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8.1 Introduction

Antarctica’s isolation from lower latitude pollutants due to natural barriers like 
circumpolar atmospheric and oceanic currents means it is undoubtedly less pol‑
luted than other parts of the world (Barker and Thomas, 2004). However, less than 
32% of its landmass is considered ‘pristine’ and non‑impacted by human activities 
(Pertierra et al., 2017; Leihy et al., 2020). In this chapter, we examine well‑known 
currently well‑regulated pollutants primarily associated with tourism, research 
stations, growing risks of oil, fuel spills from accidents within Antarctica and 
increased shipping in the Southern Ocean (SO) (e.g., Ruoppolo et al., 2013; Brooks 
et al., 2024; Stark, 2022). We then assess some ‘novel’ pollutants associated with 
mid‑late 20th century anthropogenic activities outside of Antarctica whose impacts 
and ecological threats are not yet fully established (e.g., Bergami et al., 2023).

8.2  Pollutants Sources Associated with Human Activities in 
Antarctica

Despite the vast size of Antarctica (14,000,000 km2) (Figure 0.1), ice‑free ground 
where most terrestrial biodiversity is found is scarce and represents less than 0.3% 
of the continent’s area (c. 42,000 km2) (Terauds et al., 2012). Most Antarctic ter‑
restrial biological communities, bird colonies and seal haul‑out sites are found on 
ice‑free ground within 5 km of the coast, an area of c. 6,000 km2 (Hull and Berg‑
strom, 2006). Human activities have been focussed largely within this small area 
since people arrived ~ 200 years ago.

Antarctic nearshore environments contain some of the richest marine habitats 
yet are extremely vulnerable to human impacts from shipping and tourism (Aronson 
et al., 2011). At locations subject to prolonged human presence and/or the activities 
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of multiple national Antarctic programmes, cumulative impacts can be substantial, 
resulting in environmental degradation (Braun et al., 2014). The main impacts from 
habitat destruction, disturbance of wildlife, introduction of non‑native species and 
pollution (Tin et al., 2009), and expansion of the human footprint across ice‑free 
regions of Antarctica puts human needs in direct competition with those of nature 
(Pertierra et al., 2017; Brooks et al., 2019; Hawes et al., 2023). We examine the 
key pollution sources in Antarctica (tourism, research stations, sewage, wastewa‑
ter, fuel spills, and local emissions) in the following section.

Tourism: Antarctic tourism facilitated over 104,000 visitors, predominantly to 
the Antarctic Peninsula, during the 2022/2023 season (International Association of 
Antarctica Tour Operators, 2023). The construction of permanent infrastructure to 
support this is not currently permitted, yet some national Antarctic programmes have 
permanent or semi‑permanent infrastructure for tourism and non‑governmental  
activities (Netherlands, 2023). Antarctic tourism numbers have dramatically 
rebounded following the COVID‑19 pandemic, and ship‑based tour operators con‑
tinue to identify new sites for tourist visits while diversifying the range of activities 
available (Bender et al., 2016; Hughes and Convey, 2020) (Figure 8.1).

FIGURE 8.1  Number of tourists visiting the Antarctic Treaty area facilitated by 
members of the International Association of Antarctica Tour Operators 
(IAATO, 2023). Data for 2023/2024 are estimated by IAATO. Fewer tour‑
ist numbers during the 2020/2021 and 2021/2022 seasons were due to the 
COVID‑19 pandemic.
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Research stations: Research stations have negative impacts on local geomor‑
phology, biological communities, and aesthetic and wilderness values (Klein et al, 
2008; Kennicutt et al., 2010; Brooks et al., 2019; Palmer et al., 2022). Since the 
International Geophysical Year (1957/58), scientific activities have expanded sig‑
nificantly. There are now 75 research stations with an estimated 5000 national 
operator staff working in Antarctica annually (COMNAP, 2022, Chu et al., 2019). 
Substantial, but often uncharacterised, levels of impact have resulted from the 
construction and operation of facilities (including research stations, ports, and air‑
strips) by governmental Antarctic programmes, and seasonal and deep field camps 
(COMNAP, 2017).

Nations with a longer presence on the continent are currently investing heavily in 
redeveloping their Antarctic infrastructure (e.g., Argentina, Australia, New Zealand, 
UK, USA), or constructing additional stations in new locations (e.g., China). Stations 
provide nations with a mechanism to demonstrate substantial scientific research activ‑
ity and participate in the governance of the Antarctic Treaty area by becoming a Con‑
sultative Party to the Antarctic Treaty Consultative Meeting (Gray and Hughes, 2016; 
Karatekin et al., 2023). Abandoned stations and historical waste dumps generated 
before the 1998 Environmental Protection to the Antarctic Treaty Protocol, which 
prohibits the dumping of waste, are found across the continent, creating substantial 
local pollution and associated impacts (e.g., Fryirs et al., 2013; Stark et al., 2023). 
Notably, several abandoned stations built on ice shelves between 1950 and 1990, such 
as the UK Halley I–IV on the Brunt Ice Shelf and the South African SANAE I–III 
stations on the Fimbul Ice Shelf, have calved into the ocean (Aronson et al., 2011).

There are many examples of quarrying and construction activities destroying 
breeding habitats for birds and terrestrial biological communities (Ewing et al., 
1989; Wilson et al, 1990; Hughes et al., 2016; 2023), although some attempts have 
been made at relocating vegetation (Câmara et al., 2021). Trampling and compres‑
sion of Antarctic soils by pedestrian traffic and vehicle movement affect soil prop‑
erties and biodiversity, with visual impacts remaining decades after the original 
event (Tejedo et al., 2014). Human visits and wildlife disturbance from aircraft 
and, more recently, remotely operated vehicles, can lead to reduced reproductive 
success and displacement of biota (Chwedorzewska and Korczak, 2010; Coetzee 
and Chown, 2016; Mustafa et al., 2018).

Sewage and wastewater: Release of sewage and wastewater is the only waste 
disposal into the Antarctic environment permitted under the Protocol (Annex III), 
and only when environmental conditions provide initial dilutions and rapid disper‑
sal. Treatment is not mandatory, but at a minimum, sewage maceration should be 
undertaken at research stations with more than 30 personnel. For stations located 
on floating ice shelves or inland areas of permanent ice, disposal of sewage and 
wastewater in deep ice pits is allowed as it is the only practicable option.

Sewage disposal standards date back to 1991 when the Protocol was agreed but 
are now considered inadequate (ATS, 1998 a, b). Treatment of sewage is increas‑
ingly undertaken at research stations, but more than 50% lack sewage treatment 
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and large seasonal fluxes in sewage are prevalent (Gröndahl et al., 2009; COM‑
NAP, 2022). Some research stations, such as the Belgian Princess Elizabeth base 
in Dronning Maud Land, East Antarctica (Figure 0.1), have invested heavily in 
sustainable microbial treatment and greywater recycling facilities that can recycle 
up to 75% of wastewater (Alvarez et al., 2015). Elsewhere, outdated practices have 
led to the release of sewage into local terrestrial and freshwater environments, or 
microbial and chemical contamination of streams and lakes (Peter et al., 2009; Tort 
et al., 2017; Hawes et al., 2023).

Sewage release has many negative consequences for the nearshore marine 
environment several kilometres from the outfall (Stark et al., 2016). Released 
chemicals include metals and metalloids (hereafter referred to collectively as 
metals), persistent organic pollutants (POPs), surfactants, and nutrients that 
change aquatic community structures (Wild et al., 2015; Webb et al., 2020; 
Szopińska et al., 2021; Stark et al., 2023). Effective sewage treatment pre‑
vents ongoing impacts (Conlan et al., 2010), but remedial treatment is needed 
to remove persistent pharmaceutical chemicals (e.g., analgesics, anti‑inflam‑
matories, antibiotics, estrogens, fungicides, preservatives, UV filters, and 
surfactants) whose negative impacts are well‑ established (Emnet et al., 2015; 
Perfetti‑Bolaño et al., 2022). Wastewater disposal into the Antarctic environ‑
ment releases sewage‑derived microbial strains, which are used as markers for 
tracing the extent of sewage contamination, but have negative impacts on local 
biota by, for example, spreading antimicrobial‑resistant genes (Hughes, 2003; 
Power et al., 2016; Hernández, et al., 2019; Hwengwere et al., 2022; Corti 
et al., 2023).

Fuel spills: The most significant large‑scale fuel spill in Antarctic marine or 
terrestrial environments was the sinking of the Argentine naval supply vessel, 
Bahai Paraiso in 1989, at Arthur Harbour, near Palmer Station, Anvers Island 
(Figure 0.1), which resulted in the loss of ~600,000 litres of fuel and subsequent 
impacts upon bird and marine invertebrate populations (Kennicutt et al., 1992). 
Many areas around stations have been subject to chronic fuel and other POPs con‑
tamination, primarily due to oil spills and poor infrastructure maintenance, but 
also as a result of the long‑distance transport of industrial by‑products (Peter et al., 
2009; Golubev, 2021).

Away from stations, leaking oil drums left in (abandoned) station dumps have 
resulted in substantial quantities of contaminated ground with one estimate sug‑
gesting between 1 and 10,000,000 m3 of contaminated soil being present in Ant‑
arctica (Snape et al., 2001). For example, lead and zinc in soil in the immediate 
vicinity of Marambio Station, Seymour Island, Antarctic Peninsula (Figure 0.1) 
exceeded baseline values by up to five times (Chaparro et al., 2007). Fuel spills can 
have long‑term impacts on soil properties (i.e., moisture, hydrophobicity, soil tem‑
perature) and biological communities including microbial activity (Aislabie et al., 
2004; Hughes et al., 2007; Vázquez et al., 2017). More positively, some indig‑
enous microorganisms have proven capable of degrading hydrocarbons, including 
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polyaromatic hydrocarbons (PAHs), which has resulted in attempts to remediate 
contaminated soils in situ at some Antarctic locations (McWatters et al., 2016).

Local atmospheric emissions: Atmospheric pollution is an almost inevitable 
result of fossil fuel combustion to power research stations, ships, aircraft, and over‑
land vehicles. Local levels of atmospheric pollution are generally low compared to 
other areas of the planet (e.g., nitrogen oxides; Helmig et al., 2020; Marina‑Montes 
et al., 2020), and many emissions originate outside of Antarctica (Wolff, 1992; Leal 
et al., 2008). Recent examination of snow in the vicinity of research stations and 
coastal tourist sites found black carbon from fossil fuel combustion to be above 
background levels measured elsewhere on the continent (Khan et al, 2019; Cordero 
et al., 2022). This is of particular concern as it can darken the snow, which lowers 
its albedo and increases melt rates (Cereceda‑Balic et al., 2020).

8.3 Novel Pollutants

Many of the pollutants that end up in or around Antarctica and sub‑Antarctic Islands 
have been dispersed globally by atmospheric (Bargagli et al., 2008; Li et al., 2020; 
Aves et al., 2022), oceanic (Jiskra et al., 2021; Cunningham et al., 2020, 2022), and 
migration (Wild et al., 2022) processes.

The most common airborne and gaseous pollutants hazardous to health are 
particulate matter with diameters less than or between 2.5 (PM2.5) and 10 (PM10) 
microns, black and elemental carbon, nitrogen oxides, ozone, sulphur dioxide, 
POPs, volatile organic compounds, PAHs, per‑ and polyfluoroalkyl substances, and 
carbon monoxide associated with industrial, agricultural, and automotive industries 
(WHO, 2021). Even though the Northern Hemisphere is thought to have a much 
lower hydroxyl‑radical pollution self‑cleaning capacity, some of these pollutants 
have similar concentrations in the Southern Hemisphere to the Arctic (Patra et al., 
2014). POPs have been extensively studied in Antarctica since the 1960s, and their 
negative impact on human, wildlife, and ecosystem health is well‑established and 
regulated by the Stockholm Convention (Goerke al., 2004; Cabrerizo et al., 2013; 
Marrone et al., 2021; Alfaro Garcia et al., 2022; Garnett et al., 2022; Corsolini 
et al., 2022; Kuepper et al., 2022). Recent reviews of POPs in Antarctica include: 
ImPACT Action Group (2021); Cordero et al. (2022); da Silva et al. (2023); Luarte 
et al. (2023); Kessenich et al. (2023).

Pollution levels in Antarctica can also be assessed by comparison with baseline 
(pre‑industrial) levels at pristine sites (Angulo, 1996) and by using natural archives 
such as ice cores, lake/marine sediments, and peatland records (Li et al., 2020). 
For example, evidence of anthropogenic greenhouse gas emissions, including car‑
bon dioxide and black carbon from incomplete combustion of biomass dating back 
centuries, are preserved in Antarctic ice cores and have been linked to large‑scale 
forest clearance, and changes in settlement patterns and land use on surrounding 
continents (e.g., McConnell et al., 2021; Thomas et al., 2023; King et al., 2024). 
Most pollutants have substantially lower concentrations in Antarctica and the SO 
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than in populated areas of the Northern Hemisphere due to their remoteness, low 
population density, and comparative lack of landmass (Bargagli et al., 2008).

In the following section, we highlight some novel (far‑travelled) pollutants, 
such as anthropogenic radionuclides, metals and plastics, that have been found 
extensively across Antarctica and the SO but remain largely unregulated.

Anthropogenic radionuclides: Perhaps the most dramatic example of a globally 
dispersed pollutant is radioactive fallout from atmospheric nuclear weapons testing 
(Figure 8.2). Comparatively little is known about the distribution of anthropogenic 
radionuclides from atmospheric fallout across the Southern Hemisphere, principally 
because there are only a few landmasses in the SO, concentrations of these radionu‑
clides are low, and, until recently, analytically challenging to measure (Child et al., 
2008, 2013; Arienzo et al., 2016). While the concentrations and impacts of radionu‑
clide pollution are much lower, they can bioaccumulate through the food chain, and, 
unlike other pollutants, remain radioactive for centuries to millennia (Saunders and 
Meredith, 2023).

Atmospheric nuclear weapons testing injected anthropogenic radionuclides, 
principally Radium‑226 (226Ra), Caesium‑137 (137Cs), and Strontium‑90 (90Sr), but 
also Americium‑241 (241Am), Plutonium‑239 and ‑240 (239Pu,240Pu), Uranium‑236 
(236U), and Iodine‑131 (131I) into the stratosphere, which were mixed latitudinally 
by atmospheric circulation processes, and distributed globally as fallout (United 
Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 
2000). Of the 2053 nuclear weapons tests conducted between 1945 and 2006, 
more than a quarter (530) were tested in the atmosphere before the Partial Test Ban 
Treaty, which restricted atmospheric testing, came into effect in 1963 (Figure 8.2).

FIGURE 8.2  The shift from atmospheric to underground testing following the ratifica‑
tion of the Partial Test Bay Treaty (PTBT) in 1963 (see Prăvălie, 2014). 
The Threshold Test Ban Treaty in 1974 banned underground tests greater 
than 150 kilotons. The Comprehensive Test Ban Treaty banning all nuclear 
test explosions was adopted in 1996 by the United Nations but has not 
been ratified by all countries (Giovannini, 2021).
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Approximately 83% of the 530 Mt total explosive yield detonated between 1951 
and 1992 (440 Mt) was due to atmospheric tests conducted between 1951 and 
1980, with the Former USSR and the USA the largest contributors, followed by 
China, France, and the UK (Prăvălie, 2014) (Figure 8.2). Although only 10% of 
tests were conducted in the Southern Hemisphere, between 1945 and 1980 the 
fallout inventory in the Southern Hemisphere was approximately one‑third of that 
in the Northern Hemisphere (UNSCEAR, 2000; Hancock et al., 2011).

Anthropogenic radionuclides, such as 137Cs, 241Am, and 239Pu, have been found 
in soil, lichens, mosses, cryoconite, peat deposits, ice core records and lake/marine 
sediments (Li et al., 2017; Szufa et al., 2018). Caesium‑137 fallout, which peaked 
in 1963, is widely used as a chronological marker in lake, marine, and peat records 
globally (Foucher et al., 2021) (Figure 8.3). While the concentration of 137Cs in 
records from the Southern Hemisphere high latitudes is often very low or below 
detection limits (Li et al., 2017) (Figure 8.3), the timing of the 137Cs peak var‑
ies between 1963 and 1965, likely due to the time taken for atmospheric mixing 
between the Northern and Southern Hemispheres (Foucher et al., 2021).

Similarly, plutonium isotope peaks linked to radioactive fallout have increas‑
ingly been found in ice cores from the Arctic and Antarctica (Arienzo et al., 2016) 
(Figure 8.3). Recent analytical improvements mean it is possible to measure fall‑
out radionuclides, such as 239Pu at peta‑m concentrations. This advance led to the 
recent discovery of 239Pu and 240Pu in soils, peat deposits and lake sediments from 
sub‑Antarctic Islands and Tasmania, significantly widening their known spatial 
coverage (Harrison et al., 2021).

The relatively large amounts of 239Pu, 240Pu, and 236U released during atmos‑
pheric weapons testing and different isotopic signatures used by different countries 
in weapons manufacturing can be used to track changing fallout patterns (Fig‑
ure 8.3c) (Hotchkis et al., 2000). The impact of USA testing in the Southern Hemi‑
sphere and Former USSR testing in the Arctic up to 1970, and the post‑1970 shift 
to Chinese testing in the Northern Hemisphere and French testing in the Southern 
Hemisphere is shown in Figure 8.3. Consequently, 240Pu/239Pu atom ratios found in 
some records from sub‑Antarctic latitudes are towards the lower end of the global 
range of 0.16–0.19 (Kelley et al., 1999) and have been attributed to tropospheric 
fallout from French nuclear tests in the Pacific during the 1960s and 1970s (Cham‑
izo et al., 2011; Kelley et al., 1999).

Metals: The occurrence and accumulation of metals have been recorded in Ant‑
arctica in soils, marine sediments, and biota (Bargagli, 2008; Koppel et al., 2021). 
Research stations are the main source of locally derived metal contaminants, origi‑
nating from waste dumps and contaminated sites but also local geology (Regoli 
et al., 2005; Aronson et al., 2011; Padeiro et al., 2016; Webb et al., 2020). Impact 
assessments highlight arsenic, cadmium, copper, lead, mercury, and zinc as ele‑
ments of most concern (Tin et al., 2009).

Some metals are emitted by industrial processes in gaseous form, while others 
become associated with fine particles or remain as by‑products and confined to 
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industrial facilities (Hopke et al., 2020). Metals in gaseous form, such as mer‑
cury, can travel long distances within the atmosphere before being deposited 
in remote areas like Antarctica (Bargagli, 2008; Whiteside and Herndon, 2022; 
Marina‑Montes et al., 2020). Consequently, elevated concentrations of metals 
above natural background levels have been observed in the atmosphere, snow, soil, 
and aquatic ecosystems of Antarctica far from research stations (e.g., Szopinska 
et al., 2021).

Although only 10% of the world’s population resides in the Southern Hemi‑
sphere, major economies, such as Argentina, Australia, Brazil, Chile and South 
Africa, are significant consumers of coal and key producers in the mining sector 
(Figure 8.4). These nations have high industrial emissions rates, and their geo‑
graphical proximity to Antarctica facilitates the transport of metals to the region 
(EIA, 2023; World Mining Data, 2023).

Studies from Australia have shown that pollutants from mining activities travel 
long distances, with the potential to affect the SO and sub‑Antarctic Islands, such 

FIGURE 8.3  (a) Global distribution of sediment core records containing 137Cs, high‑
lighting the comparative lack of records from the Southern Ocean region 
(modified from Foucher et al., 2021; https://creativecommons.org/licenses/
by/4.0/). Caesium‑137 peaks have also been found in lake sediments from 
the Falkland Islands, Signy Island (Appleby et al., 1995), and South Africa 
(Rose et al., 2021) (not shown on maps). (b) Location of ice cores and 
snow pits where 239Pu has been detected in Antarctica (from Severi et al., 
2023). (c) Arctic (black line) and Antarctic (red line) composite ice core 
records of 239Pu activities (with standard error bars) and a summary of total 
fission yields by country and testing locations (reprinted from Arienzo 
et al., 2016, copyright 2023 American Chemical Society).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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as Macquarie Island (Figure 0.1) (Schneider et al., 2019). Both Southern South 
America and Africa also contribute significant amounts of metals to the sub‑ 
Antarctic (Li et al., 2020) and Antarctic (Planchon et al., 2002; Tuohy et al., 2015; 
Schwanck et al., 2017, 2022; Fan et al., 2021; Liu et al., 2021), and most regula‑
tory frameworks governing pollution in these countries are weaker (Sinclair and 
Schneider, 2019; Fisher et al., 2023).

Long‑term studies examining archives of metal deposition indicate an increase 
in metals across Antarctica from pre‑industrial to post‑industrial periods. Ice core 
records from Dome A and the Antarctica Peninsula (Figure 0.1) indicated that 
enrichment factors of antimony, arsenic, cadmium, copper, and lead were signifi‑
cantly larger than 10, which is predominantly due to mining production and burn‑
ing of coal in Australia and South America (Liu et al., 2021). Other ice core studies 
show consistent, albeit varying, increases in metals since the end of 19th century, 
including lead (Schwanck et al., 2022; McConnell et al., 2014; Hong et al., 1998; 
Vallelonga et al., 2002; 2004; Görlach and Boutron, 1992), cadmium (Hong et al., 
1998; Schwanck et al., 2022), copper (Hong et al., 1998; Vallelonga et al., 2004), and 
arsenic (Schwanck et al., 2016). A compilation of available peat and lake sediment 
records, alongside independent estimates of global mercury emissions, has shown 
that mercury deposition in the Southern Hemisphere has been enriched fourfold since 
the C15th (Li et al., 2020).

FIGURE 8.4  Antarctic gateway states, including Argentina, Australia, Chile, New Zea‑
land, and South Africa (bold), are among the top consumers of coal and 
leading non‑ferrous metal producers in the Southern Hemisphere (World 
Mining Data, 2023).
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Plastics: Plastic pollution in the SO is being increasingly recorded, with 
sources, including local pollution from fishing vessels and research stations, and 
debris transported on currents from elsewhere (Waller et al., 2017). Plastic release 
from research stations is likely to be minimal on a continental scale, but substan‑
tial amounts of plastic debris, including fishing equipment, have been found on 
beaches at various locations in the Antarctic region (Munari et al., 2017; Reed 
et al., 2018; Waluda et al., 2020) (Figure 8.5).

Depending upon the properties of the plastic, it may float or sink, thereby 
accessing different benthic and pelagic habitats, and can persist in the environment 
for decades or longer (Cuningham et al., 2020; Rowland et al., 2021a; Rota et al., 
2022). Large plastic items can be hazardous to wildlife, through ingestion or entan‑
glement, and may act as vectors for the transfer of non‑native species (Arnould 
and Croxall, 1995; Barnes, 2002). Microplastics (particles or fibres <5 mm) can 
be released in wastewater, produced, for example, by clothes washing, but a more 
substantial source may be the degradation of larger fragments of marine plastic 
debris due to exposure to solar UV radiation, chemicals, biological processes, and 
physical damage. The impact of microplastics on Antarctic biodiversity remains 
unknown but may include reduced feeding efficiency and reproductive success in 
Antarctic krill (Euphausia superba) (Dawson et al., 2018; Rowlands et al., 2021b). 
Plastic pollution has the potential to substantially impact key Antarctic species, 
particularly when combined with other environmental and anthropogenic stressors 
(Rowlands et al., 2021b). Horton and Barnes (2020) also highlighted that Antarctic 

FIGURE 8.5  Summary of major sources and contamination pathways of plastics on and 
around Antarctica.
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organisms face a number of stressors in the SO and that the impact of plastics 
should not be studied in isolation.

While the definition of nanoplastics is still debated, the consensus is that any 
plastic particle smaller than 1 µm is classified as a nanoplastic (Hartmann et al., 
2019). Like microplastics, nanoplastics are largely formed via the breakdown of 
larger plastic items, although some primary sources exist (Piccardo et al., 2020). 
Initially, in terms of transport mechanisms and impact, nanoplastics were thought 
of as an extension of microplastics (Moore, 2008), however recent studies have 
shown that the behaviour of these particles is often quite different (Gigault et al., 
2018; Gigault et al., 2021; Pradel et al., 2023).

The study of nanoplastics in the environment is a relatively new field (Ter Halle 
et al., 2017; Piccardo et al., 2020), presenting unique size‑related analytical chal‑
lenges. Although the sources, transport, ecological impacts, and fates are not well 
understood, much work has been undertaken in the related field of hydrocarbon and 
POP ‘chemical’ pollutants since the 1960s in Antarctica (de Silva et al., 2023 for 
review). To date, there has only been one study of nanoplastics in Antarctica, report‑
ing values of 37.7–60.0 ng mL−1 in a sea ice core (Materić et al., 2022). Reports of 
microplastic concentrations in the SO are more numerous, with values ranging from 
zero (Kuklinski et al., 2019) to over 500 particles L−1 (Garza et al., 2023).

Despite a lack of data, nanoplastics are predicted to be as pervasive as micro‑
plastics (Alimi et al., 2018), and perhaps more so, since nanoplastics can be 
transported extremely long distances in the atmosphere (Materić et al., 2022). 
Moreover, the length of time it takes for the long‑range transport of oceanic plas‑
tic pollution to reach Antarctica gives ample time for fragmentation into smaller 
size fractions (Obbard, 2018) and there are many potential sources of plastic pol‑
lution within the SO (Rowlands et al., 2021b). As an emerging field, there is lim‑
ited literature on the impact of nanoplastic on Antarctic organisms (Alice et al., 
2021), but nano‑sized polystyrene spheres have been found to affect the immune 
response, swimming abilities, and gut epithelium of Antarctic marine organisms 
(Bergami et al., 2019; Bergami et al., 2020; Bergami et al., 2022). Rowlands 
et al. (2021a) observed impaired embryonic development of Antarctic krill when 
exposed to polystyrene nanoplastic particles. Furthermore, the impacts of nano‑
plastic on krill (Rowlands et al., 2021a) and the sub‑Antarctic pteropod Limacina 
retroversa (Manno et al., 2022) were found to be worse when subjected to a 
multi‑stressor environment.

Policies related to plastic pollution have been implemented within the SO; the 
International Convention for the Prevention of Pollution from Ships (MARPOL, 
Annex V) legislates against the disposal of plastic overboard (International Mari‑
time Organisation (IMO), 1988), while the Antarctic Treaty prohibits the release of 
macroplastic waste into the Antarctic environment (Secretariat to the Antarctic Treaty, 
1998). While guidelines are in place for plastic use on research stations (SCAR, 2024) 
and in the tourism industry (IAATO, 2019, 2020), no regulations exist. Collaborative 
governance under the Antarctic Treaty presents an opportunity to put research findings 
into policy and create international action (Secretariat to the Antarctic Treaty, 1961).
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8.4 Impact of Climate Change on Pollution in Antarctica

Shifts in atmospheric circulation and global warming may further enhance the trans‑
port and deposition of pollutants to Antarctica (Convey et al., 2009; Turner et al., 
2014). For example, increases in pollutant deposition in Antarctic ice cores have been 
attributed to increased cyclonic activity associated with more poleward‑focused and 
stronger Southern Hemisphere westerly winds (Schwanck et al., 2022). This is driv‑
ing sea ice poleward, increasing the advection of warm and moisture‑laden air across 
the Antarctic and sub‑Antarctic (Marshall et al., 2017; Oliva et al., 2017; Heredia 
Barion et al., 2023), likely enabling increased wet deposition of contaminants. Melt‑
ing ice sheets and thawing permafrost and snowpack can also release previously 
trapped substances into surrounding environments (Pérez‑Rodríguez et al., 2019).

8.5 Summary

• Since the International Geophysical Year, scientific activities and tourism in 
Antarctica have expanded significantly, with more than ~100,000 people vis‑
iting the continent annually. Most visits are made to the Antarctic Peninsula 
where numerous pollution‑related incidents have been reported.

• Research stations are the main source of locally derived contamination and 
human activities have led to substantial increases in the long‑range deposition 
of pollutants to Antarctic and sub‑Antarctic regions.

• Greater focus on the evaluation of impacts that largely unregulated pollutants 
could have on Antarctic and SO environments and ecosystem health in the 
future is required.

• Future changes in climate, including increased rainfall and melting ice from 
Antarctica, will lead to increased concentrations of pollutants across Antarctic 
terrestrial and marine environments.

• Global distribution mechanisms may have a more substantial influence, requir‑
ing local versus global sources to be established and disentangled prior to the 
establishment of effective policy and mitigation strategies.
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