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ARTICLE INFO ABSTRACT

Handling editor: P Rioual Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a group of temperature-sensitive membrane lipids
found in bacteria that have been widely used in palaeo-temperature reconstruction. Despite recent advances in
analytical methods, calibration datasets and statistical modelling approaches, one of the current challenges in
Quaternary science remains in determining the most appropriate calibration model for reconstructing past
changes in climate. We address this challenge by expanding existing calibration datasets, and by evaluating
calibration models constructed using a range of statistical modelling approaches. We further evaluate model
performance by applying the calibrations to published downcore records from contrasting environments and
across different Quaternary timescales.

Our study expands existing calibrations and includes new data from Antarctic lakes, providing greater con-
fidence and applicability across a wider range of global environments. Results show robust brGDGT-temperature
relationships on a global scale within the temperature range of approximately —2 °C to +31 °C covered in this
study, with the random forest (RF) models performing the best (highest Rg, and lowest RMSEP) to estimate mean
temperature of Months Above Freezing (MAF) and Mean Summer (air) Temperature (MST). Examination of
uncertainties suggests the best models are accurately modelling all the features of the brGDGT-temperature
relationships.

To evaluate model performance downcore we apply and recommend a suite of exploratory statistical analyses
to help identify core-samples that have unusual, no-analogue compositions, and use measures of correlation and
concordance to summarise the similarity in trends and absolute values among reconstructions as a tool to suggest
which reconstructions may be more reliable and where to use caution. Our results demonstrate that, although
cross-validated calibration R%, and RMSEP may indicate good model performance for the calibration data, a
thorough assessment is required to assess reconstruction reliability when a model is applied downcore at a
specific site. Our findings highlight the complexities and caveats of different methods for global temperature
calibrations. The implications of our work are also relevant to other calibration studies in Quaternary science.
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1. Introduction branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature

indicators in lakes. BrGDGTs are cell membrane lipids found in bacteria

Quantitative palaeoclimate reconstructions are fundamental to un-
derstand long-term trends in natural climate variability and to test
climate models used to make projections of future anthropogenic
climate change. Advances in molecular organic geochemistry and
related fields have led to the successful calibration and application of
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(Sinninghe Damsté et al., 2000) from diverse depositional settings and
which have a structural variability that depends strongly on growth
temperature (Weijers et al., 2006a,b), with the number of methyl groups
(and cyclopentane rings) in the brGDGT structure being a key factor in
the adaptation to temperature change, and a decrease occurring in the
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degree of methylation with increasing temperature (Supplementary
Fig. 1). While the extent of brGDGT sources still remains largely un-
known, advances in culture studies and bioinformatics have improved
our understanding of the biosynthetic pathways of brGDGTs with im-
plications for their application (e.g. Tetraether synthase, Tes; Chen et al.,
2022; Lloyd et al., 2022). Results from molecular dynamics simulations
of brGDGT membranes have shown that the empirically observed cor-
relation between the degree of methylation and temperature allows
brGDGT-producing bacteria to maintain adequate membrane fluidity
via homeovisceous adaptation (Naafs et al., 2021). The physiological
basis for the empirical relationship between brGDGT methylation
number and temperature has also been supported by laboratory and
environmental incubation studies (Martinez-Sosa et al., 2020) and using
cultured Solibacter usitatus from the globally abundant bacterial phylum
Acidobacteria, which may be an important brGDGT producer in nature
(Chen et al., 2022; Halamka et al., 2023).

The development and application of temperature proxies based on
brGDGTs led to the construction of global (Pearson et al., 2011) and
regional lacustrine brGDGT-temperature calibration models which
compare present day lake or air (mean) temperature with the brGDGT
distributions in surface sediments. These regional calibrations include
for eastern Africa (Tierney et al., 2010; Loomis et al., 2012) , Baffin Is-
land, Canada (Shanahan et al., 2013), Tibet (Giinther et al., 2014),
Arctic Canada and Siberia (Peterse et al., 2014), Chile (Kaiser et al.,
2015), Antarctica and the sub-Antarctic islands (Foster et al., 2016), and
New Zealand (Zink et al., 2016). Calibrations have been applied down
core to reconstruct past temperatures on a range of Quaternary time-
scales using lake sediments from a range of contrasting environments,
including in eastern Africa (e.g. Sinninghe Damsté et al.,, 2012),
Antarctica (Foster et al., 2016; Roberts et al., 2017), Siberia (Keisling
etal., 2017), the USA (Krause et al., 2018), and Australia (Thomas et al.,
2022).

The original analytical method for analysing brGDGTs used high
performance liquid chromatography (HPLC) coupled to mass spec-
trometry (LCMS) with normal phase separation and a single cyano (CN)
column (Hopmans et al., 2000). Accurate quantification of GDGTs using
this method is challenging as the imperfect separation of some GDGT
isomers can result in late eluting shoulders for one or more of the
brGDGTs leading to an increase in analytical error for these compounds.
De Jonge et al. (2013) determined that the late eluting shoulders
comprise 6-methyl rather than 5-methyl brGDGTs and that improved
chromatographic separation using a silica rather than cyano column had
an impact on GDGT-derived proxies. De Jonge et al. (2014) subsequently
redefined the MBT soil temperature index (methylation index of
branched tetraethers; Weijers et al., 2007) to include both the 5-methyl
and 6-methyl isomers, and found that removal of the 6-methyl isomers
improved temperature calibrations, thus defining a new MBT’5g index
using only the 5-methyl isomers. Based on these advances, the single
cyano column (SC) analytical method of Hopmans et al. (2000) has been
refined to use two silica columns in tandem (i.e. a dual column (DC)
method) to improve chromatography and separation of the GDGT iso-
mers (Hopmans et al., 2016). Further work has resulted in the separation
and identification of both 5- and 6-methyl isomers of penta-methylated
(GDGT-II) and hexa-methylated (GDGT-III) brGDGTs (Supplementary
Fig. S1) in lakes (e.g., Dang et al., 2016; Li et al., 2017; Russell et al.,
2018; Weber et al., 2018; Ning et al., 2019; Qian et al., 2019; Cao et al.,
2020; Stefanescu et al., 2021; Martinez-Sosa et al., 2021; Raberg et al.,
2021), and has led to DC-derived global (Martinez-Sosa et al., 2021;
Raberg et al., 2021) and regional (Russell et al., 2018, eastern Africa; Lei
et al., 2023, North American subtropics; Bauersachs et al., 2024, central
Europe) lake calibration datasets.

Despite these advances there is clear variation in the robustness of SC
and DC temperature reconstructions at different sites. In order to
improve the accuracy and reliability of GDGT-based temperature re-
constructions we consider two main routes of advancement: (i) expan-
sion of the calibration dataset to capture a wider range of natural
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variability, and (ii) improvement of reconstructions via robust numeri-
cal methods. Here, we address these key issues by expanding and
maximising the temperature gradient of both the single column (SC) and
dual column (DC) surface sample calibration datasets, and by evaluating
a range of different numerical approaches to calibration and recon-
struction. We examine both DC and older SC methods because an
updated global SC calibration can be applied to refine existing SC-
derived core data (e.g., Sinninghe Damsté et al., 2012; Keisling et al.,
2017; Krause et al., 2018; Foster et al., 2016; Roberts et al., 2017;
Thomas et al., 2022; Heredia-Barion et al., 2023a, 2023b), and the
existing global SC calibration (Pearson et al., 2011) has also been
applied to modified DC-derived core data (Baxter et al., 2023) and was
considered the most reliable method for reconstructing past temperature
history from the sediments of Lake Challa (Baxter et al., 2024).

Our expanded datasets include Antarctic and sub-Antarctic sites to
improve current quantitative brGDGT-temperature reconstructions in
cold regions. To date the global calibration of Pearson et al. (2011) and
the Antarctic calibration of Foster et al. (2016) are the only published
studies reporting GDGTs in Antarctic lakes but no studies have been
published investigating 5- and 6-methyl brGDGTs in Antarctic lake en-
vironments. This work therefore expands the Antarctic dataset used in
the SC global calibration of Pearson et al. (2011), while providing the
first addition of Antarctic samples in a DC global calibration, thus
providing the first truly global brGDGT dataset comprising both 5- and
6-methyl brGDGTs. The Antarctic lakes span a range of Mean Annual Air
Temperatures (MAAT) from —11.8 to 6.1C and Mean Summer Air
Temperatures (MSAT) from —2.2 to 10.3C, cover a depth range of
0.5-55m and a range of pH and conductivities (see Foster et al., 2016).

Published brGDGT calibrations using lake sediments have used a
range of statistical modelling techniques, including multiple linear
regression of individual compounds (Pearson et al., 2011; Loomis et al.,
2012; Foster et al., 2016; Bauersachs et al., 2024) , multiple regression
using quadratic terms (Raberg et al., 2021), linear regression of a single
index (e.g. MBT’5yg) in a Bayesian framework (Martinez-Sosa et al.,
2021), and machine learning methods such as regression trees (Véquaud
et al., 2022) and deep learning artificial neural networks (Haggi et al.,
2023). These methods each have advantages and disadvantages. For
example, methods that collapse compounds into a single index (e.g.,
MBT sy, €.8. Martinez-Sosa et al., 2021) potentially reduce noise in the
non-linear temperature relationships of individual compounds but may
not extract or model all features of the data. Similarly, linear regression
with quadratic terms (e.g. Raberg et al., 2021) may better model
non-linearities in the data but may be prone to overfitting and spurious
extrapolation, particularly at the ends of the temperature gradient
where non-linearities are less well constrained (Hahn, 1977). Here we
apply these different statistical approaches to the same calibration
datasets to provide a baseline assessment of method performance.

The performance of a calibration is usually assessed by measures of
prediction error derived from the calibration dataset under cross-
validation, as this guards against overfitting (Yates et al., 2023). How-
ever, performance of calibration models assessed purely on modern
surface samples is not necessarily a good guide to the robustness of
down-core reconstructions (Juggins, 2013; Sun et al., 2024), especially
in cases where core data lie outside the geochemical composition space
of the calibration data. Thus, in addition to evaluating different nu-
merical approaches in terms of their prediction errors, we also evaluate
the reconstructions from each method by applying them to a range of
existing published sediment cores from contrasting environments.

Our specific aims and objectives were to: (i) develop new global
lacustrine brGDGT-temperature calibrations based on single column
(SC) and dual column (DC) LCMS analytical methods by expanding the
current SC and DC datasets and including samples at the cold Antarctic
and sub-Antarctic end of the temperature gradient; (ii) compare and
assess a range of different statistical modelling methods that can be used
for calibrations, with a focus on Mean Summer Temperature (MST) and
Mean temperature of months Above Freezing (MAF), to identify the
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most appropriate, robust, and realistic calibration method(s); (iii) apply
new SC and DC calibrations to previously published down-core data
from different lake environments and Quaternary timescales to evaluate
the models and resulting downcore temperature reconstructions; (iv)
assess the implications of our study for Quaternary science and provide
recommendations to consider for future calibrations and
reconstructions.

2. Materials and methods
2.1. Lake locations, datasets and brGDGT analyses

Locations of the lakes included in this study are shown in Fig. 1. To
create new global brGDGT-temperature calibrations for lakes using the
single column (SC) LCMS analytical method (Hopmans et al., 2000) we
expand the global brGDGT-temperature calibration dataset of Pearson
et al. (2011) by including the Antarctic and sub-Antarctic (Foster et al.,
2016) datasets, along with other previously published regional lacus-
trine brGDGT-temperature datasets published between 2010 and 2018
from eastern Africa (Tierney et al., 2010; Loomis et al., 2012), Baffin
Island, Canada (Shanahan et al., 2013), Arctic Canada and Siberia
(Peterse et al., 2014), Chile (Kaiser et al., 2015), and New Zealand (Zink
et al., 2016). Our new SC global lake calibration dataset (GLC-SC)
comprises a total of 349 lakes. While this uses the original LCMS
analytical method, which comes with its own caveats, it nonetheless
enables refinement of reconstructions that have previously used this
method (e.g., Sinninghe Damsté et al., 2012; Keisling et al., 2017; Krause
et al., 2018; Foster et al., 2016; Roberts et al., 2017), and can be used by
research groups that still use this analytical method (e.g., Thomas et al.,
2022).

We also created a new global DC brGDGT-temperature calibration
(GLC-DC) dataset comprising surface samples from a total of 378 lakes.
Following the recent analytical advances which enables separation of 5-
and 6-methyl compounds (Hopmans et al., 2016), we re-analysed Ant-
arctic and sub-Antarctic samples from Pearson et al. (2011) and Foster
et al. (2016) using the DC LCMS method and merged these data with
existing published DC derived data published between 2016 and 2021
from Dang et al. (2016) (China), Li et al. (2017) (Inner Mongolia),
Russell et al. (2018) (eastern Africa), Weber et al. (2018) (Switzerland
and Italy), Ning et al. (2019), Qian et al. (2019), Cao et al. (2020)
(China), Stefanescu et al. (2021) (USA), Martinez-Sosa et al. (2021)

Quaternary Science Reviews 369 (2025) 109615

(global), Raberg et al. (2021) (Iceland and Canada).

The datasets used in this study thus comprise (i) published brGDGT
data from lake calibrations published over past decades using the single
column LCMS method (SC), and (ii) published brGDGT data from lake
studies using the dual column (DC) LCMS method, in combination with
our new Antarctic DC derived brGDGT dataset. Method details for the
original data for each of the lakes can be found in the corresponding
original publications, and DC analysis details for the Antarctic samples
are provided in Supplementary SI1. Information on methods used to
verify the lake locations, elevations and temperature data is provided in
Supplementary SI2. The lake calibration datasets are not restricted to a
particular lake chemistry type (i.e. they encompass fresh, brackish and
saline lakes), and we apply our new calibration models to published data
from contrasting environments spanning different Quaternary time sli-
ces and timescales (see Section 2.3).

2.2. Temperature data

While some early published lake-temperature calibrations used
Mean Annual (Air) Temperature (MAT or MAAT) (Tierney et al., 2010;
Zink et al., 2016), the global brGDGT-temperature calibration (Pearson
et al., 2011) and Antarctic regional calibration (Foster et al., 2016) use
Mean Summer (air) Temperature (MST) because brGDGT production is
expected to occur primarily during the warmest season when biological
productivity is greatest (also see Sun et al., 2011; Shanahan et al., 2013).
The influence of summer temperature (as opposed to annual) is partic-
ularly relevant in polar lakes as they undergo large seasonal temperature
fluctuations between two seasons (summer and winter) and are
ice-covered for a significant part of the year. More recent studies have
found strong relationships between brGDGT compositions in lacustrine
sediments and mean temperature of Months Above Freezing, MAF (e.g.
Martinez-Sosa et al., 2021; Raberg et al., 2021) which account more
realistically for more than a single season of brGDGT production. Note
that in the low latitudes, where temperatures do not reach below 0 °C,
MAF = MAT.

In our study we examine the relationships of both MST and MAF with
lake sedimentary brGDGT distributions. For MST and MAF temperature
data, we use originally reported observed published values where
available. Gaps in the observed data were filled with values extracted
from the ERA5 reanalysis dataset (Hersbach et al., 2019, 2020) using
Copernicus Climate Change Service Information [2020, 2021] (see

o

Dataset
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V¥ Core location

Fig. 1. World map showing locations of the core sites and lakes used in the single and dual column calibration datasets.
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Supplementary SI2). For the latter we used the mean MST (average
temperature of June, July, August (JJA) or, for austral summer,
December, January, February (DJF)) or MAF, both averaged over the 30
years prior to the date of sampling to capture the approximate period
covered by the surface sample. For our SC dataset the temperature range
spans —2.2 °C-31.2 °C (MST) and 0.44 °C-25.7 °C (MAF). For our DC
dataset the temperature range spans —2.2 °C-30.8 °C (MST) and
0.44 °C-28.1 °C (MAF).

2.3. Numerical calibration methods, cross validation, and application
downcore

Inferring past temperatures from sedimentary GDGT compositions is
a problem of multivariate calibration. This is a well-established area of
statistics (e.g. Varmuza and Filzmoser, 2009) but GDGT data possess a
number of properties that make calibrations using traditional methods
difficult, including non-linear relationships, constant sum constraints
and collinearity between predictors, the influence of other environ-
mental variables and measurement error in both GDGT and temperature
data. A useful calibration should be complex enough to model non-linear
trends in multivariate compound abundances but not overly complex so
that it over-fits the calibration dataset and performs poorly with core
data. It should also use an appropriate statistical method that takes ac-
count of the specific properties of, in this case, brGDGT data. A range of
numerical calibration techniques have been used in the literature, and
each addresses the specific challenges of brGDGT calibration in different
ways. Since there is no accepted and demonstrated “best” method we
explore a range of numerical calibration techniques and evaluate their
performance on our modern calibration datasets and downcore
reconstructions.

For both our SC and DC datasets we investigated and assessed a range
of different calibration statistical modelling approaches including linear
regression (LR), multi-model averaging (MMA), generalised additive
modelling (GAM), Dirichlet regression (DR), random forests (RF) and
deep-learning neural networks (NN) to construct new global calibrations
(see Supplementary SI3). In addition to these methods, we also
compared the performance of the original (global) regression model of
Pearson et al. (2011) and recent calibrations based on the methylation
index of branched tetraethers (MBT’ syg) from Martinez-Sosa et al.
(2021) and using linear regression with quadratic terms from Raberg
et al. (2021, egn (11), R11). We also investigated converting DC to SC
formatted data for application of the Pearson et al. (2011) model by
summing the fractional abundances of the 5- and 6-methyl brGDGT
compounds which was considered by Baxter et al. (2023, 2024) to be a
robust method for African Lake Challa. However, in our expanded global
dataset this approach (not shown) suggests this finding is site dependent
and not globally applicable. See Supplementary SI3 for more informa-
tion on the numerical calibration methods explored.

Following model construction, cross-validation should be performed
to properly test and validate the model. We assess the performance of
each of our models using the squared correlation between observed and
predicted temperatures (RZ,) and root mean squared error of prediction
(RMSEP) calculated under 10-fold cross-validation. This approach pro-
vides a guard against overfitting and hence is a better and more reliable
basis for comparison among models, and also gives a more realistic idea
of prediction errors when the model is applied to core data.

We applied our single column global lake calibrations (GLC-SC) and
dual column global lake calibrations (GLC-DC) to previously published
lake sediment core data from contrasting environments that span
different timescales and time slices within the Quaternary period to
assess how well the different models performed when applied to core
data. Specifically, we applied our updated GLC-SC to published core
data from Antarctica (Yanou Lake; Roberts et al., 2017), eastern Africa
(Lake Challa; Sinninghe Damsté et al., 2012), Australia (Club Lake;
Thomas et al., 2022), Siberia (El'gygytgyn; Keisling et al., 2017) and the
USA (White Pond; Krause et al., 2018). We applied our GLC-DC to
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published core data from the USA (Basin Pond; Miller et al., 2018; Lake
Elsinore; Feakins et al., 2019) and Turkey (Lake Van; Stockhecke et al.,
2021). A brief summary of lake information is provided in Supplemen-
tary SI4 and their locations are indicated on Fig. 1.

When applying calibrations down core it is important to also
examine the extent to which the calibration dataset encompasses the
range of brGDGT values found in the core. Core samples with brGDGT
compositions that are markedly different from the calibration dataset
represent non-analogue situations, that can be difficult to reconstruct
and might not be useable for palaeoclimate reconstructions. The posi-
tion of our core samples within the surface calibration space was
visualised using principal components analysis (PCA). We also calcu-
lated Mahalanobis distance between each core sample and the calibra-
tion dataset and converted these distances to probabilities using a chi-
squared cumulative probability distribution (Aggarwal, 2017). Core
samples with probabilities of greater than 0.99 are considered outliers in
their brGDGT composition. Finally, we compare different re-
constructions using Pearson’s product-moment correlation coefficient
and Lin’s concordance correlation coefficient (Lin, 1989). The former
assesses the extent to which different reconstructions follow similar
trends (but may have different absolute values) while the latter ex-
presses deviations from 1:1 concordance between reconstructions and
reflects differences in both trends and absolute values. Like Pearson’s
correlation, Lin’s concordance ranges from —1 to 1, with 1 indicating
perfect agreement and —1 indicating strong discordance. The overall
similarity among reconstructions was then summarised by cluster
analysis of the resulting correlation/concordance matrices.

BrGDGTs were expressed as fractional abundances of the sum of all
brGDGTs identified using the SC and DC methods prior to all analyses
because we were interested in compositional differences in brGDGTs
between sites. Our GLC-SC dataset comprises the nine major brGDGTs
including the 5-methyl isomers originally identified using the SC method
(noting that some 6-methyl isomers co-elute), and our GLC-DC dataset
comprises fifteen brGDGTs including the separated 5- and 6-methyl
isomers (see Supplementary Fig. S1). An additional consideration with
multivariate calibrations is minor compounds, which are subject to large
integration errors and can have undue weight in the analysis. We
therefore excluded from all calibrations the following compounds which
had an abundance of less than 1.0 % in 75 % of the calibration samples:
flc, fllc, fIIIb, fIlic (SC dataset) and flc, fllc, fIIc’, fIIIb, fIIIb’, fIllc, fIIIc’
(DC dataset).

All numerical analyses were performed using R software for statis-
tical computing and graphics (R Core Team, 2024) with the following
additional packages for ordination (vegan: Oksanen, 2024), GAMs
(mgcv: Wood, 2017), MMA (MuMIn: Barton, 2024), Dirichlet regression
(DirichletReg: Maier, 2014), random forests (ranger: Wright and Ziegler,
2017), and neural networks (keras: Allaire and Chollet, 2024; tensor-
flow: Allaire and Tang, 2024).

3. Results

3.1. Development and assessment of new global lake brGDGT-
temperature calibration models

The performance of each single column (SC) and dual column (DC)
calibration method is summarised in Table 1 which includes both the R
and RMSE values and also the cross-validated R%, and RMSEP values, the
latter which are the focus for discussion since these have undergone
rigorous cross-validation and thus provide a more realistic indicator of
how well the model will perform with new data. The relationships be-
tween observed and predicted MST and MAF are shown in Fig. 2. A key
observation is that the brGDGT distribution in lacustrine sediments is
highly correlated with temperature across the globe.

For the SC dataset and MST as the target variables the Pearson et al.
(2011) calibration model is the worst performing method overall (Rgv =
0.77, RMSEP = 5.06 °C), with a marked over-estimation at the lower end
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Table 1

Performance of the SC and DC datasets using different numerical calibration methods.
Variable Method R? RMSE RZ, RMSEP
Single column
MST Pearson et al. (2011) 0.77 5.06 0.77 5.06
MST Linear regression 0.79 3.72 0.78 3.78
MST Multi-model averaging 0.79 3.74 0.78 3.80
MST Generalised additive model 0.83 3.36 0.81 3.53
MST Dirichlet regression 0.76 4.57 0.75 4.51
MST Random forests 0.96 1.75 0.83 3.29
MST Neural network 0.87 2.90 0.81 3.50
MAF Linear regression 0.86 2.58 0.86 2.61
MAF Multi-model averaging 0.87 2.60 0.86 2.63
MAF Generalised additive model 0.91 2.15 0.90 2.24
MAF Dirichlet regression 0.83 3.36 0.82 3.23
MAF Random forests 0.97 1.67 0.91 2.17
MAF Neural network 0.94 1.80 0.89 2.33
Dual column
MST Pearson et al. (2011) 0.78 3.93 0.78 3.93
MST Linear regression 0.82 3.45 0.82 3.51
MST Multi-model averaging 0.82 3.48 0.81 3.57
MST Generalised additive model 0.84 3.31 0.82 3.45
MST Dirichlet regression 0.79 4.56 0.79 4.55
MST Random forests 0.96 1.66 0.85 3.19
MST Neural network 0.94 2.08 0.84 3.26
MAF MBT M-S 0.79 3.32 0.79 3.32
MAF Raberg et al. eqn 11 0.82 2.92 0.82 2.92
MAF Linear regression 0.84 2.61 0.84 2.68
MAF Multi-model averaging 0.84 2.68 0.83 2.75
MAF Generalised additive model 0.88 2.32 0.85 2.61
MAF Dirichlet regression 0.82 3.34 0.81 3.34
MAF Random forests 0.97 1.26 0.86 2.46
MAF Neural network 0.95 1.46 0.85 2.58

Note: Pearson et al. (2011)= original regression model of Pearson et al. (2011); Linear Regression (LR) = linear regression modelling using Pearson et al. (2011) approach but
calibrated with the new expanded dataset; MBT M-S= MBT eqn. (7) after Martinez-Sosa et al. (2021); Raberg et al. eqn. 11= calibration equation (11) after Raberg et al.
(2021). See Supplementary SI3 for details of the statistical modelling approaches used.

of the temperature gradient (Fig. 2). This was also a feature, albeit less
pronounced, of the original Pearson et al. (2011) calibration (also see
Foster et al., 2016; Roberts et al., 2017; Heredia Barion et al., 2023a;
Heredia Barion et al., 2023b). Improved results are obtained when using
the same linear regression (LR) approach as Pearson et al. (2011) but
calibrated with the new expanded dataset (REV = 0.78, RMSEP =

3.78 °C). This model has almost identical model performance to
multi-model averaging (MMA; R?v =0.78, RMSEP = 3.80 °C). Replacing
the linear fits of the LR and BMA models with smooth functions in the
generalised additive model (GAM) improves the performance slightly
(Rgv = 0.81, RMSEP = 3.53 °C). Dirichlet regression is the worst per-
forming method for Rgv (RgV =0.75, RMSEP = 4.51 °C). Random forests
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is the best performing method overall (RcV = 0.83, RMSEP = 3.29 °C)
and slightly outperforms neural network, the other machine learning
method (Rgv = 0.81, RMSEP = 3.50 °C).

The pattern of model performance among methods for MAF is similar
to that for MST except that the squared correlations are slightly higher
and RMSEP lower for any given method (e.g. for random forests R2, and
RMSEP values are 0.83/3.29 °C and 0.91/2.17 °C for MST and MAF
respectively).

Model performance among methods applied to the DC dataset also
follows a broadly similar pattern to that in the SC dataset, except that for
MST the squared correlations between observed and predicted MST are
slightly higher for the DC dataset for a given method (e.g. for LR, R%, =
0.78 and 0.82 for SC and DC datasets, respectively), and for MAF the
model performance is slightly lower for the DC dataset for a given
method (e.g., for LR, Rgv = 0.86 and 0.84 for SC and DC datasets
respectively). Overall, Dirichlet regression is again the worst performing
and tends to under-predict at the low end of the temperature gradient,
while random forests (RF) and neural networks (NN) perform best (RF:
MST RZ, = 0.85, RMSEP = 3.19 °C and MAF R%, = 0.86, RMSEP =
2.46 °C; NN: MST R2, = 0.84, RMSEP = 3.26 °C and MAF = RZ, 0.85,
RMSEP = 2.58 °Q).

In addition to the methods described above, we also applied two
additional previously published MAF calibrations to the DC dataset. The
first, the MBT 5y index (Martinez-Sosa et al. (2021, Eqn. (7)), per-
formed relatively poorly with the second highest RMSEP (3.32 °C). The
other, linear regression using quadratic terms, which was the best per-
forming full set calibration for MAF proposed by Raberg et al. (2021;
Eqn. (11)), performs slightly worse than the regression approaches of
LR, MMA and GAM (R%, = 0.82, RMSEP = 2.92 °C).
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Overall Dirichlet regression is the worst performing method in both
datasets. The published SC calibration of Pearson et al. (2011) and DC
calibration based on MBT’ 5y of Martinez-Sosa et al. (2021) also have
higher RMSEP for MST and MAF respectively than the new calibrations
presented in Table 1. For the remaining methods the differences in
RMSEP are relatively small, with machine learning methods (random
forests and neural networks) slightly outperforming regression-based
approaches (linear regression, GAMs, multi-model averaging, and
quadratic regression). Overall, random forests is the best performing
method (defined as highest R? «v and lowest RMSEP) for both for both
MST and MAF with the single column (SC) and dual column (DC)
datasets. Of the two temperature variables, random forest models for
MAF have the lowest overall RMSEP (SC = 2.17 °C; DC = 2.46 °C).

3.2. Temperature reconstructions and comparison of methods

Temperature reconstructions for each downcore record using our
new models are shown in Fig. 3 and Supplementary Figs. S4. For each
core we compare reconstructions for the calibration methods described
above and also show a number of associated diagnostic plots to help
interpretation. These include plots of the standard deviation (SD) of the
different reconstructions to quantify variability among methods, a PCA
(Principal Components Analysis) of the combined core and calibration
datasets to visualise where core samples plot outside or on the periphery
of the calibration data and represent no-analogue conditions, and box-
plots summarising the abundances of each brGDGT compound in the
core and calibration samples. Core samples with Mahalanobis proba-
bilities greater than 0.99 and 0.999 are considered outliers and extreme
outliers respectively (a brGDGT distribution unlike the modern
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Fig. 3. Temperature reconstructions and diagnostic plots for each core using the numerical methods described in Section 2.3. Plots include temperature re-
constructions, standard deviation (SD) of the different reconstructions, PCA of the combined core and calibration datasets, and boxplots summarising brGDGT
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Fig. 4. Dendrograms summarising correlation and concordance among different reconstructions for each core.

calibration dataset) and are indicated as thin and thick red bars on the
SD plot. Reconstructions for MAF and MST show similar trends for all
cores, so we only show MAF reconstructions as this is currently the most
commonly reconstructed brGDGT temperature variable, except for

Yanou Lake (Antarctica) where we show the reconstruction for MST
since this is a cold polar lake which experiences long periods of ice cover
and two seasons (summer and winter) that means MST values are more
appropriate and meaningful than MAF.
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We also quantify the overall similarity in trends and absolute values
among reconstructions using Pearson’s product-moment correlation
coefficient and Lin’s concordance coefficient respectively.

3.2.1. Single column (SC) reconstructions

The Club Lake record (Australia, Fig. 3a) spans the last ~3.5 kyr and
most of the core plots within the first two principal components of the
brGDGT calibration space. Only the surface sample is somewhat atypical
with unusually low relative abundance of fIIb, although this is not
considered an outlier. Reconstructions all follow similar trends
throughout the core and concordance between methods is generally
high (Fig. 4a) and with low standard deviation (c. 1-1.52 °C), although
reconstructions for LR, MMA and DR are consistently c. 2 °C higher than
those for RF, GAM and NN.

Reconstructions for Lake Challa (eastern Africa; Fig. 3b), which
spans the last ~ 25 kyr, also plot well within the calibration data and has
no outliers. Correlation and concordance among methods is generally
high (Fig. 4b) although there is greater variability between methods in
the early and later parts of the core, with SD values of up to c. 2.5 °C,
with temperatures predicted by LR and MMA c. 3-4 °C lower than other
methods and RF that are c. 2 °C higher.

Reconstructions for White Pond (USA; Fig. 3c), spanning from 21 to
4 cal ka BP, all follow similar trends and show high correlation and high
concordance (Fig. 4c) with generally low SD (c. 1.0 °C), although LR is
unusual in predicting higher MAF in the early, older, part of the core,
and, importantly, with higher variance. Most of the core samples plot
outside or on the periphery of the calibration data and most are
considered extreme outliers, with unusually high abundance of com-
pounds fla and fIb.

The El'gygytgyn (Siberia; Fig. 3d) record spans the late Pliocene
between 2.82 and 2.41 Ma. Most core samples plot at the periphery or
outside of the calibration dataset space, and most are considered
extreme outliers, with unusually high values of fIb and fIIIb, and un-
usually low values of fla and flla. However, with the exception of DR,
there is high correlation and moderate concordance among re-
constructions although spuriously high and low MAF are reconstructed
by all methods around 2.65 and 2.72 Ma respectively.

Yanou Lake (Antarctica; Fig. 3e) is a cold polar site. The late Holo-
cene record spans the last ~6 kyr, and although the whole core has
unusually high abundance of fIIla and plots at the edge of the calibration
dataset only a few samples in the early, and one in the later, part of the
core are considered outliers using a Mahalanobis distance criterion.
Samples plot in a tight cluster in calibration space indicating little
variation in brGDGT composition that is reflected in a narrow range of
MST reconstructions for individual methods. Except for LR and MMA
there is generally low correlation and low concordance among methods:
DR and Pearson et al. (2011) show markedly different values, with DR
predicting sub-zero temperatures for the whole core, and Pearson et al.
temperatures of over 4 °C. SD values are correspondingly high and range
from c. 2.5-4 °C.

3.2.2. Dual column (DC) reconstructions

Fig. 3f shows MAF reconstructions for Basin Pond (USA) spanning
the last ~900 years. All samples fall within the variability of the cali-
bration dataset and there are no outliers. Core samples plot very closely
together on the PCA highlighting little difference in sample composition
downcore, which is reflected in the narrow range of MAF re-
constructions and the low standard deviations among reconstructions.
All methods reconstruct a gradual cooling over the last 850 years and
although correlations between different reconstructions are high, their
concordance is low, with methods showing a consistent offset from NN
and RF that predict low MAF with low variance, to MBT 5y and R11
that reconstruct higher MAF with much higher variance.

Reconstructions for Lake Elsinore (USA; Fig. 3g), spanning the in-
terval ~8-32 cal ka BP, exhibit high correlation and high concordance,
with all methods showing very similar trends and, except for DR in the
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middle and later parts of the core, broadly similar values. The core
samples lie within the calibration set but a few have unusually high
values of compounds fIb and fIIb, and a number of samples towards the
base of the core are outliers.

For Lake Van (Turkey; Fig. 3h), spanning the last ~68 kyr, most of
the core is positioned within or towards the edge of the calibration
dataset and many core samples from 60 cal ka BP onwards are marked as
outliers, primarily as a result of unusually high relative abundance of the
isomers fIIb’ and fIIla’ and low abundance of fIla. Variation among re-
constructions is large (SD 2-4 °C), there is a general pattern of very low
correlation and concordance throughout most of the record with re-
constructions showing high variance and spurious high and low values
in several sections of the core.

4. Discussion

Here we first examine and compare the performance of our new SC
and DC calibration models (Section 4.1), highlight the importance of
considering sources of errors in calibration datasets and reconstructions,
and explore sources of model uncertainty (Section 4.2). We then discuss
applicability of our models for down-core reconstructions, highlighting
by example those sites which demonstrate calibration application
robustness and those that require calibration application caution (Sec-
tion 4.3). We also provide some recommendations from our findings for
use in brGDGT calibrations and applications in Quaternary science (also
see Section 5).

4.1. Comparison of calibration models

Our new global single-column (SC) and dual-column (DC) brGDGT
calibration datasets were examined using a range of numerical model-
ling methods to assess how the different approaches impact palae-
otemperature reconstructions. We applied several existing and new
regression methods that model the potentially non-linear relationship
between brGDGTs and temperature with varying levels of complexity,
from simple least squares regression (LR) to essentially black-box ma-
chine learning methods of random forests (RF) and deep-learning neural
networks (NN).

As shown in Table 1 and Fig. 2 and the Results Section 3.1, for both
our SC and DC datasets the Dirichlet regression was the worst per-
forming method with a tendency to under-predict at the low end of the
temperature gradient. This is surprising, given that Dirichlet regression
is a classical regression approach recommended in ecological and
environmental applications using count based fractional data and sta-
tistically the most appropriate method for modelling the brGDGT
compositional data (Douma et al., 2019; see Supplementary SI3).
Exploratory plots (Supplementary Fig. S2) indicate large residuals are
associated with unusually high or low values of fla and fIlla, suggesting
that predictions from this method are more sensitive to unusual values of
these compounds than other techniques. While fIlla has a strong corre-
lation with temperature across a wide range of lakes (Pearson et al.,
2011), changes in redox and bacterial communities may also influence
the abundance of fIlla at some sites (e.g. by some bacteria with lower
oxygen requirements producing more fIlla; Yao et al., 2020), and
brGDGT fla is thought to be derived from catchment soil bacteria (e.g.
Sinninghe-Damsté et al., 2000; Hopmans et al., 2004; Weijers et al.,
2006a,b). Unusual values of these compounds may therefore reflect
overprinting of changes in redox and/or bacterial communities on the
brGDGT composition which are accentuated when using this approach.

Improved performance was obtained using best subsets linear
regression (LR), which gave a very similar model performance and
pattern of residuals to multi-modelling averaging (MMA). The potential
increase in model robustness and prediction accuracy obtained by
averaging over several best models is not observed in practice with these
data. Replacing linear fits with smooth functions using GAMs improved
the performance slightly, though the machine learning approaches of
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random forests (RF) and neural networks performed slightly better with
RF returning the lowest prediction errors for SC and DC datasets (SC:
RMSEP = 2.17 °C for MAF; 3.29 °C for MST; DC: RMSEP = 2.46 °C for
MAF; 3.19 °C for MST).

While model performance using the DC dataset follows a broadly
similar pattern to the SC dataset, overall, the squared correlations be-
tween observed and predicted MST are slightly higher in the DC dataset
for any given method and for MAF the model performance is slightly
lower for a given method (Table 1 and Fig. 2). The poor performance
when applying the MBT’ 5y index (Martinez-Sosa et al., 2021) to the DC
dataset is, in part, a result of large residuals with unusually high or low
abundance of fla, as with the Dirichlet results, perhaps indicative of
unusual bias of soil bacterial inputs (Supplementary Fig. S3). Testing
linear regression using quadratic terms (Eqn. (11); Raberg et al., 2021)
did not improve on the simpler multiple regression models of LR and
MMA. GAM improved over LR, MMA and LR with quadratic terms,
suggesting that there are some non-linear features in the data that can be
modelled but that these are better modelled using data-driven smoothers
rather than quadratic terms.

Importantly, while the RF model provides the best results overall
(highest RZ, and lowest RMSEP) for both our SC and DC datasets, overall
differences in prediction error between LR, MMA, GAM, RF and NN
methods are small. Using cross-validation performance on the calibra-
tion set as a criterion it is therefore difficult to choose a single best
method for downcore reconstruction. Furthermore, the worst perform-
ing methods (DR, MBT, R11) have cross-validation prediction errors of c
3.0-4.5 °C which compare favourably with some other previously re-
ported terrestrial brGDGT temperature calibrations (e.g. non-cross-
validated) RMSEs in the region of 4-5 °C for global soils (Naafs et al.,
2017).

The temperature range of our SC dataset (—2.2 °C-31.2 °C for MST;
0.44-25.7 °C for MAF) slightly increases the range of our previous
Pearson et al. (2011) global dataset (mean summer temperature range c.
1-31 °C) and also covers a wider range than other regional SC studies (e.
g. Loomis et al. (2014) MAT range 1.5-26.8°C; Sun et al. (2011) warm
months range 8.2-23.3 °C,MAT range —2.8 °C to 23.3°C; Tierney et al.
(2010) MAT range 1-25 °C).

The cross-validated performance of our new SC RF model (RfV =
0.91, RMSEP = 2.17 °C for MAF; Rgv = 0.83, RMSEP = 3.29 °C for MST,
n = 349) gives improved or comparable results to previous published SC
models, bearing in mind differences between reported raw R and cross-
validated R2, values and differences in temperature parameters used e.g.
Pearson et al. (2011) global calibration had MST R? ov = 0.88; RMSEP =
2.1 °C, n = 90, while the MAT calibration of Loomis et al. (2014)
resulted in R? = 0.88, RMSEP = 2.1 °C, n = 111, and the MAT of Tierney
et al. (2010) had R? = 0.94, RMSE = 2.2 °C, n = 46.

The temperature range of our DC dataset (—2.2 °C-30.8 °C for MST;
0.44°C-28.1 °C for MAF) improves on previous MST and MAF DC cali-
brations, e.g. Martinez-Sosa et al. (2021) MAF temperature ranges from
1.6 to 28.1°C; Raberg et al. (2021) MST temperature ranges from c. —1
to 29.5 °C, with a MAF range from 0.6 to 26.8 °C).

The performance of our new DC RF model (RgV = RMSEP = 2.39 °C
for MAF; R%, = 0.85, RMSEP = 3.17 °C for MST, n = 378) improves on
the DC modelled MAF calibration performance of Martinez-Sosa et al.
(2021) using MBT 5pg (2021; R? = 0.85, RMSE = 2.8 °C, n = 272) and
the full set MAF calibration of Raberg et al. (2021, eqn (11); R? = 0.91,
RMSE = 1.97 °C, n = 182). As highlighted in Section 3.1, application of
these calibrations also performed less well than several of the numerical
calibrations derived using our new expanded dataset.

4.2. Sources of model uncertainty

Most of the calibration models listed in Table 1 have RZ, values of c.
0.8-0.9, indicating that c. 0.1-0.2 of the variance in temperature is not
accounted for by the models. This unexplained variance emanates from
a combination of model error (Varpeq: i.e. how well MST or MAF
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Table 2

Explained variance (Varep)), and variance attributed to model error (Vargoq),
compound measurement error (Varggg), and MST/MAF measurement error
(Varmp) for each dataset and temperature variable as percentage of total
variance.

Dataset Variable Vareyp Varmoq Vargqg: Varemp
SC MST 83.4 10.7 2.4 3.4
SC MAF 90.5 1.8 3.2 4.5
DC MST 85.0 9.3 2.3 3.3
DC MAF 86.4 4.9 3.5 5.1

encapsulates a physiologically meaningful driver for GDGT composition,
and how well the numerical methods accurately model the potentially
complex and non-linear response to this variable), the measurement bias
in estimates of compound abundance (Vargdg), and the measurement
bias in MST or MAF (Varienmp: i.e. the accuracy of the estimate of tem-
perature composite and how well this reflects the temperature of the
lake water environment). The total variance in the temperature data
(Vary) can thus be decomposed into components representing the
variance explained by the calibration model (Varep) and the three
components of unexplained variance described above:

Var,; = Vareg + Vargeg + Vargg + Variemp

The lack of fit (Varpeq) represents the systematic variation in the
temperature that could potentially be modelled by a more complex
model or with additional compounds. The combination of Varggg: and
Variemp sets the upper limit on the variance possible to model (Nilsson
et al., 1996). Values of Vargqg and Varen, are not well constrained, but
Varggg: can be estimated from inter-laboratory comparisons which sug-
gests a standard deviation of c. 1.25 °C for MAF estimates derived from
MBT’smg (De Jonge et al., 2024). For Vargenyp a standard deviation of
1.5 °C has been suggested for a similar calibration dataset (Naafs et al.,
2017). Using these values for Vargqg and Vartemp, the same uncertainty
in the estimates of brGDGT fractional abundance data in both SC and DC
datasets, and in estimates of MST and MAF, these values give RF cali-
brations shown in Table 2.

Several observations are immediately apparent from these de-
compositions. First, Varggg: + Vartemp values average 5.7 % for MST and
8.2 % for MAF, setting an upper limit for the maximum possible R?
values of c. 0.94 and 0.92 for MST and MAF models respectively. This
suggests that the RF calibration for MAF in the SC dataset (Rgv =0.91)is
indeed accurately modelling all the features of the brGDGT-temperature
relationships and that any further improvements in model performance,
as judged by an increase in RZ, or reduction in RMSEP, are likely to be
modest.

Second, modelling errors (Varpq) associated with MST are sub-
stantially larger than those for MAF, suggesting that MAF better sum-
marises the temperature of the growing season of brGDGT producers
than MST. Martinez-Sosa et al. (2021) also found that MAF was a better
predictor of the MBT’s5yg index than mean annual air temperature
(MAAT) suggesting that brGDGT producers are less active below
freezing.

Finally, Varpeq for MAF is substantially lower in the SC dataset:
indeed, all of the calibration models perform slightly better for the SC
dataset, despite the DC dataset being constructed using the new
improved chromatography method. It is possible that improved
analytical advances can expose further complexities between GDGT
compositions and environmental relationships with individual 5- and 6-
methyl isomers. For example, studies have found 5-methyl brGDGTs to
have no relationship with temperature in some Chinese lakes (Dang
et al., 2018; Qian et al., 2019; Wang et al., 2012, 2021; Wu et al., 2023)
which is markedly different from findings from East African (Russell
et al., 2018), North American (Martinez-Sosa et al., 2021), pantropical
lakes (Zhao et al., 2023), and some freshwater lakes (Wang et al., 2021)
which do show a correlation between 5-methyl brGDGTs and
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temperature. Conversely, 6-methyl brGDGTs have shown a significant
correlation with temperature in some Chinese lakes (Dang et al., 2018;
Qian et al., 2019), while in some central European lakes there appears to
be a correlation between both 5- and 6-methyl isomers and temperature,
especially in high elevation lakes (Bauersachs et al., 2024). Such vari-
ation in the relationships between 5-methyl and 6-methyl isomers and
temperature suggests that they don’t necessarily or consistently
contribute to improving temperature calibrations and, since these
compounds also often occur as only a small fractional abundance, they
have been excluded from some calibration studies (e.g., Russell et al.,
2018), as has also been the case for some compounds here (see Section
2.3). The discrepancies in relationships with temperature could also be
due to the 5- and/or 6-methyl compound abundances being influenced
by environmental variable/s in addition to temperature (e.g. salinity,
PH, oxygen) in some lakes (Wang et al., 2021; Kou et al., 2022; Halamka
et al., 2023).

4.3. Assessment of downcore reconstructions

The calibration models evaluated in the previous section differ in the
compounds used, the implicit weight given to each compound, and
model the brGDGT-temperature response with varying degrees of
complexity. Overall, RF calibrations produced the smallest RMSEP, and
Dirichlet regression the largest, but differences between most methods
are small. Furthermore, choosing a “best” method is not straightforward,
as calibration model performance, even under cross-validation, is not
always a good guide to the robustness of down-core reconstructions
(Juggins, 2013). This point has been recently reiterated by Sun et al.
(2024) who recommend that the significance test developed by Telford
and Birks (2011) be applied to confirm that a palaeoenvironmental
reconstruction derived from proxy data is robust and potentially reli-
able. Unfortunately, this test has a high Type II error when the number of
predictor variables is low (<10) and so cannot be used with our GDGT
calibrations. Instead, we evaluate the reconstructions using measures of
no-analogue conditions and concordance between methods. PCA plots of
the surface calibration dataset and core samples and plots of Mahala-
nobis distances between calibration and core samples (Fig. 3) help
visualise differences between surface and core samples and highlight
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no-analogue conditions, and provide an indication of how robust we
might expect the application of the models to be for each core site.
Accompanying boxplots of brGDGT abundance in calibration and core
samples helps identify which compounds are responsible for the
no-analogue conditions.

Finally, cluster analyses of the Pearson’s product-moment correla-
tion and Lin’s concordance correlation matrices summarise the overall
similarity in trends (correlation) and absolute values (concordance)
among reconstructions (Fig. 4). Consistency in trends and/or absolute
values among different methods suggest reconstructions may be more
reliable.

Considering all reconstructions, two can be immediately dismissed.
These are Pearson et al. (2011) and DR at Yanou Lake. The first produces
reconstructions that are c. 4 °C higher than other methods, and sub-
stantially higher than the contemporary mean summer temperature of
1.1 £+ 0.8 °C (Heredia Barion et al., 2023a). The tendency of the Pearson
et al. (2011) method to overestimate temperatures at the low end of the
gradient was noted in Foster et al. (2016) and Roberts et al. (2017) and
this method is not recommended for reconstructions at polar and
sub-polar sites. DR is the worst performing method in terms of RMSEP in
the calibration data and although it produces reconstructions generally
consistent with other methods at most sites considered here, at Yanou
Lake it substantially underestimates modern MST. This is most likely
because of extrapolation due to unusually high abundance of isomer
fllla. A similar extrapolation in reconstructing unrealistic low MAF
values is also observed at the Arctic site EI’gygytgyn. As mentioned
above, DR seems to be particularly poorly constrained at the low tem-
perature end of the gradient and our DR calibration also cannot be
recommended for cold sites.

Excluding these outlier reconstructions there are few consistent
patterns for each calibration method across different lakes. For example,
excluding the Pearson et al. (2011) and DR reconstructions, LR and
MMA predict higher temperatures than other methods for Club Lake,
White Pond and Basin Pond but lower temperatures for Lake Challa
(Fig. 5, Supplementary Table S1). Similarly, reconstructions using LR
and MMA have much lower variance than other methods for Club Lake
and Lake Challa but have implausibly high variance for White Pond and
El’gygytgyn. Likewise, reconstructions using NN have much higher
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Fig. 5. Boxplots summarising the difference, AT (°C), between reconstructed temperature for each method and the consensus reconstruction (i.e. mean reconstructed

temperature for all methods).
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variance than other methods for EI’'gygytgyn and Lake Elsinore but have
extremely low variance for Basin Pond and White Pond.

This lack of consistency makes it difficult to predict the behaviour of
different methods at different sites and to identify those which may
produce the most useful reconstructions. Despite this there are some
overall patterns of correlation and concordance among reconstructions
at the eight core sites which can be divided into three groups: those with
high correlation and high concordance among reconstructions (Club Lake,
Lake Chala, White Pond and Lake Elsinore), those with high correlation
but moderate concordance among reconstructions (Basin Pond and
El’gygytgyn), and those with low correlation and low concordance among
reconstructions (Yanou Lake and Lake Van).

Three of the four sites in the first group (Club Lake, Lake Challa and
Lake Elsinore) have brGDGT compositions that plot well within brGDGT
calibration space, indicating that our expanded and improved surface
calibration dataset should be appropriate for reconstructing past tem-
peratures at these sites. Standard deviations among reconstructions are
generally low (<2 °C) and only a few samples in Lake Elsinore have non-
analogue compositions. There is generally high concordance among
reconstructions for all sites in this group with the exception that LR and
MMA show a consistent offset towards higher MAF in the Club Lake and
White Pond records and lower MAF in the early and later parts of the
record from Lake Challa, and RF reconstructions have higher variance
than other methods for Lake Challa, driven by an oversensitivity to
fluctuations in fIIla. This compound is indicative of changes in redox (e.
g. Yao et al., 2020) and in Lake Challa most of the brGDGT production
has been found to occur in the anoxic zone (Van Bree et al., 2020).
BrGDGT IIla may also be responding to thermal stratification at this
deep and permanently stratified site since more pronounced
water-column stratification in turn affects the relative niche availability
of different GDGT-producing microbes (Baxter et al., 2024). Our
reconstructed MST and MAF at Club Lake show similar trends to those
previously reported while the shifts in warming in the Lake Elsinore
record correspond with multiproxy evidence reported by Feakins et al.
(2019). The issues aside, the good fit of the core data to the calibration
set and the general concordance between methods suggests that re-
constructions for these sites are robust in terms of both trends and ab-
solute values.

For the fourth site, White Pond, the Holocene part of the core plots
outside the space of the calibration dataset, and large parts of the core
are considered extreme outliers. Despite this, there is high concordance
among methods, although LR and MMA exhibit much greater variance
in the early part of the White Pond record than other methods. However,
all methods reconstruct unfeasibly high temperatures for the pre-
Holocene period and differ markedly from the original published
reconstruction of Krause et al. (2018) that used the MBT calibration of
Peterse et al. (2014). Krause et al. (2018) suggest that high BIT values at
this site indicate a predominately terrestrial source for brGDGT inputs,
which may account for the anomalously high abundances of isomers fla
and fIb which lead to all methods overestimating temperatures since
brGDGT fla is thought to be derived predominantly from catchment soil
bacteria (Sinninghe-Damsté et al., 2000; Hopmans et al., 2004; Weijers
et al., 2006a,b). Despite the high concordance among reconstructions
the lack of fit of the core to calibration dataset suggests that re-
constructions for this site are not reliable.

The second group of two sites have high correlation but only mod-
erate concordance among reconstructions and differ in their fit to the
calibration dataset. The first, Basin Pond has a good fit to the modern
calibration dataset and there are no outliers. Like sites in the previous
group, there is a high correlation between methods and all reconstruct
similar trends, highlighting a gradual cooling from c. 600 cal a BP.
However, concordance among methods is only moderate and there are
substantial differences in the variability and magnitude of the recon-
structed cooling trend. In their original publication Miller et al. (2018)
applied Dang et al. (2018) and Russell et al. (2018) calibrations to White
Pond and found that although they produced similar trends, they
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differed in variance and were offset by c. 4 °C for the whole record. They
consequently advised caution when interpreting this record. Our results
also suggest caution and while the overall reconstructed trends may be
reliable, the absolute values and inferences about the magnitude of
temperature changes are not.

For the second site in this group, El’gygytgyn, most of the core
samples are considered extreme outliers and plot outside of the cali-
bration data. With the exception of DR, reconstructions generally follow
similar trends and there is moderate concordance among methods but
this includes concordance in reconstructing spuriously high and low
values, which are especially accentuated for LR and MMA. El’gygytgyn
is located in Arctic Siberia and is an extremely large and deep lake.
There are very few deep (>100m) lakes in our calibration dataset, and
these are from Uganda and Tanzania and are not suitable analogues. In
their original publication for this record, Keisling et al. (2017) used the
MBT/CBT calibration of Sun et al. (2011) developed using lakes on the
Tibetan Plateau. Their reconstruction shows similar trends and similar
overall absolute values to ours (excluding DR), except our re-
constructions have more variance and include several spuriously high
and low values: our methods appear to be very sensitive to extrapolation
under no-analogue conditions at this site and while the reconstructed
trends may be reliable the absolute values should be treated with
caution.

The final group of sites (Lake Van and Yanou Lake) exhibit both low
correlation and low concordance among reconstructions and also differ
in their fit to the calibration data. Yanou Lake samples plot on the pe-
riphery of the calibration dataset and a few samples from the middle of
the record are considered outliers. The range of MST reconstructions for
individual methods is relatively small, and different methods show
different trends: LR and MMA suggest a warmer period between c. 3000-
2000 cal a BP, while RF, GAM and NN suggest a relatively stable MAF
from 4500 cal a BP. The variance in reconstructed MAF is noticeably
different for different methods and concordance for Pearson et al. (2011)
and DR is particularly low, with reconstructions c. 4 °C higher and c.
4 °C lower, respectively, than other methods. Discounting DR and
Pearson et al. (2011) models at Yanou Lake, the trends in the remaining
reconstructions differ in both magnitude and detail. Although only a few
samples from this site are considered outliers, most of the core does have
unusually high abundance of fIlla. Notably, a high abundance of
brGDGT fllla compound is a characteristic feature in Antarctic lakes
(Pearson et al., 2011) and the higher abundance (mean c.60 %) in the
Yanou Lake core samples than in the global surface sample training set
(mean c. 30 %) reflects this. Redox influences on brGDGT fllla, with
bacteria with lower oxygen requirements producing more abundant fIlla
(Weber et al., 2018; Yao et al., 2020), may play an important role in such
lakes. Moreover, Antarctic lakes, such as Yanou Lake, are often char-
acterised by subaquatic mosses which may play an important and
unique role in brGDGT bacterial composition, and reflect the complex
interplay between sources and processes in polar and cold-region lakes.
Yanou Lake is a polar site that has likely undergone only small changes
in temperature over the last 6000 years. The range of reconstructed
temperatures is consequently relatively small, and reconstructions
appear to be masked or confounded by the increased uncertainty caused
by the unusual brGDGT compositions.

As with Yanou Lake, reconstructions for Lake Van display an overall
similarity in gross trends but the detail reveals a pattern of very low
correlation and concordance among methods with reconstructions
showing high variance and some spurious high and low values. Although
core samples from Lake Van plot within the first two PCA axes of the
calibration dataset they have unusually high abundance of isomers flIla’,
fIIb’ and fllla’ and are classified as extreme outliers using a Mahalanobis
distance criterion. R11, MBT and NN in particular extrapolate poorly
and reconstruct unfeasibly high or low temperatures under these con-
ditions (Fig. 3, S4). Lake Van is a high elevation (1650m), seasonally
stratified, endorheic lake. It is the largest soda lake in the world with
alkaline waters reaching a pH of 9.8 and a salinity of 22 psp (Stockhecke
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etal., 2021). The unusual chemistry, limnology and stratification regime
of this site may account for the no-analogue brGDGT compositions and
high abundance of the specific 6-methyl isomers and consequent lack of
coherence among methods.

In summary, as highlighted above, explanations for why some model
reconstructions perform poorly include unusually high or low abun-
dances of specific compounds, changes in source inputs, bacterial
communities and associated environment (e.g. water depth) and
chemistry (e.g. redox, salinity), limits of specific statistical methods or
sources of model uncertainty. We evaluate the reconstructions using
measures of no-analogue conditions and concordance between methods
and, apart from the caveats about using DR at cold sites, there are no
consistent patterns in the reconstructions that would allow us to
recommend one or more methods that produce “better” or more reliable
reconstructions. However, we find that a comparison of reconstructions
at a site, and the concordance, along with measures of fit between the
core and calibration brGDGT compositions can be used to identify re-
constructions that may be reliable or not.

Sites with good fit to the calibration data and high concordance
among methods (Club Lake, Lake Challa and Lake Elsinore) have re-
constructions that are reliable and may be interpreted in terms of both
trends and absolute values. Sites with a good fit but moderate or low
concordance among methods (Basin Pond, Yanou Lake) have re-
constructions that may be interpreted in terms of trends but not absolute
values. Calibrations for sites with a poor fit to the calibration set (White
Pond, El'gygytgyn and Lake Van) are problematic. For Lake Van
different calibrations extrapolate in different ways under no-analogue
conditions, leading to incoherent and spurious reconstructions. At
White Pond and EI'gygytgyn different methods extrapolate in a gener-
ally coherent fashion to produce similar trends but differ substantially in
variance. At White Pond they produce unreliable reconstructions with
implausibly high temperatures and trends but at EI’gygytgyn the trends
are plausible.

Our comparisons show that reconstructing palaeotemperature using
branched GDGTs is challenging. To paraphrase the statistician George E.
P. Box, “all reconstructions are wrong, but some are useful”. We find that
there is no single “best” numerical method and one chosen using criteria
of highest cross-validated R? and lowest RMSEP may not give the most
reliable reconstruction. Different methods emphasise different proper-
ties of the brGDGT data and extrapolate in different ways, especially
under non-analogue conditions. Rather we show that it is important to
consider both the fit of the core data to the calibration set to identify no-
analogue problems (also noting that these relationships may be different
for different parts of the core), and to inspect the concordance among
different methods as a guide to identify which reconstructions may be
useful.

5. Summary, conclusions and recommendations

We used new expanded calibration datasets developed using single
column (SC) and dual column (DC) HPLC-MS analytical methods to
construct global brGDGT-temperature calibrations for application to
lakes downcore across a range of environments and Quaternary time-
scales. We evaluated a range of different statistical modelling ap-
proaches and applied them to a number of published downcore brGDGT
records. Our study substantially expands on and improves existing SC
and DC calibration datasets, including expanding the colder, Antarctic
end of the SC method and including Antarctic sites in what is the first
truly global DC brGDGT-temperature dataset. Our results show that
brGDGT distributions in lacustrine sediments are correlated with tem-
perature on a global scale, and show a robust brGDGT-temperature
relationship across at least the range of c.-2 °C to c¢. + 31 °C covered
in this study. By examining both SC and DC methods we have also
contributed to the much-needed movement to standardise across
methodologies in an interdisciplinary space and to keep older methods
and data relevant, and demonstrate that both SC and DC calibrations can
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be used for temperature reconstructions. By comparing and assessing
model performance and subsequent application downcore using a range
of statistical tools we demonstrate a rigorous approach to assess the
robustness and applicability of our calibration models and which is an
approach advised for use in studies going forwards.

Of the statistical methods tested, Dirichlet regression was the worst
performing method in both SC and DC datasets, despite it being statis-
tically the most appropriate method for modelling the brGDGT
compositional data (Douma et al., 2019). The application of the pub-
lished SC calibration of Pearson et al. (2011) and DC calibration based
on MBT 5y of Martinez-Sosa et al. (2021) also have higher RMSEP for
MST and MAF respectively than the new calibrations. Machine learning
methods (random forests and neural networks) slightly outperform the
regression-based approaches (linear and quadratic regression, GAMs,
and multi-model averaging). Overall, random forests (RF) gave the
highest cross-validated R? and lowest RMSEP of all models constructed
to estimate MAF and MST in global lakes when using both the SC and the
DC global calibration datasets. Importantly, however, overall differ-
ences in prediction error between LR, MMA, GAM, RF and NN methods
are small (0.02-0.5 °C), while the worst performing methods (DR, MBT,
R11) have cross-validation prediction errors of ¢ 3.0-4.5 °C which
compare favourably with some other previously reported calibrations.
Examination of model uncertainty was carried out by decomposing the
total variance in the temperature data into the three components of
unexplained variance (errors in model, errors in estimates of compound
abundance, and errors in estimates in temperature data). Our results
suggest that the best models are accurately modelling all the features of
the brGDGT-temperature relationships and that any further improve-
ments in model performance, as judged by an increase in R%, or reduc-
tion in the RMSEP, are likely to be modest.

Our findings importantly demonstrate that, while a calibration Rgv
and RMSEP may suggest good model performance, even under rigorous
cross validation, a more thorough assessment of relationships between
surface sample calibration dataset and core samples and an assessment
of applicability to a specific given site is required to identify reliable
reconstructions. To do this we recommend the use of exploratory sta-
tistical analyses including PCA, and boxplots of compound abundance in
the calibration and core data, and the use of Mahalanobis distances
between calibration and core data to identify core-samples that have
unusual composition and lack analogues in the calibration data, and
identify specific sections of the core that might be problematic, noting
that a reconstruction may or may not be reliable throughout the whole
of a specific core due to changes in, for example, source inputs or
environment.

We also used the correlation and concordance between records to
summarise the similarity in trends (correlation) and absolute values
(concordance) among reconstructions, using consistency in trends and/
or absolute values among different methods as a tool to suggest which
reconstructions may be more reliable. Examples from different sites
from contrasting Quaternary environments and timescales highlight
reconstructions which demonstrate robustness and those which should
be treated with caution. Cores that have good analogues and a high
correlation and concordance between models likely produce the most
useful reconstructions, and those with a poor fit to the calibration data
and with low correlation and low concordance between different
methods are more problematic and require caution.

Which compounds are driving the reconstructions can be indicative
of changes in, for example, brGDGT source provenance/inputs, envi-
ronmental conditions or brGDGT bacterial communities. Differences in
individual brGDGT compound compositions between core and surface
dataset samples, as highlighted, can (and should) therefore be examined
to explore and highlight what might be driving discrepancies between
model outputs downcore.

While we have focused here on temperature, with improved sepa-
ration of 5- and 6-methyl isomers there are additional variables that
could be considered in future studies such as salinity, pH, nutrients,
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oxygen, or other confounding variables, where such data is available.
Such data is usually lacking and is not consistently available in global
datasets derived from multiple sources and this was not possible in this
study. Studies to investigate relationships between brGDGTs and other
environmental variables on a global scale to improve our understanding
of the influence of confounding factors on brGDGT-temperature re-
lationships in different environments still very much remains beyond the
scope of large-scale global calibration studies.

We recommend the combination of tools and approaches we have
used in our study to assess and address challenges in calibration studies
inrelation to identifying non-analogue conditions and the suitability of a
particular calibration to a specific core site. Furthermore, reporting re-
sults from these approaches taken, and of the different calibrations, are
recommended as a standard approach when reporting GDGT-based
temperatures and to support their robustness, applicability and reli-
ability. Such approaches to consider, while highlighted here for
brGDGT-temperature calibrations applicable to lakes, are also appli-
cable and significant for other proxy (e.g. pollen, chironomids, salinity,
nutrients) calibration development studies and applications (e.g. to
peat, marine sediments, soils) in Quaternary science.
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