics and species persistence. Even relatively small food webs consist31

of hundreds of interactions which make analysis of food webs extremely complicated. By re-32

ducing the many interactions in the governing equations to the sum of the absolute values of33

birth, death, self-regulation, predation, and prey rates, we have been able to determine cer-34

tain properties related to persistence in food webs. Applying machine learning approaches35

trained on the simplified input of the five rate sums leads to accurate predictive models of36

the persistence of a given system without the need to simulate the dynamics. Consideration37

of the simplified rate sums also enables us to explore the internal processes involved in the38

extinction of species during the unfolding dynamics of a food web ecosystem.39

I. INTRODUCTION40

A food web can be described as a complex network of interactions between consumers and41

resources involving organisms, populations, or trophic units1. Elton represented food webs as42

diagrams showing the energy flow within the respective consumer or resource groups throughout43

the system2. Such energy flow interactions typically represent predator-prey, competitive, and44

mutualistic consumer/resource relations3, where the edge connections illustrate which group or45

species are consumed. Other types of food webs include topological food webs and functional food46

webs. A topological food web emphasizes the feeding relationships among species, which can be47

observed or estimated. A functional food web identifies the species which are most important in48

maintaining the integrity of community composition and structure1,4.49

Mathematical ecology primarily considers food webs as a fundamental unit which tends to50

exhibit emergent characteristics that stem from their individual components5. Experimentally51

derived food webs can help identify the species and feeding connections that have the most impact52

on population and community dynamics. However, selecting which species and interactions to53
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manipulate in experiments in large, complex systems can be subjective and is often based on54

incomplete knowledge of the food web. Additionally, this approach faces challenges such as55

controlling variables, choosing the right time frame and spatial scale for experiments, choosing56

the initial conditions, and determining how to isolate specific sub-systems, all of which can affect57

outcomes6–8. Mathematical ecologists have often drawn on synthetic systems to explore the more58

general resultant properties of community trophic networks, as problematic as such abstraction59

can be in its own right.60

One example of a synthetic food web that has been used to explore topological properties of61

systems is the cascade model9. The cascade model, which is structurally hierarchical, describes62

the organization of a food web and the topology of the interactions, but it does not account for the63

dynamics of the system. However, to fully understand ecological communities, it is crucial to con-64

sider both the population dynamics (birth, death, self-regulation, and predator-prey interactions)65

and trophic structure.66

Incorporating Lotka-Volterra dynamics10–12 into a structural food web allows one to qualita-67

tively and quantitatively predict how a population of interacting species will behave over the long68

term. The combination of Lotka-Volterra dynamics with a casacde food web leads to the Lotka-69

Volterra cascade model (LVCM)9 which enables one to explore how certain topological constraints70

under specific distributions behave when dynamics are introduced.71

One of the big challenges in ecology and environmental science more generally is understand-72

ing the forces that shape the stability of complex systems, and conversely lead to collapse or73

extinction. One of the extinction scenarios that can represent a natural ecosystem’s response to74

a realistic extinction sequence is derived from the study provided by the International Union for75

Conservation of Nature (IUCN)13. According to this scenario, the initial wave of extinctions pri-76

marily affects large-bodied species, including predators and mega-herbivores14. The likelihood of77

further extinctions occurring after the initial loss in food webs depends on the number of species78

within each functional group. Specifically, the risk associated with a particular number of species79

per functional group is contingent on the type of species that is removed. This risk is at its high-80

est when an autotroph is the first to be lost and is at its lowest when a top predator is the initial81

casualty15. The impact of primary extinctions was assessed in terrestrial and aquatic ecosystems,82

measuring robustness in relation to secondary extinctions16. A novel approach for quantifying83

secondary extinctions following species loss reveals that, in a deterministic context, communities84

with a greater number of species within trophic levels tend to preserve a higher proportion of85
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species17.86

Previous studies have elucidated some of the causes behind primary and secondary extinctions,87

which can ultimately result in the loss of species within food webs and, in the worst-case scenario,88

even lead to the collapse of entire food webs16,17. These studies, however, did not explicitly in-89

clude the nonlinear dynamics inherent in the system. In the late 1990s, some researchers began90

emphasizing nonlinear modelling, but these works generally considered the dynamics of small,91

specialized food webs (e.g., food chains, food chains with omnivory)18,19 or small food webs con-92

taining no more than ten species20. Later work21,22 considered larger food webs with dynamics93

given by a bioenergetic consumer-resource model23. While these studies provided insight into94

the complexity-stability relationship, there has been a lack of research focusing on understanding95

the process of species extinction through mathematical models that simulate the natural dynamics96

of species loss within dynamic ecosystems. In our study, we address this gap by employing the97

LVCM to explore the loss of species. We apply deterministic dynamics, with rates chosen ran-98

domly from a specified distribution, to a variety of randomly constructed cascade food webs to99

investigate this phenomenon comprehensively.100

Ecologists often use community matrices to explore general ecosystem behaviour. However,101

the community matrix, a Jacobian matrix associated with a linearized dynamical system (often a102

form of the Lotka-Volterra equations), necessarily assumes the system is at equilibrium. Moreover,103

the community matrix ignores the nonlinearities of the Lotka-Volterra system. Notably, when the104

system possesses self regulation, such as is found in ecological systems with limited resources or105

negative feedback mechanisms the system can always be made stable by increasing the amount of106

self-regulation24. This simple fact can easily be deduced via the Gershgorin circle theorem25,26.107

But to fully understand the dynamics of synthetic or real food webs, one should comprehensively108

investigate how the full Lotka-Volterra system governs the behaviour of ecosystems. Such a study109

should include the role of the birth, death, self-regulation, and predator-prey rates along with the110

effect of the trophic efficiency parameter on species extinction.111

Sections II and III contain details of the cascade model and the LVCM respectively. Section IV112

contains the analytical and numerical results, including an investigation of the impact of trophic113

efficiency on extinction in Section IV A and of the effect of the rates on persistence in Section IV B.114

In the latter section, we showed how a reduced amount of information involving five absolute rate115

sums, rather than the hundreds of values of individual rates, can explain when persistence can be116

attained. In Sections IV C and IV D we respectively use these five sums as input to a random forest117
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model and a minimal neural network, both of which enable the prediction of how many species118

will go extinct with very high accuracy. In Section IV E we show which dynamics determine the119

order of species extinction. Lastly, we close with some comments in Section V.120

II. CASCADE MODEL121

A synthetic foodweb construction, called the cascade model9, was suggested roughly forty122

years ago as a framework to generate the connectence properties of ecological communities, with123

the intention that they reflect the accurate topology of systems found in nature. The construction124

of a cascade model is as follows. Consider a community with S species where each species is125

assigned a unique integer label from 1 to S. It is important to note that the structure of a cascade126

food web is hierarchical, and any given species is not able to prey upon species which are denoted127

by higher number values.128

The cascade model of a food web can be visually represented using a random directed graph129

with n vertices. Each vertex corresponds to a species, and Pw(i, j) determines the likelihood of130

an arrow from species i to species j. Specifically, an arrow depicts the direction from a predator131

species to a prey species. If 1 ≤ i < j ≤ S, then Pw(i, j) = 0. On the other hand, if i > j, then132

Pw(i, j) = c/S, where c is essentially the average total degree (number of in and out edges) of each133

species node. In short, if the vertex i has a higher label than j, there is no link from species j to134

species i with probability of one. Conversely, there exists a link from species i to species j with135

probability of c/S. In this work, we follow Cohen and Newman9 and let c = 3.72. Although we136

are interested in exploring the extinction dynamics of cascade food webs, we use this value of c137

since, by Cohen and Newman9, it leads to cascade food webs which have reasonable alignment138

between the observed proportions in real food webs and the predicted proportions generated by139

the cascade model for various types of links, including those between basal-intermediate species140

and basal-top species.141

Figure 1 illustrates a realization of the cascade model food web with 50 species. Each node is142

indicative of a distinct species, labeled uniquely. As noted above, the arrows depict the direction143

from predators to prey. Within our investigation, we categorize species into two types: basal144

and non-basal. Basal species serve only as prey for other species in the food web, and do not145

predate upon other species. Non-basal species take on the roles of both prey and predator, unless146

the species is a top-predator, in which case it only predates upon other species. For instance, in147
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FIG. 1. A random realization of a cascade model food web with 50 species. Nodes represent uniquely

labeled species, and arrows point from predators to prey.

Figure 1, species 46 is classified as non-basal and preys upon species 16, 22, and 33. Species 19 is148

considered basal, as it does not prey upon any other species. It is noteworthy that the construction149150

of the cascade model came at a naïve time in mathematical ecology when it was considered that the151

topological properties of food webs were their defining criteria27, with little emphasis placed on the152

importance of interaction strength. Similarly, the dynamics that may have led to the equilibrium153

of which the topology is an endpoint was little explored.154

III. LOTKA-VOLTERRA CASCADE MODEL (LVCM)155

The dynamics of predator-prey interactions are modeled using the Lotka-Volterra system of156

equations, which are given as157

dXi

dt
= Xi

(
bi +∑

j
ai jX j

)
, i = 1, ...,S. (1)158

In Equation (1), Xi represents the population density of species i, bi denotes the natural growth rate159

of species i, ai j indicates the interaction rate between species i and j, and parameter S represents160

the number of species in the food web. The values for a ji, which represent one-half of the total161
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number of interaction rates, are determined by a ji =−eai j, for i ̸= j, where e represents the trophic162

efficiency, which signifies how efficiently predator growth is initiated by prey consumption.163

For the purposes of the study, we have chosen the initial value of Xi to be uniformly distributed164

on the interval (0,1) for each species. For basal species, bi represents the birth rate and is uniformly165

drawn from the interval (0,r), where r > 0. The specific value of r is specified throughout Section166

IV. For nonbasal species, bi represents the death rate, and it is uniformly distributed on the interval167

(−r,0). In the interaction matrix A, the diagonal elements aii correspond to self-regulation within168

a species, and the value of each aii term is drawn uniformly from (−r,0). The elements ai j residing169

above the diagonal of A represent the interaction rate between predator species j feeding on prey170

species i, and are chosen uniformly from (−r,0). In ecological modeling, this parameter helps171

describe how effectively an organism utilizes the energy it obtains from consuming resources for172

the purpose of reproduction. Biologically, the value of the trophic efficiency parameter, e, ranges173

between zero and one, where zero signifies no trophic efficiency in converting consumption into174

reproduction, and one indicates maximum trophic efficiency28.175

In this article, we consider the Lotka-Volterra cascade model (LVCM)29. This hybrid model176

allows one to capture the dynamics of species populations along with trophic structure in an eco-177

logical community. The construction of the LVCM consists of two steps. First, we use the cascade178

model to generate a food web. Second, Lotka-Volterra dynamics according to Equation (1) are179

applied to the cascade food web generated in the first step. When employing this process, it is180

commonly observed that the inclusion of dynamics into the cascade food web leads to the occur-181

rence of numerous extinction events within the ecosystem. Eventually, the system evolves to a182

new stable food web at equilibrium. Similar extinction behaviour has been seen in niche model183

food webs with consumer-resource dynamics22.184

As an example, when dynamics are introduced to the food web shown in Figure 1, using e= 0.8185

and r = 1, many species go extinct until eventually the system evolves to the new, stable food web186

given by Figure 2. As shown in Figure 2, the new stable food web that is generated after applying187

the dynamics given by Equation (1) is comprised of surviving basal species shown in red, as well188

as top predators indicated in blue, and intermediate predators in green. It is important to note that189

top predators in the reduced, stable food web may not have been top predators in the original food190

web before dynamics were applied to the food web.191

The LVCM provides a way to generate a type of synthetic food web, and enables improved192

understanding of the intricate predator-prey relationships in the food web. Also, by considering193
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FIG. 2. The resulting stable food web after applying Lotka-Volterra dynamics (Equation (1)) to the cascade

food web depicted in Figure 1. Although the original cascade food web had 50 species, the dynamics

induced numerous species extinctions. In this reduced, stable food web, only 26 of the original species

have survived. The stable food web includes surviving basal species shown in red, top predators in blue,

and intermediate predators in green. This extinction phenomena is general, and can be seen for different

cascade food webs of different sizes and for different parameter values in the dynamics.

both the population dynamics and trophic structure, we can gain insight into the functioning of194

ecosystems.195

IV. RESULTS196

We have incorporated Lotka-Volterra dynamics into the synthetic cascade food web model and197

have investigated how the introduction of dynamics can lead to the extinction of species, thereby198

changing the food web’s structure. Using analytical and numerical methods, we have investigated199

the influence of dynamical rates and predation efficiency on species persistence. Additionally, we200

have utilized random forest and neural network models to predict how many extinctions occur201

under Lotka-Volterra dynamics. Notably, both models allow for explainability of the results via202

the relative importance of the features used as inputs to the models. Moreover, we have derived an203
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FIG. 3. Average number of extinctions, Ē, as a function of efficiency, e, for LVCM food webs of 50 species.

The average is computed for (a) 30 realizations, and (b) 100 realizations of food webs and associated Lotka-

Volterra rates.

analytical expression to elucidate the sequence of species extinctions.204

A. Impact of Efficiency on Extinction205

We have investigated the impact of the energy trophic efficiency parameter, e, on species ex-206

tinction using the LVCM which was described in Section III. As can be seen from Equation (1),207

the trophic efficiency parameter establishes the relationship between the interaction rates ai j and208

a ji. Biologically, the trophic efficiency parameter lies within (0,1)28.209

To explore the role which efficiency plays with regards to species extinction, we consider ef-210

ficiency values which range from 0.01 to 1.0 in increments of 0.01. For each trophic efficiency211

value, we generate 30 different cascade food webs consisting of 50 species. For each food web,212

Lotka-Volterra dynamics (Equation (1)) with randomly generated rates using r = 1 as described213

in Section III are applied, and the number of species extinctions which occur is recorded. For214

each trophic efficiency value, the average number of extinct species, Ē, across the 30 realizations215

is computed. Figure 3(a) shows the result by plotting the average number of extinct species as a216

function of efficiency value. One can clearly see that as the efficiency increases, the number of217218

extinct species decreases, dropping from about 36 to about 29. Even though higher efficiencies219

do decrease the number of extinctions, there are still far too many extinctions for the food web to220

persist. Indeed, even at maximum efficiency, more than half of the species in the food web are221
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going extinct. If one increases the efficiency value beyond one, it is possible to achieve a further222

decrease in the number of extinctions, including instances of zero extinctions. However, values of223

efficiency greater than unity are not biological.224

It is worth mentioning that the fluctuations seen in Figure 3(a) arise from two main factors.225

First, if one were to increase the number of realizations for each simulation, one would reduce the226

impact of statistical fluctuations, and the resulting curve would be much smoother (Figure 3(b)).227

This does not affect the overall trend described above. Second, efficiency is not the sole parameter228

governing the number of extinct species. Many other factors, which we discuss below, also play229

a role. Taken together, the complex dynamics can lead to fluctuations, but again, do not affect the230

overall trend.231

The results above indicate that constraining the upper triangular values of A to be linked to232

the lower triangular values of A through the efficiency variable, e, ensures that the systems are233

unlikely to be viable. Therefore, for much of the following results, we remove the efficiency link234

between the upper and lower triangular values, letting their distributions be independent of each235

other.236

We carried out a similar analysis on another popular synthetic food web model, the niche237

model30, and found that efficiency acts in an equivalent manner in causing mass extinction of238

the system.239

B. Effect of Rates on Persistence240

We now consider the effect on persistence of the different dynamical rates found in the Lotka-241

Volterra equations. At a foundational level, for any food web, if there is not enough basal species242

biomass available for consumption by species at higher trophic levels, then some non-basal species243

will go extinct. To ensure persistence of the food web, the growth rates of the basal species must244

be high enough to allow the non-basal species to thrive. Similarly, if the death rate of a non-basal245

species is too high to be offset by gains from prey consumption, the species will go extinct.246

To fully understand the role the rates play on the food web dynamics, we generated 400,000247

LVCM food webs, each of which had a different initial cascade topology with different associated248

rates. Each LVCM was evolved dynamically in time until all possible extinctions occurred so that249

the reduced food web was in a stable equilibrium state. Since it is clear from the results of Section250

IV A that the maximum biological efficiency value of one does not ensure the persistence of food251
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webs, we excluded the efficiency parameter and allowed the ai j and a ji rates to be randomly252

selected independent of each other. Furthermore, the birth rates are uniformly drawn from the253

interval (rb,rb + 1), the death rates are uniformly distributed on the interval (−rd − 1,−rd), the254

self-regulation rates are drawn uniformly from (−rr − 1,−rr), the ai j rates are chosen uniformly255

from (−ru − 1,−ru), and the a ji rates are uniformly distributed on (rl,rl + 1). Unit intervals are256

chosen to be consistent with previous work simulating LVCM dynamics31. Here, for each of the257

400,000 realizations, rb, rd , rr, ru, and rl are independently drawn uniformly from (0,30) to allow258

for a greater variety of possible dynamics. For example, one could have the distributions given259

by bi ∈ (2.58,3.58), di ∈ (−27.87,−26.87), aii ∈ (−12.15,−11.15), ai j ∈ (−5.91,−4.91), and260

a ji ∈ (7.56,8.56). Each of these unit length distributions are chosen randomly for each of the261

400,000 realizations.262

To make the analysis more tractable, we reduced the dimension of the rate information by263

considering the absolute sums of the five types of rates. These sums are given as264

B = ∑
1≤i≤S

|bi| absolute sum of birth rates, (2)265

D = ∑
1≤i≤S

|di| absolute sum of death rates, (3)266

R = ∑
1≤i≤S

|aii| absolute sum of self-regulation rates, (4)267

U = ∑
1≤i< j≤S

|ai j| absolute sum of upper triangular rates, (5)268

L = ∑
1≤ j<i≤S

|ai j| absolute sum of lower triangular rates. (6)269

Note that U is related to the loss of prey due to predation, while L is related to the benefit which270

predators gain from feeding on prey.271

Table I shows the absolute sums of the five types of rates (Equations (2)-(6)) for five of the272

400,000 realizations. The last column of the table shows the number of extinctions, E, which273

occurred when these five LVCM food webs were dynamically evolved in time. Note that these five274

example realizations show a wide range of extinctions, including one instance when the original275

50 species cascade food web was able to persist with no extinctions.276

Given the values of B, D, R, L, and U for a particular realization, it is natural to consider how277

their relative sizes affect the number of extinctions which occur when the LVCM food web is278

evolved dynamically. One can arrange the five absolute sums in ascending order based on their279

magnitudes for each realization. In doing so, one arrives at an inequality where α < β < γ < δ < ε .280
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B D R L U E α < β < γ < δ < ε

327.48 87.41 999.89 1705.64 55.28 0 U < D < B < R < L

189.39 313.68 352.99 1408.26 321.70 15 B < D <U < R < L

371.04 913.40 152.59 1613.21 306.21 22 R <U < B < D < L

162.37 27.80 369.56 2205.23 2387.59 30 D < B < R < L <U

200.59 1144.64 911.97 472.31 1881.74 40 B < L < R < D <U

TABLE I. Absolute sums of the rates (Equations (2)-(6)) for five example realizations of the LVCM. The

number of extinctions for the realization is shown in the E column. The corresponding inequality is shown

in the last column.

Here, α,β ,γ,δ ,ε ∈ {B,D,R,L,U}, and there are 120 possible orderings of the inequality. The last281

column of Table I shows the corresponding inequalities for the five displayed realizations. For each282283

inequality α < β < γ < δ < ε (of which there are 120), we form a cluster containing all realizations284

which satisfy the inequality. For each cluster C, we can form the extinction frequency vector EC =285

(e0, . . . ,e50) where ei represents the number of realizations in cluster C with i extinctions. Given286

such a vector EC, the sum of entries, ∑ei tells us the size of cluster C. Similarly, (∑ iei)/(∑ei)287

tells us the expected number of extinctions in the cluster. Notably, only seven clusters contained288

realizations which persisted with no extinctions, i.e., clusters with e0 > 0. The vast bulk of these289

are found in clusters (D < U < B < R < L) and (U < D < B < R < L), each of which have290

63 realizations which persist with zero extinctions, i.e., e0 = 63. It is worth noting that in both291

of the inequalities associated with these two clusters, the sum of the lower triangular interaction292

rates exhibits the highest absolute magnitude of all the rate sums. Appendix A contains a table293

(Table III) denoting for each cluster number, C, the inequality, the number of extinctions, ei, for294

the minimum value of i, and the number of realizations associated with each cluster. Even though295

every individual rate is generated uniformly, each of the absolute rate sums have a different number296

of individual rates contributing to the sum. Therefore, some of the cluster inequalities are more297

difficult to realize. We considered a very large number of total realizations to ensure that every298

cluster inequality has been represented.299

To better understand how the rates affect the extinction number, we consider the 120 clusters300

according to EC in reverse lexicographic order. More formally, let EC = (e0, . . . ,e50) and let EC′ =301

(e′0, . . . ,e
′
50) where C and C′ represent two clusters. We say EC < EC′ if ei > e′i in the first position302

12

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
40

78
8

 12 M
arch 2025 14:51:33



FIG. 4. Ordering of the 120 clusters according to the number of extinctions occurring in each cluster. Each

row represents an inequality by displaying the order of the absolute rate sums, each of which is associated

with a specific color. Clusters with fewer extinctions are located at the top of the figure, and as one descends,

the clusters have an increasing number of extinctions.

i where EC and EC′ differ. We assign cluster numbers 1,2, . . . ,120 based on this ordering. So303

for example cluster numbers 1, 2 and 3 correspond to the inequalities (U < D < B < R < L),304

(D <U < B < R < L) and (D <U < B < L < R) since their corresponding extinction frequency305

vectors are (63,82,90, . . .), (63,78,105, . . .) and (10,33,46, . . .).306

Figure 4 is a visualization of the extinction ordering of the 120 clusters. The first row is as-307

sociated with cluster C = 1, the second row with cluster C = 2, and so on until one arrives at the308

last row which is associated with cluster C = 120. The columns of the figure denote the inequality309

associated with each cluster (row) by associating a specific color with each of the five absolute310

rate sums. Figure 4 shows that, in general, food webs with fewer extinctions (top rows) are char-311

acterized by an inequality which transitions from blue to green colors. On the other hand, food312
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webs with more extinctions (bottom rows) are characterized by an inequality which transitions313

from green to blue colors.314

It is noteworthy that clusters in the top part of the figure are often associated with inequalities315

with positive interaction rate sums having the largest magnitude of all the rate sums. And when316

this is not the case, it is still often true that the magnitude of the positive rate sum is greater than the317

negative interaction rate sum. While Figure 4 provides a visual confirmation of the importance of318

L, the positive predator-prey interactions, it is possible to use the results contained in Appendix A319

to provide a quantitative measure of the importance of L. There are 24 of 120 clusters which have320

L as the largest of the five absolute rate sums in the inequality associated with the cluster. Of these321

24 clusters, 19 of them (79.2%) are located within the upper third of Figure 4 (see first column322

of Appendix A), while 5 of them (20.8%) are located within the middle third of Figure 4, and323

none of them (0%) are located in the bottom third of Figure 4. More strikingly, if one considers324

the number of realizations contained within each of these 24 clusters, one finds that 90.9% of the325

realizations are located within the upper third of Figure 4 while the remaining 9.1% are located326

within the middle third of Figure 4. Similar analyses can be performed for the other variables or327

for other inequality combinations of variables.328

Although we eliminated the efficiency parameter, e, relating the positive and negative interac-329

tions, one can use the efficiency relation a ji = −eai j to compute an efficiency proxy, ep, given330

by331

ep =
∑ |a ji|
∑ |ai j|

=
L
U
. (7)332

Equation (7) enables one to clearly see that inequalities/clusters which give rise to zero or only a333

few extinctions have a high efficiency proxy greater than one. Although mathematically one can334

consider any value of efficiency, values greater than one make no biological sense.335

Additionally, for each cluster (ordered as shown in Figure 4), we calculated ep for every realiza-336

tion in the cluster and computed the expected value. The results are shown in Figure 5. Consistent337

with the previous discussion, one sees high ep values much larger than one for clusters residing338

in the the top rows of Figure 4. One also sees a descending trend in the efficiency proxy so that339

clusters with large numbers of extinctions have a much lower value of ep. There is variance in340

Figure 5 because the birth and death rates also play a significant role in determining the number341

of extinctions, but they are not included in the computation of ep. The importance of the birth and342

death rates will be expanded upon in the following section.343

As we have seen, LVCM food webs with an associated inequality/cluster in the top rows of344
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FIG. 5. Expected value of the efficiency proxy, ep, for each of the 120 clusters. The cluster ordering is the

same as was used in Figure 4.

Figure 4 will typically have fewer extinctions than LVCM food webs with an associated inequal-345

ity/cluster in the middle and bottom rows of Figure 4. Therefore, if we generate a LVCM food346

web associated with a middle or bottom row cluster, we will typically observe many extinctions347

as the system is evolved dynamically in time. The resulting reduced food web is a new stable food348

web at equilibrium (e.g. Figures 1 and 2).349

Since the new food web is at a stable, coexistence equilibrium, if one were to start with this350

food web and evolve it according to the same rates, no further extinctions would occur. Therefore,351

one might hypothesize that the inequalities/clusters associated with the reduced, stable food webs352

would reside in a higher row of Figure 4 when compared to the row associated with the original353

food web. As an example, the LVCM shown in Figure 1 is associated with cluster C = 28 (B <354

D < R <U < L), while the reduced, stable food web shown in Figure 2 is associated with cluster355

C = 8, which (D <U < L < B < R) resides much higher in Figure 4 than cluster C = 28, and as356

such satisfies the hypothesis.357

To get a more quantitative sense, we generated 1000 LVCM food webs which were evolved358

to the reduced, stable food web at equilibrium. Dividing the clusters into groups of 30 (1-30,359

31-60, 61-90, 91-120), we found that the reduced food webs had associated clusters which more360
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FIG. 6. (a) Expected value of extinctions for each cluster in the training set. (b) Expected value of ex-

tinctions for each cluster in the training set (blue curve) and test set (black dots). The red bars denote the

minimum and maximum number of extinctions in each cluster of the test set. The cluster ordering is the

same as was used in Figure 4.

likely fell in the first 2 groups as opposed to the latter 2 groups. Specifically, 27 of the first set of361

30 clusters and 24 of the second set of 30 clusters were achieved, often with high frequency. In362

contrast, only 15 of the third set of clusters and 2 of the fourth set of clusters were achieved, and363

many of these were achieved only a single time. There is clearly a bias toward the reduced stable364

food webs being associated with a cluster in the upper part of Figure 4.365

C. Prediction of the Number of Extinctions366

It is reasonable to think that one can use the clustering results of Section IV B as a simple367

predictive model. Specifically, given a new LVCM food web, one can determine the absolute rate368

sums and the inequality associated with them. Then, rather than evolving the system dynamically369

to see how many extinctions occur, one can predict the number of extinctions using the expected370

value of extinction number for the cluster associated with the specific inequality.371

To explore how well this simple predictive model works, we divided the 400,000 realizations372

into training and test sets, allocating 80% of the realizations for training and 20% of the realizations373

for validation. Using the cluster ordering of Figure 4, Figure 6(a) shows the expected number of374

extinctions in each cluster. Consistent with the results of Section IV B, one sees an increase in375

the expected number of extinctions as one moves to the right. These expected values are used to376

predict the number of extinctions for a new LVCM food web.377
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To assess the accuracy of the model’s predictive performance, we computed the expected num-378

ber of extinctions for each cluster in the test set. The values are shown as black dots in Figure 6(b),379

and one sees they compare favorably with the predicted expected number of extinctions shown in380

blue (the blue curves in Figure 6(a) and (b) are identical). In fact, by the Law of Large Numbers,381

as the number of realizations in the test set increases, the expected values of the test set clusters382

will approach the predicted expected values. However, there is also a large variance in the possible383

number of extinctions occurring amongst all the realizations in each cluster. The red bars in Figure384

6(b) denote the minimum and maximum number of extinctions observed in each cluster of the test385

set. Due to the large variance, this simple predictive model may not perform as well for individual386

realizations.387

To check this, we calculated the coefficient of determination, R2, using388

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 , (8)389

where yi represents the number of extinctions associated with an individual realization in some390

cluster in the validation or test set (20% of the data), ȳ is the expected value of extinctions of the391

test set cluster within which the realization resides, and ŷ indicates the predicted expected value392

of extinctions found using the appropriate cluster in the training set data (80% of the data). The393

result, R2 = 0.48, is, because of the variance, quite poor. Therefore, to improve our predictive394

capabilities, we employed the random forest algorithm32.395

We constructed the random forest with the open-source data analytics application Radiant33,396

which uses R statistical software34. Specifically, our random forest consisted of 20 decision trees,397

which were created through the training process. The Radiant package creates each tree based on398

a a random piece of the training data, with a different random piece of the data used for each tree.399

Due to the random selection of training data, each tree will have some data points that were not400

used for the training. These unused data points are referred to as out-of-bag samples. Once the401

training is complete, these out-of-bag samples which have not been seen by the decision trees can402

be used to check the predictive performance of each decision tree.403

The random forest produced an R2 = 0.87, which is much better at predicting the number of404

extinctions compared with the simple cluster-based approach described above. Although the ran-405

dom forest acts as a “black-box", one can still leverage the model to assess the relative importance406

of the five types of rates based on their contribution to predicting the number of extinctions.407

We used a permutation feature importance approach in which the model’s performance was408
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measured when the values of the features (absolute rate sums) are randomly shuffled. Specifically,409

after training, the values of each of the five features are permuted in the out-of-bag samples, and410

the error is computed for the perturbed set of data. Then, the importance score of each feature411

is found by averaging over all the decision trees the difference in the out-of-bag error before per-412

mutation and after permutation. Lastly, the score is normalized by the standard deviation of the413

differences. Features with larger values for the importance score are considered to be more impor-414

tant than features with smaller values35. Table II shows the order of importance and accompanying415

importance scores.416

B D L R U

0.66 0.62 0.45 0.26 0.22

TABLE II. Importance order and scores of the five absolute rate sums.

It is clear that the absolute sum of the birth and death rates, B and D, have the most substantial417

impact on the prediction of species extinction. The absolute sum of the rates below the diagonal, L,418

are also important, consistent with the role of efficiency proxy given by Equation (7) and discussed419

in Section IV B. The absolute sum of the diagonal rates and rates above the diagonal, R and U , are420

less important.421

D. Prediction of the Number of Extinctions: A Neural Network Approach422

In Section IV C we saw that the cluster-based approach was inadequate for predicting the num-423

ber of extinct species. In contrast, the random forest approach provided much more accurate424

predictions along with a global estimation of feature importance found by averaging the effect of425

permutations over many realizations. We now endeavor to employ an artificial neural network426

model to provide accurate predictions while simultaneously enabling insight into the predictive427

method for individual realizations. In this neural network approach, the absolute rate sums, B, D,428

R, L, and U serve as input or explanatory variables, while the output or response variable is the429

number of extinctions for a particular realization, E. As with the clustering and random forest430

approaches, the objective is to predict the number of species in an LVCM food web that will go431

extinct without having to explicitly simulate the complex food web dynamics in time.432

Figure 7 shows the relationship between each of the explanatory variables and the response433

variable. Each filled circle represents a data point associated with a random simulation of the434
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FIG. 7. Correlation plots between the explanatory variables, B, D, R, L, and U , and the response variable,

E. The correlation coefficients between B, D, R, L, and U , and the response variable, E are respectively

-0.54, 0.46, 0.07, -0.30, and 0.23.

LVCM. While all the plots show good correlation, the absolute sums of the birth and death rates435

exhibit the strongest correlations. This is consistent with the importance order and scores of the436

five absolute rate sums presented in Section IV C. Taken together, the correlation plots of Figure 7437

provide justification that a neural network approach incorporating all five explanatory variables can438

be used to accurately predict the number of extinct species. We used an artificial neural network439440

(ANN) with three hidden layers, each of which contains five nodes (see Figure 8). We employed a441

linear, or identity, activation function for the first and second hidden layers, and a tanhx = ex−e−x

ex+e−x442

activation function for the third hidden layer. The dataset of 400,000 LVCM realizations was443

partitioned into training (80%) and testing (20%) sets. During the training, we used 50 epochs and444

the adam optimizer, with loss computed according to the mean squared error. We computed the445

coefficient of determination, R2 = 0.81, by averaging the R2 values for five independent training446

runs using the neural network architecture shown in Figure 8 and described above. Figure 9 shows447

the high accuracy of the predicted number of extinctions compared with the actual number of448
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FIG. 8. An artificial neural network (ANN) with three hidden layers, each of which contains five nodes.

The input layer incorporates the five absolute rate sums, B, D, R, L, and U . The Hi denote the nodes in the

hidden layers, and the Wi j denotes the weight values in each layer, only some of which are labeled. The

output layer predicts the number of extinct species, E.

extinctions.449450

Typically in machine learning, one uses nonlinear activation functions for each of the hidden451

layers. However, doing so prevents one from obtaining an associated equation which can be used452

to provide insight into the predictive method. Therefore, we used linear activation functions for453

the first two layers. Moreover, we did explore the use of nonlinear activation functions for all the454
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hidden layers, and the performance was not quite as good as what we achieved with the set-up455

described above. Separately, because the linear activation function provides a linear combination456

of the input variables, theoretically one should be able to collapse the linear hidden layers into a457

single hidden layer. In practice, however, we found that using two hidden layers with the linear458

activation function provides better predictive performance (average R2 = 0.815) than using a single459

hidden layer with the linear activation function (average R2 = 0.72) or three (average R2 = 0.811)460

or four (average R2 = 0.80) hidden layers with the linear activation function (all scenarios had a461

final hidden layer using the tanhx activation function).462

To derive the predictive equation, one can compute the value of each node Hi shown in Figure 8463

by finding the linear combinations associated with the weights Wi j and the preceding nodes serving464

as inputs. To find the values of Hi (i= 1 . . .5) in the first hidden layer, form the linear combinations465

involving the input variables B, D, R, L, and U , and the weights Wi j, i, j = 1 . . .5 so that466

Hi = B ·W1i +D ·W2i +R ·W3i +U ·W4i +L ·W5i + ci (9)467

where ci is a constant bias term. Similarly, the values of Hi (i = 6, . . . ,10) in the second hidden468

layer are found as469

Hi = H1 ·W1i +H2 ·W2i +H3 ·W3i +H4 ·W4i +H5 ·W5i + ci (10)470

and the values of the nodes in the third hidden layer before the tanhx activation function is applied,471

Xi (i = 11, . . . ,15), are found as472

Xi = H6 ·W6i +H7 ·W7i +H8 ·W8i +H9 ·W9i +H10 ·W10i + ci. (11)473

After applying the activation function, one has474

Hi =
eXi − e−Xi

eXi + e−Xi
, i = 11, . . . ,15. (12)475

Lastly, the equation to predict the number of extinctions is formed as476

E =
15

∑
i=11

Hi ·Wi16 + c16. (13)477

Using our neural network architecture and Equations (9)-(13), we can find the specific predic-478

tive equation for one training run (associated with an R2 = 0.82). The Xi, i = 11, . . . ,15, and E479
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equations are given as480

X11 = 1.26095+0.0117789B−0.00164158D481

+0.000457352L−0.000837343R−0.00030985U, (14)482

X12 = 0.184674+0.00257395B−0.00116786D483

+0.000767944L−0.00103138R−0.00013743U, (15)484

X13 = 1.0082−0.000260263B+0.00220154D485

−0.0000475026L−0.000752652R+0.000240999U, (16)486

X14 =−0.640453−0.0004638B−0.000523884D487

+0.000552778L−0.00111785R+0.000170356U, (17)488

X15 =−0.303342−0.01249B+0.000643048D489

+0.0000154759L+0.000711079R+0.0000790523U (18)490

E = 17.431087+10.999312tanh(X11)−14.078264tanh(X12)491

+16.728575tanh(X13)+8.828843tanh(X14) (19)492

+9.922335tanh(X15). (20)493

Figure 9 shows very good agreement between the predicted number of extinctions found using494

Equation (20) versus the actual number of extinctions for the 80,000 realizations contained within495

the test set.496

In order to gain an indication of the importance of the respective inputs, as we did with the497

random forest, we drew on a gradiant approach, a method associated with the growing repertoire498

of interpretability of neural networks36. Because Equation (20) is relatively simple with limited499

nonlinearity, the function can be approximated locally by a linear function given as500

E(x)≈
5

∑
i=1

∂E
∂x(i)

(x0)(x(i)−x0(i)) =
5

∑
i=1

Ri, (21)501

where x = (B,D,L,R,U) and x0 is a nearby root of E. Each of the Ri terms can be interpreted502

as the contribution of feature i (i.e., B, D, L, R, U) to the prediction of extinction number E. In503

particular, the sign and magnitude of each feature provides a measure of how sensitive E is to each504

feature.505

Each of the partial derivatives in Equation (21) can be easily computed. Given a specific506

realization of B, D, L, R, U values, one can use standard numerical root finder methods to507
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FIG. 9. Predicted number versus the actual number of extinctions

find a nearby root. For example, consider a realization from a cluster which resides near the508

top of Figure 4. The absolute rate sums associated with this realization are (B,D,L,R,U) =509

(359.69,60.42,1595.20,1309.81,97.51). The actual number of extinctions associated with this re-510

alization is zero, while the predicted number using Equation (20) is 0.76. Using these values as an511

initial guess, a nearby root is given by (B,D,L,R,U) = (366.54,47.30,1596.68,1312.13,95.93).512

Evaluating the partial derivatives at this root point, Equation (21) becomes513

E ≈−0.0223∗ (359.69−366.54)514

+0.0435∗ (60.42−47.30)515

−0.0048∗ (1595.20−1596.68)516

−0.0080∗ (1309.81−1312.13)517

+0.0053∗ (97.51−95.93). (22)518

Therefore, the contribution of each feature, Ri is given as

RD = 0.57 > RB = 0.15 > RR = 0.02 > RU = 0.008 > RL = 0.007.

By comparison with Table II one can see that the feature contribution here is different from the519

importance order found using the random forest. It is important to remember that the random520

forest result is an average over many thousands of realizations while this local linearization result521
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is specific to one particular realization. If one were to consider a second realization with absolute522

rate sums near the root point given as (B,D,L,R,U) = (226.61,117.49,2201.20,1497.13,108.40),523

and where the predicted number of extinctions is 2.40 versus the actual number of zero, then524

one finds that the feature contributions, RB = 3.11, RD = 3.05, RL = −2.88, RR = −1.47, and525

RU = 0.07, match the random forest importance ordering. While the random forest provides a526

global average of feature contributions, the local linearization approach provides information to527

help explain the predictions of specific realizations.528

The predictive equation for number of extinctions given by Equation (20) was determined us-529

ing LVCM food webs containing 50 species. The result can also be used for LVCM food webs530

containing different numbers of species due to linear scaling. We now demonstrate that cascade531

food webs have an expected number of basal and non-basal species which scale linearly with the532

number of species in the food web. Similarly, we will show that the interaction strengths also533

scale linearly with the number of species. Therefore the magnitude of the absolute rate sums, B,534

D, R, L, and U , all scale linearly according to the number of the species. Because of this, one can535

scale the absolute rate sums for S species by 50/S so that the rate sums are on an equivalent 50536

species scale. Then one can use Equation (20) to predict the number of extinctions on a 50 species537

scale. Finally, by scaling this number of extinctions by S/50, one has a prediction of number of538

extinctions for the S species food web.539

To find the expected number of basal species, consider a cascade model food web G with S540

species labeled from [S] := {1,2, . . . ,S}, with connectance probability p. By construction, all541

edges are directed from higher index species to lower indexed species. Every connection of the542

form i j, where i > j, appears independently with probability p. Basal species are those with an543

out-degree of zero. We first compute the expectation of nb, the number of basal species. For a544

given species i ∈ {1, . . . ,S}, the probability that i has out-degree zero is given by (1− p)i−1 since545

all edges from i to the set [i−1] must not be present. Thus, by linearity of expectation, the expected546

number of basal species is547

E [nb] =
S

∑
i=1

(1− p)i−1 =
1− (1− p)S+1

1− (1− p)
=

1− (1− p)S+1

p
(23)548

As noted previously, by Cohen and Newman9, for our simulations we use p = c/S with c = 3.72.549

In this case, we have that the expected number of basal species is asymptotically 1−e−c

c S ≈ .2623S.550

Since the expected number of basal species grows linearly in S, the expected number of non-basal551

species will also grow linearly in S. Therefore the absolute sum of birth and death rates, B and D,552
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will grow linearly in S.553

Now let I represent the number of interactions (edges) in G. For our value of p = c/S with554

c = 3.72, we have555

E[I] =
(

S
2

)
· p ∼ c

2
S = 1.86S. (24)556

Since the number of interactions scales linearly in S, the absolute sum of the interaction rates, L557

and U , will scale linearly in S. Finally, since all species have a self-regulation rate, clearly, the558

absolute sum of self-regulation, R, scales linearly in S.559

We considered LVCM food webs of size S ∈ {35,45,55,65,80,95,110,125,140}. For each560

value of S, we generated 500 LVCM realizations using the rate distributions as described in Section561

IV B (r = 30). As described previously, the absolute rate sums for each realization were scaled562

by 50/S, and Equation (20) was used to predict the number of extinctions for an equivalent 50563

species food web. These values were then scaled by S/50 to obtain a prediction for the appropriate564

S-sized food web. Figure 10 shows the R2 values for 10 different values of S. One can see excellent565

predictive capability for a wide range of S values.566

40 60 80 100 120 140
S

0

0.2

0.4

0.6

0.8

1

R
2

FIG. 10. Coefficient of determination, R2, comparing the predicted versus actual number of extinctions for

a selection of LVCM food webs containing different numbers of species, S.

567
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FIG. 11. Sum of the birth and death rates of the surviving species as a function of the number of extinctions

for a 50 species LVCM food web.

E. Effect of Death Rates on Extinction Order568

We have shown that LVCM food webs exhibit a substantial number of species extinctions and569

that the birth and death rates, B and D have the most substantial impact. To further explore the570

importance of these rates, we measured the sum of the birth and death rates of surviving species as571

a function of the number of extinctions. For the simulations performed in this section, we return572

to coupling the interaction rates via efficiency, and use e = 0.1 and r = 1 for the rate distributions.573

Figure 11 shows this relationship for one realisation of a 50 species food web and a choice of574

rates. At the start, for zero extinct species, the sum of the birth and death rates is negative since575

there are far more non-basal species with negative growth (death) rates than basal species with576

positive growth (birth) rates. As the number of extinctions increases, the sum of the rates becomes577

less negative, and then becomes positive. Eventually, as the food web evolves to a stable food web578

at equilibrium, the sum of the rates reaches a plateau.579580

The result was compared with the corresponding sum for a simulation where extinctions oc-581

curred at random rather than according to the Lotka-Volterra dynamics. By comparing the two582
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outcomes for different rate sums, we determined that the death rates of the species have the most583

influence in determining which species will go extinct as well as the order of extinction. Although584

the result may seem trivial, due to the complicated interplay of dynamics it is not at all clear a585

priori that this would be the case.586

To perform this comparison, we would like to consider many realizations of food web and587

choice of rates. Because each realization can have differing numbers of extinct species as well588

as a different range for the sum of the birth and death rates, we must normalize both the abscissa589

and ordinate values to lie between zero and one. Figure 12 shows the combined normalized sum590

of the birth rates (for basal species) and death rates (for non-basal species) as a function of the591

normalized number of extinctions for cascade food webs of 50 species with two types of dynamical592

interactions.593594

The first type of interactions are due to Lotka-Volterra dynamics per the LVCM described595

above. As before, the cascade food webs are evolved in time according to the Lotka-Volterra596

dynamics, and a number of species extinctions are observed until eventually a new stable food597

web is achieved. With each species extinction, we calculated the combined sum of the birth and598

death rates of the species that remain in the food web. This process of summing the birth and death599

rates was repeated until the food web reached its stable, equilibrium configurations. In Figure 12,600

the pink curves show the sum of the combined birth and death rates of all remaining species in601

the food web as a function of extinction number for 30 realizations of the LVCM (different food602

web topologies and different rates in the Lotka-Volterra dynamics). As noted above, because each603

realization may have different sum values and different numbers of extinction, we normalized both604

to the unit interval. The single red curve represents the average of these 30 different realizations.605

We compare these results by considering the exact same cascade food webs, but instead of ex-606

tinctions occurring due to Lotka-Volterra dynamics, now species are randomly chosen for extinc-607

tion. As the species go extinct, we perform the same procedure as for the Lotka-Volterra dynamics,608

and sum the combined birth and death rates for the surviving species. The cyan curves in Figure609

12 show the normalized results for thirty realizations. The single dark blue curve represents the610

average of these thirty scenarios.611

There is a notable difference between the cyan/dark blue curves and the pink/red curves. The612

pink curves are larger than the cyan curves, and the slope of the pink curves is larger than the slope613

of the cyan curves at the beginning of the process. It is therefore evident that under Lotka-Volterra614

dynamics, there is a biased behavior in the extinction process, whereby species with higher death615
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FIG. 12. Normalized sum of the birth and death rates of the surviving species as a function of the normalized

number of extinctions for 50 species cascade food webs. The pink curves show the normalized sum of the

combined birth and death rates for the species that remain in the food web for 30 realizations of the LVCM.

The red curve depicts the average of the 30 pink curves. The cyan curves show the normalized sum of the

birth and death rates for the same cascade food webs, but with extinctions occurring randomly. The single

dark blue curve depicts the average of the 30 cyan curves. The green and black curves are the theoretical

predictions for the Lotka-Volterra and random extinction cases, respectively.

rates go extinct first on average.616

The computational results can be confirmed theoretically. First we derive the theoretical curve617

associated with random extinction events. Consider the growth rates (birth and death) associated618

with the species which go extinct (in their extinction order), and which we denote as b1, . . . ,bn.619

Let B = b1 + . . .+ bn, and let Si = bi+1 + . . .+ bn +A, where A is the sum of the birth and death620

rates for the surviving species. Therefore, Si is the partial sum for all but the first i terms, and is621

what is shown by the pink curve in the pre-normalized sum shown in Figure 11. The curve values622

range from B+A to A as i ranges from 0 to n.623

Now let σ be a random permutation of n. Then bσ (1),bσ (2), . . . ,bσ (n) are the birth and death624

rates in a random order. The expectation of every bσ (i) is the average of the bi terms, and is625
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given by B/n. We let b = B/n. Therefore, the expectation of the randomized partial sum bσ (i+626

1), . . . ,bσ (n)+A, is (n− i)b+A = B+A− ib.627

The graph of this expectation of the randomized partial sums from 0 to n is a line with slope628

given by −b. In Figure 12, the graph is given by the black line, which agrees very well with629

the dark blue curve found computationally by averaging 30 realizations. Note that the slope −b630

appears positive in the graph because the bi growth rates are mostly negative death rates associated631

with non-basal species. Importantly, this argument has nothing to do with the distribution of the632

birth rates. No matter what values are ascribed to the rates b1, . . . ,bn, if one randomizes their order,633

the partial sums will be linear in expectation.634

Now we derive the theoretical curve associated with the Lotka-Volterra dynamics. The pink635

curves in Figure 12 suggest that species with higher death rates go extinct first. To derive the636

theoretical results, we will assume that non-basal species will in fact go extinct in the order of637

their death rates. Note that if all initial conditions were the same, and there were no interactions638

between species, then this would be the case.639

Suppose that there are N non-basal species and that their death rates are uniformly distributed640

on the interval [−a,−b]. Then the kth lowest (most negative) death rate has expected value −a+641

k
N+1(a− b) (see for example37). Let D j represent the expected sum of the remaining death rates642

after j extinctions. Then by linearity of expectation, D j is the sum of all the expected death rates643

except for the j most negative ones. In other words,644

D j =
N

∑
i= j+1

−a+
i

N +1
(a−b) (25)645

=−a(N − j)+
a−b
N +1

(
N(N +1)

2
− j( j+1)

2

)
. (26)646

If one lets x = j/N, then647

D j = N ·
(
−a(1− x)+

a−b
2

(1− x2)

)
+O(1). (27)648

Note that as the width of the interval increases, the quadratic part of the term is “scaled up”. After649

normalization to the unit square, we get650

d(x) = 1− (1− x)2,651

which appears as the green curve in Figure 12.652

The green theoretical curve in Figure 12 has the same shape as the red curve, which was found653

by averaging 30 realizations. However, although the two curves are close in value, they are not654
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perfectly overlaid with each other. This is due to the fact that the theoretical curve was derived655

based on an assumption that all species went extinct according to their death rate. While the very656

close agreement between curves suggests that the species under Lotka-Volterra dynamics generally657

go extinct according to their death rates, there will be some exceptions. Nevertheless, it is clear658

that the death rate is a significant driver of extinction as well as the order of extinction.659

V. CONCLUSION660

For years, a main focus of ecological research has been to better understand the complex dy-661

namical interactions between species which comprise food webs. While these relationship interac-662

tions can be mathematically modelled using the Lotka-Volterra equations, ecologists often analyze663

a food web system via the community matrix, i.e. the Jacobian of the nonlinear system evaluated664

at equilibrium. In contrast to this approach, this work considers the synthesis of cascade food webs665

with nonlinear Lotka-Volterra equations to better understand the role of population dynamics and666

trophic structure in ecological communities. Importantly, the Lotka-Volterra equations incorpo-667

rate a biological efficiency. This efficiency, which is widespread in mathematical ecology, links668

the predator-prey interactions. Through simulation, we have shown how the cascade topology cou-669

pled with a biological efficiency leads to numerous species extinctions. This suffocating quality of670

efficiency was also found in another common synthetic food web model, the niche model. This has671

potentially far-reaching consequences for the assumptions underlying not only synthetic models,672

but in the way community matrices might be built from empirical data. In future work, we plan673

to consider real food webs and investigate how the assumptions may lead to different outcomes674

depending on whether one is considering the nonlinear system or the associated linearized system675

at equilibrium.676

Moreover, we showed via clustering analysis that persistence could be achieved only when677

the absolute sums of the birth, death, self-regulation, and interaction rates satisfied specific in-678

equalities. Even then, only a very small proportion of LVCM food webs persisted intact when679

the dynamics were evolved in time. Importantly, we showed using an efficiency proxy that these680

persistent LVCM food webs are not biologically realistic.681

With only the simplified rate sums of the variables, we explored the use of machine learning to682

predict the number of extinctions that would occur in a given LVCM food web without actually683

evolving the dynamics. Both a random forest approach, and an artificial neural network, were684
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highly effective in predicting extinctions, which also provides insight into how the structure of685

the values comprising the system plays the most crucial role in the viability of the underlying686

dynamics. Lastly, we explored the internal processes involved in the extinction of species during687

the unfolding dynamics of a system, and have been able to highlight how the death rates play the688

dominant role in determining the species’ extinction order.689

The work presented in this article leads to an important cautionary message. When field ecolo-690

gists or mathematical ecologists use linearized community matrices as their starting point, without691

considering the dynamics that would have led to such a linearized system, then certain assump-692

tions may have been made which would make such a Jacobian unlikely to have been generated.693

While the process of reverse engineering the underlying dynamics from a community matrix is694

not generally feasible due to loss of information and non-uniqueness, it is perhaps a reasonable695

suggestion that any assumptions hard-wired into a linearized system be applied at the dynamical696

systems level to investigate how such assumptions have an effect on systems as they unfold in697

time.698
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Appendix: Comprehensive Cluster Overview713

C α < β < γ < δ < ε emin(i) ∑ei

1 U < D < B < R < L e0 = 63 1,514

2 D <U < B < R < L e0 = 63 1,766

3 D <U < B < L < R e0 = 10 657

4 D < B <U < R < L e0 = 8 8,004

5 U < B < D < R < L e0 = 5 6,010

6 U < D < B < L < R e0 = 4 534

7 D < B <U < L < R e0 = 1 2,108

8 D <U < L < B < R e1 = 2 110

9 U < D < R < B < L e1 = 1 154

10 B <U < D < R < L e2 = 2 15,924

11 U < B < R < D < L e2 = 1 3,431

12 D < L <U < B < R e2 = 1 116

13 U < D < L < R < B e2 = 1 6

14 D <U < R < L < B e2 = 1 8

15 B < D <U < R < L e3 = 4 19,624

16 D < B < R <U < L e3 = 2 13,671

17 D < B < L <U < R e3 = 1 2,092

18 D <U < R < B < L e3 = 1 200

19 D <U < L < R < B e3 = 1 10

20 D < L < B <U < R e3 = 1 630

21 U < D < R < L < B e3 = 1 5

22 D < B < R < L <U e4 = 1 13,627

23 U < R < D < B < L e4 = 1 156

24 D < B < L < R <U e5 = 1 7,931

25 U < R < B < D < L e5 = 1 1,067

26 U < B < D < L < R e5 = 1 1,699

27 U < D < L < B < R e6 = 2 88

28 B < D < R <U < L e6 = 1 39,925

29 D < L <U < R < B e7 = 3 9

30 B <U < R < D < L e7 = 2 8,400

31 U < R < D < L < B e7 = 2 6

32 U < R < L < D < B e7 = 1 3

33 D < R < B <U < L e8 = 4 2,532

34 D < L < B < R <U e8 = 2 1,780

35 D < R < B < L <U e8 = 2 2,437

36 D < R <U < B < L e8 = 1 232

37 U < R < B < L < D e8 = 1 196

38 B < R <U < D < L e9 = 2 8,344

39 B < R < D <U < L e9 = 2 26,931

40 R < D < B <U < L e9 = 1 2,247

C α < β < γ < δ < ε emin(i) ∑ei

41 B < D <U < L < R e9 = 1 4,382

42 R < L < D < B <U e9 = 1 189

43 D < L < R <U < B e9 = 1 11

44 R <U < D < B < L e9 = 1 196

45 R <U < B < D < L e10 = 4 1,265

46 D < R < L < B <U e10 = 2 219

47 D < L < R < B <U e10 = 1 212

48 B < D < R < L <U e10 = 1 39,756

49 R <U < D < L < B e10 = 1 7

50 R <U < L < B < D e10 = 1 61

51 R < D <U < L < B e10 = 1 7

52 U < L < R < D < B e10 = 1 3

53 R < D < L <U < B e10 = 1 6

54 L < D < R <U < B e10 = 1 10

55 R < B <U < D < L e11 = 4 3,945

56 R < B < D <U < L e11 = 3 10,504

57 R < D <U < B < L e11 = 2 199

58 U < L < D < R < B e11 = 1 9

59 B <U < D < L < R e11 = 1 3,912

60 L < D < R < B <U e11 = 1 183

61 R < D < L < B <U e11 = 1 196

62 R <U < B < L < D e11 = 1 246

63 R < D < B < L <U e12 = 1 2,253

64 R < B < D < L <U e12 = 1 10,445

65 R < L < D <U < B e12 = 1 11

66 R < L <U < D < B e12 = 1 6

67 B < R < D < L <U e13 = 2 27,427

68 U < R < L < B < D e13 = 2 45

69 U < B < R < L < D e13 = 1 528

70 R <U < L < D < B e13 = 1 6

71 R < L < B < D <U e14 = 2 1,134

72 R < B <U < L < D e14 = 1 598

73 B < D < L <U < R e14 = 1 4,492

74 D < R <U < L < B e14 = 1 3

75 L < R < D <U < B e14 = 1 7

76 R < B < L < D <U e15 = 4 3,947

77 R < L < B <U < D e15 = 1 226

78 B < D < L < R <U e16 = 3 19,314

79 D < R < L <U < B e16 = 2 3

80 L < R <U < D < B e16 = 1 7

C α < β < γ < δ < ε emin(i) ∑ei

81 U < L < D < B < R e16 = 1 84

82 L < R < D < B <U e17 = 1 193

83 R < B < L <U < D e17 = 1 618

84 L < D < B < R <U e17 = 1 1,467

85 R < L <U < B < D e17 = 1 57

86 U < L < B < R < D e17 = 1 219

87 B < R <U < L < D e18 = 2 1,081

88 L < R < B < D <U e18 = 1 1,067

89 U < B < L < D < R e18 = 1 1,253

90 L < D <U < B < R e18 = 1 101

91 U < B < L < R < D e19 = 2 537

92 L < D < B <U < R e18 = 1 516

93 B < R < L < D <U e19 = 3 8,261

94 B <U < R < L < D e19 = 2 1,057

95 U < L < R < B < D e19 = 1 57

96 L < B < R < D <U e20 = 1 3,435

97 L < R <U < B < D e20 = 1 56

98 B < L < R < D <U e20 = 1 8,445

99 L <U < R < D < B e20 = 1 5

100 L < D <U < R < B e20 = 1 4

101 L <U < R < B < D e20 = 1 88

102 L <U < D < R < B e20 = 1 6

103 B < L < D < R <U e21 = 1 16,085

104 U < L < B < D < R e21 = 1 426

105 L <U < R < B < D e22 = 2 44

106 L < B < D < R <U e22 = 1 6,005

107 B < R < L <U < D e23 = 3 1,104

108 L < R < B <U < D e23 = 1 218

109 L < B < R <U < D e23 = 1 502

110 L <U < B < R < D e24 = 2 211

111 B <U < L < R < D e24 = 1 1,114

112 B < L <U < D < R e24 = 1 2,870

113 B <U < L < D < R e25 = 5 2,769

114 B < L < R <U < D e25 = 2 1,100

115 B < L <U < R < D e25 = 2 1,077

116 B < L < D <U < R e25 = 1 3,945

117 L < B <U < D < R e25 = 1 1,233

118 L <U < B < D < R e25 = 1 439

119 L < B < D <U < R e25 = 1 1,590

120 L < B <U < R < D e28 = 1 507

TABLE III. Cluster number, C, and associated inequality, number of extinctions, ei, for the minimum value

of i, and number of realizations.
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