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Seasonal analysis of Southern
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1Ecosystems, British Antarctic Survey (BAS), Cambridge, United Kingdom, 2School of Environmental
Sciences, Faculty of Science and Engineering, University of Liverpool, Liverpool, United Kingdom
The Southern Ocean is a globally significant site of carbon sequestration with the

copepod community exerting a strong influence on the carbon flux. Currently, a

holistic understanding of Southern Ocean copepod ecology is limited by a lack of

data, particularly during winter. This study analyzed the composition and

abundance of copepods caught in a sediment trap (400 m depth) in the

Northeast Scotia Sea, providing a view of year-round copepod community

dynamics. We found strong seasonal trends in abundance and composition of

copepod taxa, with Calanus simillimus and Metridia spp dominating throughout.

The capture of Metridinidae copepods likely occurred as they carried out their

pronounced diel vertical migrations (DVM). The disproportionate abundance of

male specimens ofMetridia spp., as well as another member of the Metridinidae,

Pleuromamma robusta, indicates sex-specific differences in their DVM ranges,

with males remaining deeper. The C5 developmental stage of C. simillimus

showed a distinct seasonal pattern, characterized by high abundances in

autumn followed by low numbers in winter. We propose that this reflects an

autumnal seasonal descent beyond which their fate could be one of three

scenarios. Firstly, that these individuals seasonally migrate deeper than the

sediment trap depth but remain active and feed on deep particulate matter.

Secondly, that they become dormant whilst at this depth and respire their fat

reserves. Thirdly, that they become dormant but at shallower depths, at and

around the depth of the sediment trap, where they remain static and are not

captured. Each of these scenarios has different implications for the seasonal

carbon flux generated by C. simillimus. This study highlights the importance of

understanding species-specific copepod ecology and emphasizes the need to

collect ecological data over full annual cycles.
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Introduction

Atmospheric carbon dioxide is fixed as organic matter at the

ocean surface and transported to the interior via the biological carbon

pump (BCP), isolating it for hundreds of years (Sarmiento, 2006).

Copepods play a critical role in the transport of carbon into the deep

ocean (Mayor et al., 2014; Jónasdóttir et al., 2015; Steinberg and

Landry, 2017); by affecting both the quantity and the depth at which

carbon is stored, copepods impact the strength and efficiency of the

BCP. However, their influence depends upon the composition and

ecology of the species present, with high productivity, high latitude

regions acting as globally significant carbon sinks (Barnes and

Tarling, 2017; Steinberg and Landry, 2017; Pinti et al., 2023).

Copepods contribute to carbon export via fecal pellet production,

the carbon-content and sinking rate of fecal pellets being dependent

upon species, size and diet (Dagg et al., 2003; Manno et al., 2015;

White et al., 2018). Copepods also actively transport organic carbon

from the surface to depth through various vertical migrations

(Steinberg et al., 2000; Countryman et al., 2022). Diel vertical

migration (DVM) involves grazing at the surface during the night

and metabolizing food and producing fecal pellets during the day at

depth (Hays et al., 1994). Some copepods also migrate seasonally,

remaining near the surface during spring and summer and

overwintering at depth (e.g. > 500 m). A large portion of seasonal

migrators mitigate food scarcity during winter by entering diapause, a

physiologically dormant state wherein copepods survive using their

lipid reserves (e.g. Calanoides acutus, Atkinson, 1991; Hirche, 1996;

Baumgartner and Tarrant, 2017), while others remain active and

scavenge throughout winter (e.g. C. propinquus, Bathmann et al.,

1993). Diapausing copepods significantly contribute to the active

carbon flux by respiring carbon-rich lipids, originating from the

surface, directly at depth (Jónasdóttir et al., 2015; Visser et al., 2017;

Pinti et al., 2023). This process, termed the lipid pump, is particularly

strong at high latitudes, and can store a significant amount of carbon

(e.g. 2–6 gC m−2y−1), comparable to the passive/gravitational

particulate carbon pump (Jónasdóttir et al., 2015; Visser et al., 2017).

Though the Southern Ocean zooplankton community has long

been the subject of research, important questions remain about the

life history strategy of multiple copepod species. This is particularly

the case for winter when there is a paucity of data (Johnston et al.,

2022). Obtaining winter data is difficult due to the considerable

financial and logistical considerations of operating in the Southern

Ocean throughout the year. An example of this knowledge gap can

be characterized by Calanus simillimus, a dominant sub-Antarctic

species (Ward et al., 1996a). Though multiple studies have focused

on the life-history of C. simillimus (e.g. Atkinson and Peck, 1988;

Atkinson, 1989, 1991), its precise overwintering strategy is unclear.

It exhibits a bimodal overwintering depth-distribution; the majority

of C5 copepodites migrate to deeper water (> 250 m), with adults

and younger copepodites remaining closer to the surface (< 250 m)

(Atkinson and Peck, 1988; Atkinson, 1989, 1991). However, it is

unknown whether C. simillimus undertakes diapause or remains

active during winter (Atkinson, 1998).

Copepods can be highly plastic, altering their production cycles,

overwintering strategies and vertical distributions with
Frontiers in Marine Science 02
environmental conditions and location (Strand et al., 2020;

Schmidt et al., 2025). We are aware of only one study assessing

the life cycle ofMetridia spp. in South Georgia (Atkinson and Peck,

1988). However, assessment of Metridia gerlachei in other regions

have found their reproductive cycle can vary between one

generation (Weddell Sea, Kurbjeweit, 1993) and three generations

(Bransfield Strait, Huntley and Escritor, 1992; King and LaCasella,

2003). Indeed, genetic analysis of Metridia lucens has found two

genetically distinct groups in the Atlantic sector of the Southern

Ocean, likely divided by the Polar Front (Stupnikova et al., 2013).

Metridia spp. are ecologically significant grazers (Schnack, 1985;

Froneman et al., 2000) and perform a pronounced diel vertical

migration (DVM) whilst simultaneously remaining winter active

(Atkinson, 1989; Osgood and Frost, 1994; Lopez and Huntley,

1995). Consequently, they are an important component of the

BCP (King and LaCasella, 2003).

Recently, moored sediment traps have been used to observe and

monitor zooplankton communities in remote locations throughout

the year (e.g. Kraft et al., 2012, 2013; Ramondenc et al., 2022;

Gardner et al., 2023; Atherden et al., 2024). Zooplankton (referred

to as ‘swimmers’ in this context) actively swim into the trap where

they are preserved in formalin. For diel and seasonal migrating

organisms such as copepods, sediment traps offer another,

particularly useful function; catching individuals’ descent from

the surface to the deep ocean (Ramondenc et al., 2022). In this

study, we used a moored sediment trap to characterize seasonal

trends in copepod abundance, size and ontogenetic composition,

and used these patterns to identify life-cycle strategies. This study is

located in the Scotia Sea, a highly productive region in the Southern

Ocean characterized by high zooplankton biomass, which

substantially contributes to the carbon export of this region (Korb

et al., 2005, 2012; Whitehouse et al., 2012; Manno et al., 2015; Liszka

et al., 2019; Belcher et al., 2023).
Materials and methods

Sampling

Sampling took place at the P3 observation site (Northeast Scotia

Sea, 52.80˚ S, 40.14˚W, bottom depth 3748 m), as part of the Scotia

Open Ocean Observatory programme (SCOOBIES, https://

www.bas.ac.uk/project/scoobies/) (Figure 1). A sediment trap was

deployed at 378 m during research cruise JR17002, RSS James Clark

Ross and recovered by research cruise DY098, RRS Discovery. The

sediment trap collected samples between February and

December 2018.

The opening of the sediment trap (McLane PARFLUX, 0.5 m2

capture area; McLane labs, FalmouthMA, USA) was fitted with a baffle

to prevent larger animals entering the trap. 500 mL bottles were used

for automated sample collection. Bottles were filled to the brim with

formalin (filtered seawater containing 2% v/v formalin, mixed with

sodium tetraborate (BORAX; 0.025% w/v), and 0. 5% w/v sodium

chloride). The bottles were placed in a carousel, pre-programmed to

rotate and collect material every calendar month, although the
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collection periods were shorter during the productive period (but

collated to 1 month for the present analysis). Once recovered,

samples were stored at 4°C until analysis.
Sample processing and copepod
identification

Specimens were identified, measured and counted under an

Olympus SZX16 fitted with a Canon EOS 60D DSLR camera. We

assumed that copepods with an intact prosome and urosome were

active swimmers. Due to their small size, nauplii, Oithona,

Microcalanus and Onacea spp. were excluded from any analysis.

It is not always possible to discriminate between swimmers and

carcasses (i.e., perfectly intact zooplankton that had died shortly

before sinking into the sediment trap). However, Ivory et al. (2014)

found the number of copepod swimmers to be an order of

magnitude higher than sinking carcasses, indicating that carcasses

are a relatively minor component. Copepod occurrence was

converted to abundance, as follows (Equation 1).

Copepod   abundance   (individuals  m−2   day−1)

=
Occurence

Trap  Capture  Area ∗Days   bottle   is   open
(1)

Where possible, copepods were staged and identified to species

and genus, however family classifications were sometimes required,
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particularly where younger developmental stages made precise

identification difficult. Copepod length, for each individual, was

calculated from images taken with a graduated Petri dish, and

subsequently analyzed using ImageJ (Version 1.54g).
Results

Copepod abundance and composition

It was not possible to identify all copepods to species level,

however a total of 14 different species were identified as well as 15

different genera. Calanus spp. and Metridia spp. were consistently

present and numerically represented a dominant component of

copepods throughout sampling, averaging 39.3 ± 13.2% and 22.2 ±

11.4% (mean ± standard deviation) of taxonomic composition,

respectively (Figures 2A, B). Calanus spp. abundance reached their

maximum of 5 copepods m-2 day-1 in February, decreasing to< 1

copepod m-2 day-1 in May and increasing again thereafter. Metridia

spp. abundance followed a similar seasonal pattern with abundance

decreasing fromMarch to June (with a minimum of < 1 copepod m-2

day-1 inMarch) and increasing thereafter into the spring and summer

(with a maximum of 2 copepods m-2 day-1 in September). Other taxa

only occurred seasonally or occasionally. Pleuromamma spp. and

Gaetanus spp. were either present in low abundance or absent from

March to August, reaching a maximum of 1 copepod m-2 day-1 in

December. Rhincalanus gigas was only present from June to October,
FIGURE 1

Location of the moored sediment trap (400 m) at the P3 observation site (Northeast Scotia Sea, 52.80˚ S, 40.14˚ W, bottom depth 3748 m). Adapted
from Atherden et al. (2024), licensed CC-BY-4.0.
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and in December (< 1 copepod m-2 day-1). Though the exact timing

and magnitude of abundance varied with specific taxa, there was a

strong seasonal pattern overall, with the total copepod abundance

maximizing at 8 copepods m-2 day-1 in February with a minimum of

1 copepod m-2 day-1 in June.

Seasonality is also reflected in copepod stage (Figure 2B).

Copepodite abundance was greatest in the late spring/summer

months (December, February and March). Female copepods had

a strong presence throughout the year, however male copepod

abundance substantially increased from August onwards, reaching

a maximum in November (Figures 2B.i, ii). It should be noted,

however, that the presence of certain stages was highly species

specific. Metridia spp. and Pleuromamma robusta represented

46.7% and 32.8% of all males, respectively. February, the month

with the greatest number of copepodites (<= stage C5), also had the

lowest median copepod length (2.24 mm) (Figure 3A). Rhincalanus

spp. greatly increased the sampled size range when present,

resulting in the greatest copepod size range of 1.33-9.36 mm in

August. Median copepod length ranged between 2.24-2.94 mm.

From February the median copepod size steadily increases to 2.76

mm in June (wherein a high proportion of adults are present,

Figure 2Bii). In July the median copepod size drops to 2.30 mm as
Frontiers in Marine Science 04
smaller taxa such as Ctenocalanus spp. start to appear, there is then

a general trend on increase until November and December wherein

again a large proportion of adults are present (Figure 2Bii). The

distribution of all copepod lengths is bimodal, with peaks at 2.75–

3.00 mm and 1.75–2 mm, with these peaks comprising largely of

Calanus and Metridia spp. respectively (Figure 3B).

Seasonal variations in size and stage are also apparent for

individual species or genera. For Metridia spp. females and

copepodites are the majority of stages present from February to

July, with males dominating from August onwards (Figure 4B).

Metridia spp. median copepod length increases from February to

June, reaching a maximum of 2.64 mm where females dominate.

Median copepod length then decreases to a minimum of 1.76 mm in

September, where the majority of individuals are males.Metridia spp.

length then increases in October, as females dominate the sample. For

Pleuromamma robusta, males were the dominant stage every month

other than July and October (Figure 4C). Consequently, P. robusta

median size remained relatively constant (3.13–3.38 mm) with the

exception of July and October, where the presence of females

increases median copepod length to 4.74 and 4.16 mm, respectively.

In contrast to the Metridinidae, only one male Calanus

simillimus was present throughout the sampling period (Figure 4A).
FIGURE 2

Taxonomic (A.i, A.ii), ontogenetic stage (B.i, B.ii) composition of copepods present in a sediment trap deployed at 400 m in the Northeast Scotia Sea
(52.80˚ S, 40.14˚ W). The sediment trap sampled each calendar month from February until December 2018.
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For C. simillimus (which represented 90.2% of all Calanus spp. in the

sediment trap), the majority of individuals in the sediment trap were

females, however younger copepodites dominated from February to

April and June. Variation in median C. simillimus size largely matched

this trend, as February to April had the lowest monthly median sizes,

with a minimum of 1.84 mm in March. For the remainder of the year,

C. simillimus monthly median size remained relatively consistent,

ranging from 2.62-2.79 mm as females dominated.
Discussion

The copepod assemblage

The sediment trap captured copepods from a range of taxa with

a variety of life history strategies. Despite the broad taxonomy and

varied copepod ecology present, there was a strong seasonal signal,

with abundance peaking in February, reducing until June and

increasing thereafter. The seasonal pattern in copepod abundance

concurs with previous net-based zooplankton studies in the Scotia

Sea (Atkinson and Peck, 1988; Ward et al., 2006, 2012; Atherden
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et al., 2024). Median copepod length peaked in both winter (June)

and spring (November, December) with a minimum in February.

Our results highlight taxonomic and ontogenetic composition as

important factors in body size structure within zooplankton

communities. Seasonal patterns in copepod body size at a

community and individual level have been attributed to changes

in temperature and food availability and species assemblage

(Landry et al., 1994; Garcı ́a-Pámanes and Lara-Lara, 2001;

Palomares-Garcıá et al., 2013; Horne et al., 2016). The observed

seasonal variation in copepod community size at 400 m may have

implications for mesopelagic predators. Larger copepods may be

more easily detected by predators, or conversely, larger copepods

may fall outside some optimal size ranges for certain predators

(Cowan, 1996; Saito and Kiørboe, 2001; Jackson and Lenz, 2016).

The adult stages in the winter months (June-August) may be either

early developers or remnants from the previous growing season.

Early developers can disproportionately contribute to recruitment

(Richardson et al., 1999; Daase et al., 2013), although their larger

body size may then also expose them to elevated predation risks.

Calanus simillimus and Metridia spp. dominated copepod

abundance over the year. The relative abundance of Metridia spp.
FIGURE 3

Individual copepod length (A) and total distribution of copepod lengths (B) present in a sediment trap deployed at 400 m in the Northeast Scotia Sea
(52.80˚ S, 40.14˚ W). The sediment trap sampled each calendar month from February until December 2018. Size measurements are inclusive of both
the prosome and the urosome, with points indicating individual measurements, color indicating taxonomic identity, and curves indicating the density
distribution of measurements. The median value per month for individual length measurements (A) is indicated with a grey horizontal bar.
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was in good agreement with previous net-based community

assessments, with Metridia spp. representing between 5.3–36.4%

of individuals in our study and 12.9-38.8% of large (~< 1 mm)

copepods in Ward et al (2006, 2012). (Figure 2Aii; Supplementary

Table S1). Metridia spp. around South Georgia can perform diel
Frontiers in Marine Science 06
vertical migrations to 400 m (Ward et al., 1995). This behavior may

facilitate entrapment rates in the sediment trap (deployed at 400 m)

comparable to net abundances. Conversely, Ward et al (2006; 2012,

sampling in summer and spring-autumn respectively) reported that

C. simillimus represented between 0.3-10.9% of copepods, whereas
FIGURE 4

Calanus simillimus (A), Metridia spp (B). and Pleuromamma robusta (C) with regards ontogenetic stage abundance (i), individual copepod length
(ii) and total distribution of copepod length (iii) collected from a sediment trap deployed at 400 m in the Northeast Scotia Sea (52.80˚ S, 40.14˚ W).
The sediment trap sampled each calendar month from February until December 2018. Size measurements are inclusive of both the prosome and
the urosome, with points indicating individual measurements, color ontogenetic stage, and curves indicating the density distribution of
measurements. For individual copepod length (ii) the median value per month is indicated with a grey horizontal bar. Note that copepod length
scales (ii, iii) start at 1 mm, with taxa specific ranges.
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in our sediment trap, C. simillimus abundance was far higher

accounting for between 19.7–63.5% of copepods. Makabe et al.

(2016) directly compared sediment trap and net abundances in the

Canadian Arctic and found abundances of Metridia longa in

sediment trap collections to be directly comparable to those from

net catches. Conversely, the same was not found for C. hyperboreus

and C. glacialis, which were more abundant in sediment trap

samples during winter, coinciding with their reproductive season

(Makabe et al., 2016). It is likely that the comparatively high

proportion of C. simillimus in our sediment trap is also a

consequence of seasonal vertical migration patterns (Atkinson

and Sinclair, 2000) which are not resolved as effectively by net-

sampling at discrete time points. We found highest seasonal

abundances of Metridia spp. in spring (Figure 4Bi), whereas the

net-based study byWard et al. (2012) found the highest abundances

in autumn. Atkinson (1998) found that the vertical distribution of

Metridia spp. varies seasonally, with pronounced DVM in spring,

DVM shallowing in summer and disbursement throughout the

water column in autumn. Consequently, differences between peaks

in seasonal abundance likely reflect the sediment trap catching

active, migrating individuals in spring, while nets sampled through

this depth range (0–400 m) would have integrated abundances over

400 m, downscaling overall abundance estimates. We found young

Metridia spp. copepodite stages were present in September,

November, and February, with spermatophores present on 5

females (from August to October) (Supplementary Table S2).

This suggests an extended reproductive season, with the

possibility of multiple generations. We are unaware of studies

assessing the reproductive phenology of M. lucens in the region.

However, our findings are in good agreement of the known

reproductive strategy of M. gerlachei in other productive regions

(e.g. King and LaCasella, 2003). For C. simillimus, we found females

and C5s to be present throughout the year, with their abundance

peaking in summer and decreasing in the winter months. Young

copepodites were present in March, April, and December. This

agrees well with previous work, supporting the hypothesis that C.

simillimus is capable of multiple generations within a year

(Atkinson, 1991, 1998).
Calanus simillimus overwintering

The precise overwintering strategy of C. simillimus is, as yet,

unknown. Atkinson (1989, 1991) demonstrate that C. simillimus

has a bi-modal, stage specific distribution. Females and males

overwinter at the surface (0–250 m) whereas C5s have been

found to overwinter at 500–1000 m (Atkinson, 1991, transect

from Falklands to South Georgia) and 250–500 m (Atkinson,

1989, South Georgia). However, it is not clear how C5s migrating

to depth sustain themselves and whether they enter diapause like

their northern congeners (C. hyperboreus, C. glacialis, C.

finmarchicus) (Lee et al., 2006) or are active overwinterers like

their southern congener C. propinquus (Bathmann et al., 1993).

Atkinson (1998) suggested that C. simillimus may undertake

diapause however, to our knowledge, no direct winter
Frontiers in Marine Science 07
observations have been made. In our sediment trap, C5

abundance peaked in February, remaining relatively high until

April (autumn) (Figure 4Ai). We suggest the high abundance of

C5s in our trap from February to April represents individuals

descending to depth to begin overwintering. Other sediment trap

studies have caught copepods during their seasonal migration

(Makabe et al., 2016; Ramondenc et al., 2022) typified by a peak

in sediment trap abundance at the end of summer/autumn followed

by a minimum in winter. This is similar to our study, where the

autumnal peak in C5 presence is followed by substantial reduction

throughout winter, during which time, only three individual C5s

were caught from May to August.

Situated at 400m, our sediment trap is within known

overwintering depths for C. simillimus C5s (e.g. 250–500+ m).

There are multiple explanations for our observed winter

minimum in C5 sediment trap abundance (Figure 5). In scenario

A, C5s migrate deeper than the sediment trap, but remain active. In

scenario B, C5s migrate deeper than the sediment trap, but then

enter diapause. Finally, in scenario C, C5s overwinter between 250–

500 m and are therefore within the range of the sediment trap,

however, they do not enter the trap because they are in diapause and

vertically static. We suggest that Scenario A is perhaps the most

unlikely, as available food for scavenging tends to decline strongly

with depth (Parzanini et al., 2019; Henson et al., 2023). Indeed, the

active overwintering congener Calanus propinquus tends to be

found at< 250 m depth during winter (Schnack-Schiel and

Hagen, 1995; Atkinson and Sinclair, 2000; Pasternak and

Schnack-Schiel, 2001). Diapause behavior in C. simillimus

(Scenario B and C) may have previously been overlooked as C.

simillimus primarily store triacylglycerols (TAGs) rather than wax

esters (Ward et al., 1996b). Wax esters are strongly associated with

diapause behavior whereas TAGs have been hypothesized to

indicate active overwintering (Sargent et al., 1981; Hagen et al.,

1993; Kattner et al., 2012). However, Eucalanus bungii, a TAG-

storing species, is fully capable of deep, sustained diapause (500–

2000 m), suggesting TAG storage does not preclude diapause

(Ohtsuka et al., 1993; Yamada et al., 2016).

Though direct observations are required to ascertain if C.

simillimus enters diapause, the implication that C. simillimus either

is capable of diapause or is active at depths > 400 m, has important

consequences for our understanding of their contribution to the

biological carbon pump and lipid pump (Jónasdóttir et al., 2015;

Boyd et al., 2019). With regards scenario A, active copepods maintain

a high respiration rate which may substantially contribute to the lipid

pump if fueled by stored reserves. Meanwhile, deep active feeding

will, on the one hand, contribute to the fecal pellet flux (Manno et al.,

2015) but, on the other, increase particle remineralization through

sloppy feeding and particle fragmentation (Mayor et al., 2020). For

scenario B, the contribution to the lipid pump will be less than

scenario A as respiration decreases in diapause (Hirche, 1996) but at

least there is certainty that it is fueled by stored reserves, which is a

prerequisite for this carbon flux via the lipid pump. The strength of

the lipid pump is affected by diapause depth. Pinti et al. (2023) found

that species which diapause deeper, and therefore respire their lipid

deeper in the ocean’s interior, sequester carbon for a longer period of
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time. However, the shallowest diapause depth range investigated was

500–800 m (Pinti et al., 2023). For scenario C, there is uncertainty

that diapausing at < 400 m is deep enough for significant carbon

sequestration. Determining whether C. simillimusC5s enter diapause,

and their winter depth distributions, would require a depth resolved

netting campaign in either late autumn or winter. Respiration

experiments or estimates (e.g. Electron Transport System activity)

and lipid analyses coupled with biomass estimates would help

quantify any potential contributions to the carbon flux. Copepods

in diapause are distinctively lethargic and unresponsive to physical

stimuli, however, transcriptomic signatures for diapause have been

established for C. finmarchicus (Lenz et al., 2021), and transcriptomic

data could strengthen identification of diapause in C. simillimus.

Since the Discovery era (1926–1938), C. simillimus abundance has

increased by ~ 55% (Ward et al., 2018) indicating that this species is

having an increasing influence on food webs and biogeochemical

cycling in an era of Southern Ocean climate change.
Sex specific distributions

We found males to be the dominant stage throughout the year

for Pleuromamma robusta and were between August to December

forMetridia spp. (Figure 4). In contrast, only one C. simillimusmale

was captured throughout sampling (December, Figure 4Ai).

The high abundance of male P. robusta and Metridia spp. within

the sediment trap could reflect sex-specific depth distributions, with
Frontiers in Marine Science 08
males occurring deeper in the water column and therefore entering

the sediment trap (400 m) more frequently. Sex-specific depth

distributions have been reported for Metridia spp. across multiple

environments, including the Southern Ocean. Often male Metridia

spp. reside deeper in the water column, with DVM behavior being

either weak or not apparent (Hattori, 1989; Osgood and Frost, 1994;

King and LaCasella, 2003). Sex-specific distributions of

Pleuromamma spp. have been reported in only a small number of

studies. In the North Pacific, Ambler and Miller (1987) and Haury

(1988) found males to reside deeper than females, with some

overlap. In the Iceland Basin, Gislason (2008) found male P.

robusta to be deeper than females in both winter (December) and

summer (June), but overlapping at other times of the year. To the

best of our knowledge, this is the first study to suggest P. robusta

males may reside deeper than females in the Southern Ocean.

Sex-specific depth distributions likely increase the chances of a

reproductive encounter (Titelman et al., 2007). The chances of

encountering a mate in a large, three-dimensional space are slim. If

males form a ‘deeper stratum’, where there is less light and a

reduced risk from visual predators, they can simultaneously

increase chance of encountering a female undergoing DVM and

increase their chances of survival (i.e. time for an encounter).

Indeed, females with spermatophores were present from August

until October, coinciding well with increased male presence in the

sediment trap. The sex-specific depth distributions of Metridinidae

warrant further investigations in high latitude regions. If males

remain consistently deep after maturation, they are either surviving
FIGURE 5

Schematic of potential Calanus simillimus winter ecology (copepodite stage C5) with respect to sediment trap abundance in autumn and winter
(moored, 400 m depth). Yellow dotted arrows indicate active individuals entering the sediment trap. Red solid arrows indicate seasonal migration.
Copepods with upright orientation indicate individuals in a physiologically dormant state (Diapause).
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using somatic reserves or particle-feeding; both activities can have

significant, but potentially opposing, influences on carbon export

through either respiration or particle fragmentation at depth

(Mayor et al., 2014; Jónasdóttir et al., 2015).
Concluding remarks

This study emphasizes the critical role of data encompassing all

seasons in understanding copepod population dynamics in the

Southern Ocean and their influence in the carbon cycle. We

found that year-round copepod abundance assessments provided

ecologically and biogeochemically relevant patterns. Occurrence of

individuals in the sediment trap was likely influenced by abundance

in the water column as well as taxon-specific ecological traits.

Patterns in abundance in C. simillimus C5s suggest they may be

dormant over winter, perhaps entering diapause although the

possibility that they remain active over wintering cannot be ruled

out. This highlights a need for direct observation of C. simillimus

during autumn and winter as they may be a previously unaccounted

for yet significant contributor to particulate carbon- and lipid

pumps. The abundance of male Metridinidae in the sediment trap

indicated sex-specific distributions with males residing at greater

depths, possibly to enhance mate-encounter rates. This behavior

warrants further investigation, particularly to determine how males

sustain themselves, through starvation or scavenging. If these

deeper-dwelling males rely on somatic reserves, they may

contribute to the carbon flux in an analogous manor to the lipid

pump. Our findings emphasize the value of assessing zooplankton

ecology for understanding and predicting the zooplankton-

mediated carbon flux. Incorporation of specific overwintering

strategies, sex specific depth distributions and grazing behaviors

will improve estimates of zooplankton mediated carbon

sequestration, particularly in high latitude regions, where

zooplankton population dynamics are poorly constrained.
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