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Abstract

With the state-of-the-art IceNet model, deep learn-
ing has contributed to an important aspect of climate
research by leveraging a range of climate inputs to
provide accurate forecasts of Arctic sea ice concentra-
tion (SIC). The deep learning subfield of eXplainable
AI (XAI) has gained enormous attention in order
to gauge feature importance of neural networks, for
instance by leveraging network gradients. In recent
work, an XAI study of the IceNet was conducted,
using gradient saliency maps to interrogate its fea-
ture importance. A majority of XAI studies provide
information about feature importance as revealed
by the XAI method, but rarely provide thorough
analysis of effects from reducing the number of in-
put variables. In this paper, we train versions of the
IceNet with drastically reduced numbers of input
features according to results of XAI and investigate
the effects on the sea ice predictions, on average and
with respect to specific events. Our results provide
evidence that the model generally performs better
when less features are used, but in case of anomalous
events, a larger number of features is beneficial. We
believe our thorough study of the IceNet in terms
of feature importance revealed by XAI may give
inspiration for other deep learning-based problem
scenarios and application domains.

1 Introduction

Arctic sea ice plays a pivotal role in our earth’s cli-
mate system [1]. In recent years, drastic shrinkage
of the sea ice extent has been observed due to an-
thropogenic climate change [2]. This development is
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particularly worrying as a reduction in sea ice again
accelerates global warming [3]. Accurate forecasts
of seasonal sea ice help our general understanding
of the earth’s climate but can also be put to use
directly, e.g. to estimate possible shipping routes
that depend on the extent of sea ice.
Recently, Andersson et al. introduced the deep

learning model IceNet that forecasts average sea
ice concentration (SIC) with high accuracy for lead
times up to 6 months [4]. Long lead times are par-
ticularly challenging due to the spring predictability
barrier [5], which is why other models are often re-
stricted to short-term predictions [6–8]. IceNet uses
a whole range of different climate observables as
input features and provides very accurate forecasts,
in particular for anomalous events.However, the pre-
dictions are not easy to interpret and the question
was posed from which features the network draws
the information that leads to its accurate forecasts.
Joakimsen et al. [9] leverage a gradient based

method to provide an extensive deep learning XAI
[10] analysis of the IceNet’s feature importance.
Thereby, they focus on the forecast for the anoma-
lous month September 2013, as the IceNet showed
a particularly high accuracy in this prediction.The
results yield detailed information about the impact
of the individual features with spatial resolution and
with respect to lead times. Based on their results,
Joakimsen et al. conclude that only a fraction of the
input features provide a relevant contribution to the
forecast and suggest that a model trained with only
a few features should maintain a high accuracy.
Convolutional neural networks are computation-

ally demanding and typically require substantial
storage capacity [11]. There has been a lot of ef-
fort to leverage feature importance scores to prune
parameters and reduce redundancy, as this offers a
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way to reduce storage requirements and computa-
tion costs while maintaining a high accuracy [12].
In contrast to previous studies that often cut back
individual connections, node, etc. [13], we want
to examine a more radical approach by completely
discarding the features with low importance scores.
This has a distinct advantage because it entirely
removes the need for a portion of the input features,
that in many cases might be hard to come by. In-
spired by the findings of Joakimsen et al. [9], we
conduct a novel analysis where we train model vari-
ations of the IceNet with different configurations of
input features. We compare the performance for the
different configurations for the case that was studied
by Joakimsen et al. in detail and investigate how
the results generalize for all predictions. Finally,
we separate a set of anomalous events to examine
how the models compare when it comes to predict
outliers.

2 Related Work

Here, we present the work of Andersson et al., which
introduces the IceNet model, as well as the work of
Joakimsen et al., that interrogates IceNet’s feature
importance.

A. IceNet

In 2021, Andersson et al.’s work on the IceNet was
published. It shows remarkable accuracy for the
prediction of SIC, in particular when it comes to
extreme events and long range forecasts. In its orig-
inal form, the IceNet takes 50 input features, which
comprise of: SIC observations from the preceding
12 months, a linear trend forecast (LTF) of the SIC
for the next 6 months, 11 climate variables (1-3
months prior), seasonal encodings and meta data
(land masks). Each of the features is spatially rep-
resented by a 432 × 432, image-like data frame,
whereas each grid cell or pixel corresponds to a
25 × 25 km area in the northern hemisphere. The
LTF is calculated by taking the previous 35 years
of SIC data for each month and pixel individually
and produce a linear fit through these points. That
means, the LTF of an individual pixel is calculated
based on the SIC values that were obtained for the
same pixel in the same month within the previous 35
years. The best linear fit through these values pro-
duces the LTF for the same month in the subsequent
year.

The model itself is a convolutional neural net-
work with a U-Net [14] architecture (see Figure 1).
The sea ice prediction is arranged as a classification
problem with the 3 SIC classes

1. open-water: SIC ≤ 15 %

2. marginal ice: 15 % < SIC < 80 %

3. full ice: SIC ≥ 80 %.

The model is trained to forecast probabilities for the
individual grid cells to fall into any of these classes.
Thus, the prediction for any month consists of three
432 × 432 maps of probabilities, one for each SIC
class. In this manner, the model directly produces
forecasts for lead times of 1 to 6 months for any
given initialization month.

To increase the robustness, Andersson et al. train
an ensemble of 25 models like this, using different
random initializations. The mean of the individual
predictions yields the finial forecast.

A transfer learning approach is used to train the
model. First, the model is pretrained on climate
simulation data (CMIP6) from 1850 to 2100. Then,
the training is continued on monthly averaged ob-
servation data (era5) from 1980 to 2012. Detailed
information about the type, origin and preprocessing
of the data can be found in [4] and on GitHub1.

B. Interrogating Feature Importance
Triggered by the accurate forecasts of IceNet for
extreme events, Joakimsen et al. published an XAI
study with the aim to identify the features, that are
most relevant for these results.

There are several approaches on how to estimate
feature importance for a deep neural network [15–
17]. Gradient based saliency maps [18], as they
are used in by Joakimsen et al. [9], offer a way to
not only assign importance scores to the individual
features, but also provide information on whether
or not features have a positive or negative impact
on the predictions. Furthermore, this method is
spatially resolved, which is particularly useful when
there are regions of special interest in the forecasts.
The gradient of a function can be seen as a mea-

sure of its sensitivity with respect to small changes of
the input variables. Let x = {x1, ..., xK} be a set of
K input features that result in a prediction f(x)mn

for the grid cell (m, n), with m ∈ {1, ...,M} and
n ∈ {1, ..., N}, whereas M and N are the number of
rows and columns of the grid. A gradient saliency
map can be created with respect to a distinct fea-
ture xk, by computing the gradients of the predic-
tion f(x)mn with respect to all spatial components
xk(i, j) of the input feature xk and accumulating
over the spatial components (m, n) of the prediction
as follows:

R(xk(i, j)) =
∂

∂xk(i, j)

(
M∑

m=1

N∑
n=1

f(x)mn

)
. (1)

The value of R(xk(i, j)) yields information on how
a change of the (i, j)-component of feature xk influ-
ences the overall prediction. In order to get a single
value R(xk) to rank the feature importance, it is

1https://github.com/tom-andersson/icenet-paper
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Figure 1. IceNet’s U-Net architecture takes a stack of 432 × 432 input features and processes them with an
encoder-decoder structure to output 6 months of forecast, each separated into 3 SIC classes. Image taken from [4].

summed over the spatial components (i, j):

R(xk) =

M∑
i

N∑
j

R(xk(i, j)). (2)

Joakimsen et al. use this method but sum only over
a specific region of interest, that corresponds to the
area of unusual sea ice extent. This way the result
is more meaningful with respect to the anomalous
part of the forecast. Focusing on this application
on the particular anomalous month September 2013,
they provide results that suggest only few of the
50 input features are important for the forecast of
the anomalous sea ice extent, namely the historic
SIC, the LTF, seasonal encoding and the land masks.
They conclude that IceNet should still yield accu-
rate forecasts, when only these input features are
considered. [9]
We acknowledge that there is an ongoing discus-

sion about the reliability and trustworthiness of
the results from gradient-based XAI methods [19,
20]. Future works will therefore aim to investigate
alternative XAI methods [21–23] to see if similar
conclusions as in Joakimsen et al. are reached.

3 Methodology

Based on the importance scores provided by Joakim-
sen et al., we want to investigate how the IceNet
model performs, when features with low importance
are discarded. In this section we present our changes
to the original model and our approach to evaluate
the generalization of the results.

A. Feature Reduction and Retraining
To test how IceNet performs under reduction of input
features, we set up different feature configurations:

1. original: This configuration contains all 50 fea-
tures that were used in the original IceNet by
Andersson et al.
(total features: 50)

2. reduced : This configuration discards all 11 cli-
mate variables but contains all 12 SIC observa-
tions, the LTF, seasonal encodings and meta data
(land masks).
(total features: 21)

3. minimal : This configuration only contains the
LTF, seasonal encodings, meta data (land masks)
and one SIC observation of the preceding month.
(total features: 10)

The reduced configuration includes the features that
Joakimsen et al. suggested to be sufficient for a good
forecast, while the minimal configuration represents
a further shrunk set of features that sets a higher
threshold for the importance scores of a feature to be
included. For each of these configurations we train
an ensemble of 10 models with different random
initializations but the same architecture. We do
not pretrain the models on simulation data, as it is
computationally expensive and it was shown that
the benefit particularly for the critical months is
very little [4]. Instead the models are trained purely
on monthly observational data from 1980 to 2011.
The data of 2012 - 2017 is assigned for validation
and a test set contains the data from 2018 - 2020.

B. Performance Evaluation

Consistent with [4], the performance of the trained
model is evaluated using a binary accuracy measure,
based on the 15 % threshold, which is a common
metric to measure differences in sea ice extent [24].
Each cell is regarded as either ice (SIC > 15 %)
or no ice (SIC ≤ 15 %). As for the predictions,
that means if the accumulated probability of the
classes 2 (marginal ice) and 3 (full ice) is above 50 %
the cell is regarded as ice, otherwise it is consid-
ered to be no ice. The binary accuracy calculates
as the percentage of correctly classified grid cells
for every individual prediction. In addition to the
pure measure of accuracy, we use the standard devi-
ation between ensemble members to provide a brief
uncertainty estimation for the different IceNet con-
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Figure 2. Anomalously large SIC (%) during September
2013 in the northern hemisphere.

figuration in Appendix A.
To get a deeper understanding of how the fea-

ture reduction affects the predictions beyond simply
measuring the average accuracy, we look at different
cases separately. The analysis of feature importance
by Joakimsen et al. was performed on the predic-
tion for September 2013, as this was a particularly
anomalous but accurately predicted event. Thus, we
will first compare how the reduced input features af-
fect the model predictions for this particular month
in detail. Next, we look at the general case, where
we include all predictions to see if the results that
were obtained for September 2013 generalize. Last
we separate a set of predictions for that we classify
as anomalous months and compare the model per-
formances for these predictions. With this set of
experiments we aim to analyze the impact of feature
reduction on general predictions but also to uncover
how anomalous events relate to that, as they are of
particular interest. Further, we can put the predic-
tion for September 2013 into context and use it to
reveal some details of how the different predictions
differ.

4 Results

In this section we provide the results of three exper-
iments and evaluate the results with respect to the
impact of feature reduction in different scenarios.

A. September 2013 in Detail
Figure 2 shows the observed SIC for the anomalous
September 2013. In particular the upper right re-
gion represents an unusual extent of sea ice [9]. In
contrast, Figure 3 provides the deviations of the in-
dividual model predictions from the observation for
a lead time of one month. A supplementary figure,
showing the results also for a lead time of 6 months
can be found in Appendix B, Figure B.1. The pix-

els are color-coded, with red areas corresponding
to pixels where sea ice was observed but not pre-
dicted, and blue areas for pixels where sea ice was
predicted but not observed. We can clearly see that
all (mis-)predictions have the same overall structure,
with false predictions located around the borders
of the ice surface. The tendencies of predicting too
high or too low SIC are distributed very similarly,
with generally too much sea ice in the regions north
of Europe extending to mid Russia and too little
sea ice north of Canada, Alaska and eastern Russia.
Considering that in this month, an anomalous large
extent of sea ice has been observed, it is surprising
that none of the models seems to predict generally
too little sea ice. Instead, it seems like the whole sea
ice surface of the predictions is shifted towards Eu-
rope compared to the observed sea ice. Sea ice drifts
are mainly determined by wind [25]. The original
IceNet configuration is the only one that takes wind
as input feature but the results show that this model
could not predict this shift of the sea ice surface any
better than the models without wind.

Another key observation concerns an area in the
right center of the plots (circled by a dashed line
in Figure 3(a)) which contained ice at the targeted
time. Both of the reduced models could predict this
area very accurately for a lead time of one month,
while the original IceNet was not able to pick up on
indications for this.

Figure 4 shows the binary accuracies for the pre-
dictions of all models for lead times from 1 to 6
months. Supplementary figures of the binary ac-
curacies which include uncertainty estimations can
be found in Appendix A. The accuracies between
the models for a given lead time vary slightly but
remain in the same domain and thus, support the
results of Figure 3. It is notable that the binary
accuracies of the reduced models both exceed the
accuracy of the original model with 1.2 and 1.0 per-
centage points (pp.) for a lead time of 1 month.
These results strongly support the hypothesis that
IceNet’s good performance for the prediction of the
extreme event in September 2013 is mainly based
on previous SICs. Also the observation that the
accuracy of the reduced models increases relative to
the original model matches the results of Joakimsen
et al.

B. Overall Performance

Next we examine whether this behavior also extends
to the general model performance, apart from this
individual extreme event. For this purpose, we av-
erage the binary accuracies for each lead time over
all predictions from 2012 to 2020. Figure 5 shows
the resulting average accuracy versus lead time for
each configuration. The original IceNet configura-
tion yields a slightly (ca. 0.5 pp.) lower accuracy
than observed by Andersson et al., but this can be
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(a) original model
lead time: 1 month

(b) reduced model
lead time: 1 month

(c) minimal model
lead time: 1 month

Figure 3. Deviations of the binary IceNet predictions from observed data for September 2013 for a lead time
of one month. Blue areas correspond to false positive predictions and red ares to false negative predictions,
respectively. The individual plots represent the results for the different IceNet configurations.
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Figure 4. Average binary accuracy of the three differ-
ent IceNet configurations plotted versus lead time for
September 2013.

explained by discarding the pre-training and the
lower number of 10 ensemble members in our exper-
iment compared to 25 members in the experiments
of Andersson et al. Remarkably, while decreasing
in the same manner, the reduced IceNet is 0.1 - 0.4
pp. more accurate over all lead times, with a max-
imum accuracy of 95.7 % for 1 month lead time.
Even the minimal configuration of the model shows
higher accuracy than the original version for lead
times up to 2 months. From lead times of 3 months
and up, the accuracy drops below the original one.
While nearly matching the accuracy of the reduced
model for small lead times, the minimal model’s
accuracy is clearly the lowest for large lead times
and thus, decreases faster with increasing lead time.
These results show that Joakimsen et al.’s hypothe-
sis, which corresponds to the reduced model, holds
true even for the general case. For longer lead times
it seems that not only the LTF is relevant, but also
the monthly SICs of the preceding year, as the min-
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Figure 5. Average binary accuracy of the three different
IceNet configurations plotted versus lead time.

imal model’s accuracy decreases quicker compared
to the configurations that include these SICs. It
should be noted that the LTF itself already provides
a good estimate for the future SIC [4], particularly
for non-extreme events. Thus, being able to predict
anomalous events with a high accuracy holds more
value than regular predictions.

C. Performance for Anomalous Months

So far, we just analyzed the model performances in
general and for one particular extreme event. In the
next step, we therefore examine how the different
models compare for cases that we classify as anoma-
lous, without focusing on one explicit event. As
a metric to determine how anomalous an event is,
we use the binary accuracy of the LTF. If the LFT
has a high accuracy, it means the SIC for the given
month is very similar to the expectation based on
the SIC of the previous years. A low LTF accuracy
can thus be interpreted as an anomaly. To show
how the different IceNet configurations behave with
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Figure 6. Binary accuracies of individual IceNet pre-
dictions (lead time of 1 month) with different feature
configurations plotted versus the binary accuracy of the
LTF. The dashed grey line marks the accuracy of the
LTF as a reference. The points left of the dashed red
line indicates the border correspond to the 10 % most
anomalous events.

respect to the grade of anomaly, Figure 6 shows
the binary accuracies of the IceNet forecasts with a
lead time of 1 month plotted versus the accuracy of
the LTF. The figure shows that IceNet’s accuracies
are generally lower when also the LTF accuracy is
low. But at the same time the accuracies distinguish
more from the LTF line, for low LTF accuracies. In
other words, the more the observed sea ice deviates
from its usual extend for a given month, the more
superior are the IceNet predictions compared to the
LTF. While this view makes it hard to draw gen-
eral conclusions about the differences between the
IceNet configurations, the figure shows that for most
extreme events the original configuration performs
better than the reduced versions and that the pre-
dictions for September 2013 (marked in the figure)
is just an exception.

To evaluate the performance for extreme events
more quantitatively, we classify the 10 % lowest
LTF accuracies as anomalous / extreme and assess
the performance for these months separately. That
corresponds to the predictions left of the red dotted
line in Figure 6. Figure 7 shows the average accuracy
for these extreme events versus the lead time for
all the configurations. Compared to Figure 5 we
can see that the ranking has changed and in fact,
the original IceNet has the highest accuracies for
all lead months. While all models have a similar
accuracy of 92 - 93% for a lead time of 1 month,
their difference increases with lead time up to about
1.2 pp. between the reduced and original model
for a lead time of 6 months. We can also see that
the accuracy drop from lead time of 1 month to 6
months is more significant (∼ 4 - 5 pp.) than in the
general case (∼ 2 pp.) for all models.
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Figure 7. Average binary accuracy of the three IceNet
configurations for the 10 % most anomalous events plot-
ted versus lead time.

5 Conclusion

We have trained versions of the IceNet model using
different configurations (original, reduced, minimal)
of input features. For these models we provided an
extensive performance analysis including different
sets of predictions. Our results show that averaged
over all predictions, the reduced model yields the
highest accuracy for all lead times. The minimal
model shows an increased accuracy for lead times up
to two months but drops below the original model for
larger lead times. For the particular event of Septem-
ber 2013, we also demonstrated that the reduced
versions capture properties of the ice structure, that
the original version missed. In the end we show that
the original model remains superior in cases that
deviate a lot from the usual SIC for a given month.

We conclude that XAI studies as provided by
Joakimsen et al. [9] can be leveraged to effectively
minimize the amount of input features for deep learn-
ing models, by maintaining overall high accuracy,
or even increasing it. This yields a practical and
straightforward method, e.g. for cases when certain
data is not easily obtainable or data storage is an
issue. For the generalization to extreme events and
outliers, however, models might still benefit from
additional features.

Future work might investigate the computational
benefits of decreasing the number of features. Fur-
ther studies might benefit from more extensive un-
derlying XAI studies that, e.g. include different
methods to estimate feature importance to increase
reliability. Additionally, the robustness of the mod-
els might be analyzed by introducing perturbations
to the model. Interesting insights could also be
gained by going deeper into the uncertainty estima-
tion, for example by training several ensembles per
configuration and compare the accuracy deviations
of the ensembles within one configuration.
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Ortiz, B. Paige, A. Elliott, C. Russell, S.
Law, D. C. Jones, J. Wilkinson, T. Phillips,
J. Byrne, S. Tietsche, B. B. Sarojini, E.
Blanchard-Wrigglesworth, Y. Aksenov, R.
Downie, and E. Shuckburgh. “Seasonal Arc-
tic sea ice forecasting with probabilistic deep
learning”. In: Nature Communications 12.1
(Aug. 26, 2021), p. 5124. doi: 10 . 1038 /

s41467-021-25257-4. url: https://doi.
org/10.1038/s41467-021-25257-4.

[5] M. Bushuk, M. Winton, D. B. Bonan, E.
Blanchard-Wrigglesworth, and T. L. Delworth.
“A Mechanism for the Arctic Sea Ice Spring
Predictability Barrier”. In: Geophys. Res. Lett.
47.13, e88335 (July 2020), e88335. doi: 10.
1029/2020GL088335.

[6] A. F. Kvanum, C. Palerme, M. Müller, J.
Rabault, and N. Hughes. “Developing a deep
learning forecasting system for short-term and
high-resolution prediction of sea ice concen-
tration”. In: EGUsphere 2024 (2024), pp. 1–
26. doi: 10.5194/egusphere- 2023- 3107.
url: https://egusphere.copernicus.org/
preprints/2024/egusphere-2023-3107/.

[7] C. Palerme, T. Lavergne, J. Rusin, A. Mel-
som, J. Brajard, A. F. Kvanum, A. Macdonald
Sørensen, L. Bertino, and M. Müller. “Improv-
ing short-term sea ice concentration forecasts
using deep learning”. In: The Cryosphere 18.4
(2024), pp. 2161–2176. doi: 10.5194/tc-18-
2161-2024. url: https://tc.copernicus.
org/articles/18/2161/2024/.

[8] J. Park, S. Hong, Y. Cho, and J.-J. Jeon. Uni-
corn: U-Net for Sea Ice Forecasting with Con-
volutional Neural Ordinary Differential Equa-
tions. 2024. arXiv: 2405.03929 [cs.AI]. url:
https://arxiv.org/abs/2405.03929.

[9] H. L. Joakimsen, I. Martinsen, L. T. Luppino,
A. McDonald, S. Hosking, and R. Jenssen. “In-
terrogating Sea Ice Predictability With Gradi-
ents”. In: IEEE Geoscience and Remote Sens-
ing Letters 21 (2024), pp. 1–5. doi: 10.1109/
LGRS.2024.3366308.

[10] W. Samek, G. Montavon, A. Vedaldi, L. K.
Hansen, and K.-R. Müller. Explainable AI:
Interpreting, Explaining and Visualizing Deep
Learning. 1st ed. Springer Cham, 2019.

[11] Y. Cheng, D. Wang, P. Zhou, and T. Zhang.
“Model compression and acceleration for deep
neural networks: The principles, progress, and
challenges”. In: IEEE Signal Processing Mag-
azine 35.1 (2018), pp. 126–136.

[12] Y. LeCun, J. Denker, and S. Solla. “Optimal
brain damage”. In: Advances in neural infor-
mation processing systems 2 (1989).

[13] P. Molchanov, A. Mallya, S. Tyree, I. Frosio,
and J. Kautz. “Importance estimation for neu-
ral network pruning”. In: Proceedings of the
IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 11264–11272.

[14] O. Ronneberger, P. Fischer, and T. Brox. “U-
Net: Convolutional Networks for Biomedical
Image Segmentation”. In: Medical Image Com-
puting and Computer-Assisted Intervention –
MICCAI 2015. Ed. by N. Navab, J. Hornegger,
W. M. Wells, and A. F. Frangi. Cham: Springer
International Publishing, 2015, pp. 234–241.
isbn: 978-3-319-24574-4.
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T. Lengauer. “Permutation importance: a
corrected feature importance measure”. In:
Bioinformatics 26.10 (Apr. 2010), pp. 1340–
1347. issn: 1367-4803. doi: 10 . 1093 /

bioinformatics/btq134. url: https://doi.
org/10.1093/bioinformatics/btq134.

[17] M. Saarela and S. Jauhiainen. “Comparison
of feature importance measures as explana-
tions for classification models”. In: SN Ap-
plied Sciences 3.2 (Feb. 3, 2021), p. 272. doi:
10.1007/s42452-021-04148-9. url: https:
//doi.org/10.1007/s42452-021-04148-9.

[18] K. Simonyan, A. Vedaldi, and A. Zisserman.
Deep Inside Convolutional Networks: Visualis-
ing Image Classification Models and Saliency
Maps. 2014. arXiv: 1312.6034 [cs.CV].

[19] J. Adebayo, J. Gilmer, M. Muelly, I. Good-
fellow, M. Hardt, and B. Kim. “Sanity
Checks for Saliency Maps”. In: Advances
in Neural Information Processing Systems.
Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R.
Garnett. Vol. 31. Curran Associates, Inc.,
2018. url: https://proceedings.neurips.
cc / paper _ files / paper / 2018 / file /

294a8ed24b1ad22ec2e7efea049b8737 -

Paper.pdf.

[20] A. Binder, L. Weber, S. Lapuschkin, G. Mon-
tavon, K.-R. Müller, and W. Samek. Shortcom-
ings of Top-Down Randomization-Based San-
ity Checks for Evaluations of Deep Neural Net-
work Explanations. 2022. arXiv: 2211.12486
[cs.LG]. url: https://arxiv.org/abs/
2211.12486.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin.
“”Why Should I Trust You?”: Explaining the
Predictions of Any Classifier”. In: Proceed-
ings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining. KDD ’16. San Francisco, California,
USA: Association for Computing Machinery,
2016, pp. 1135–1144. isbn: 9781450342322.
doi: 10.1145/2939672.2939778. url: https:
//doi.org/10.1145/2939672.2939778.

[22] S. M. Lundberg and S.-I. Lee. “A unified ap-
proach to interpreting model predictions”. In:
Proceedings of the 31st International Confer-
ence on Neural Information Processing Sys-
tems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, pp. 4768–4777.
isbn: 9781510860964.

[23] R. R. Selvaraju, M. Cogswell, A. Das, R.
Vedantam, D. Parikh, and D. Batra. “Grad-
CAM: Visual Explanations from Deep Net-
works via Gradient-Based Localization”. In:

International Journal of Computer Vision
128.2 (Oct. 2019), pp. 336–359. issn: 1573-
1405. doi: 10.1007/s11263-019-01228-7.
url: http://dx.doi.org/10.1007/s11263-
019-01228-7.

[24] W. N. Meier, D. Perovich, S. Farrell, C. Haas,
S. Hendricks, A. A. Petty, M. Webster, D.
Divine, S. Gerland, L. Kaleschke, R. Ricker,
A. Steer, X. Tian-Kunze, M. Tschudi, and K.
Wood. Sea Ice. Technical Report. 2021. url:
https://repository.library.noaa.gov/

view/noaa/34474.
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A Uncertainty Estimation

In section 4, we discussed the performance of dif-
ferent IceNet configurations in terms of the binary
accuracy, using the predictions given by an ensemble
of 10 models per configuration. Here, we leverage
the standard deviation of the ensemble members to
give a simple estimate for the uncertainty of the
results.
Each ensemble member yields individual predic-

tions and thus, an individual accuracy score per
predicted month and lead time. In order to supple-
ment the our performance analysis in a meaningful
way, we want to leverage the standard deviation
of the ensemble members to give a simple estimate
for the uncertainty of the results. Each ensemble
member yields individual predictions and thus, an
individual accuracy score per predicted month and
lead time. According to our performance analysis,
the calculation of the standard deviation should be
performed in such a way that we get distinct results
per lead time and set of predictions. We could calcu-
late the standard deviation between the individual
model accuracies, taking into account all of their
predictions for a set of dates and fixed lead time at
once. However, to reduce the effect of the size of
the data set, i.e. the number of dates included into
the calculation, we decide to calculate the standard
deviation of an ensemble for each lead time and each
prediction at a time. Thus, for each ensemble we get
one value per prediction month and lead time. For
the evaluation of a prediction set, we average over
the respective standard deviations. To show the
results of our uncertainty estimation, we reproduce
Figure 4, Figure 5 and Figure 7, which show the
accuracies for different sets of predictions and we
add the respective standard deviations as error bars.
These plots are shown in Figure A.1, Figure A.2 and
Figure A.3, respectively.

For the prediction of September 2013 (Figure A.1),
the standard deviations differ a lot between model
configuration and lead times. This is can be at-
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Figure A.1. Average binary accuracy of the three dif-
ferent IceNet configurations plotted versus lead time for
September 2013. The plot shows the accuracy standard
deviation of the ensemble members for this prediction
as error bars.
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Figure A.2. Average binary accuracy of the three
different IceNet configurations plotted versus lead time.
The plot shows the average accuracy standard deviation
of the ensemble members for the respective predictions
as error bars.

tributed to the fact that we are only looking at
a single prediction and individual differences con-
tribute a lot to the standard deviation.

Figure A.2 and Figure A.3, showing the corre-
sponding plots for all available predictions and the
10 % most anomalous months, respectively, are show
more consistent standard deviations. Overall, both
plots show that all three IceNet configurations tend
to increase in their uncertainty as the lead time in
creases. A comparison of both figures shows that
the uncertainty for the anomalous events is in most
cases larger than for the general case that includes all
predictions. However, this effect might be enhanced
by the fact that the number of predictions included
for the anomalous events is much smaller and thus,
individual fluctuations have a larger impact.

Even though, e.g. for the lead time of 4 months
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Figure A.3. Average binary accuracy of the three
IceNet configurations for the 10 % most anomalous
events plotted versus lead time. The plot shows the
average accuracy standard deviation of the ensemble
members for the respective predictions as error bars.

in the general case (Figure A.2), the standard devi-
ation of the reduced configuration is clearly larger
than the one of the original configuration, it can be
stated that overall the uncertainty of all three con-
figurations are in a similar regime and there are no
distinct differences. It should also be noted that the
standard deviations are generally very large and in
most cases exceed the differences between the differ-
ent averaged accuracies of the three configurations.
This indicates that the differences observed between
the configurations might not be as significant. How-
ever, more sophisticated and detailed analyses are
necessary to give reliable results and interpretations
of the model uncertainties.

B Prediction Deviations for
September 2013

Figure B.1 shows the deviations of the September
2013 forecasts for the three IceNet configurations.
Areas in red show regions where the models falsely
predicted no ice and areas in blue correspond to
regions where the models falsely predicted ice. This
figure extends Figure 3 from section 4 by adding
the forecasts with a lead time of six months to the
one month forecasts. It shows, that for longer lead
times, i.e. predictions of this months further ahead
of time, all models mispredicted the region in the
right center which is highlighted in Figure B.1(a).
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(a) original model
lead time: 1 month

(b) reduced model
lead time: 1 month

(c) minimal model
lead time: 1 month

(d) original model
lead time: 6 months

(e) reduced model
lead time: 6 months

(f) minimal model
lead time: 6 months

Figure B.1. Deviations of the binary IceNet predictions from observed data for September 2013. Blue areas
correspond to false positive predictions and red ares to false negative predictions, respectively. The upper row ((a) -
(c)) corresponds to predictions with a lead time of 1 month and the lower row ((d) - (f)) to predictions with a lead
time of 6 months. The individual plots in each row represent the results for the different IceNet configurations.
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