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The Southern Ocean is a globally significant site of carbon sequestration with the
copepod community exerting a strong influence on the carbon flux. Currently, a
holistic understanding of Southern Ocean copepod ecology is limited by a lack of
data, particularly during winter. This study analyzed the composition and
abundance of copepods caught in a sediment trap (400 m depth) in the
Northeast Scotia Sea, providing a view of year-round copepod community
dynamics. We found strong seasonal trends in abundance and composition of
copepod taxa, with Calanus simillimus and Metridia spp dominating throughout.
The capture of Metridinidae copepods likely occurred as they carried out their
pronounced diel vertical migrations (DVM). The disproportionate abundance of
male specimens of Metridia spp., as well as another member of the Metridinidae,
Pleuromamma robusta, indicates sex-specific differences in their DVM ranges,
with males remaining deeper. The C5 developmental stage of C. simillimus
showed a distinct seasonal pattern, characterized by high abundances in
autumn followed by low numbers in winter. We propose that this reflects an
autumnal seasonal descent beyond which their fate could be one of three
scenarios. Firstly, that these individuals seasonally migrate deeper than the
sediment trap depth but remain active and feed on deep particulate matter.
Secondly, that they become dormant whilst at this depth and respire their fat
reserves. Thirdly, that they become dormant but at shallower depths, at and
around the depth of the sediment trap, where they remain static and are not
captured. Each of these scenarios has different implications for the seasonal
carbon flux generated by C. simillimus. This study highlights the importance of
understanding species-specific copepod ecology and emphasizes the need to
collect ecological data over full annual cycles.
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Introduction

Atmospheric carbon dioxide is fixed as organic matter at the
ocean surface and transported to the interior via the biological carbon
pump (BCP), isolating it for hundreds of years (Sarmiento, 2006).
Copepods play a critical role in the transport of carbon into the deep
ocean (Mayor et al., 2014; Jonasdottir et al., 2015; Steinberg and
Landry, 2017); by affecting both the quantity and the depth at which
carbon is stored, copepods impact the strength and efficiency of the
BCP. However, their influence depends upon the composition and
ecology of the species present, with high productivity, high latitude
regions acting as globally significant carbon sinks (Barnes and
Tarling, 2017; Steinberg and Landry, 2017; Pinti et al., 2023).
Copepods contribute to carbon export via fecal pellet production,
the carbon-content and sinking rate of fecal pellets being dependent
upon species, size and diet (Dagg et al., 2003; Manno et al., 2015;
White et al., 2018). Copepods also actively transport organic carbon
from the surface to depth through various vertical migrations
(Steinberg et al,, 2000; Countryman et al., 2022). Diel vertical
migration (DVM) involves grazing at the surface during the night
and metabolizing food and producing fecal pellets during the day at
depth (Hays et al,, 1994). Some copepods also migrate seasonally,
remaining near the surface during spring and summer and
overwintering at depth (e.g. > 500 m). A large portion of seasonal
migrators mitigate food scarcity during winter by entering diapause, a
physiologically dormant state wherein copepods survive using their
lipid reserves (e.g. Calanoides acutus, Atkinson, 1991; Hirche, 1996;
Baumgartner and Tarrant, 2017), while others remain active and
scavenge throughout winter (e.g. C. propinquus, Bathmann et al,
1993). Diapausing copepods significantly contribute to the active
carbon flux by respiring carbon-rich lipids, originating from the
surface, directly at depth (Jonasdottir et al., 2015; Visser et al.,, 2017;
Pinti et al,, 2023). This process, termed the lipid pump, is particularly
strong at high latitudes, and can store a significant amount of carbon
(e.g. 2-6 gC m 2y '), comparable to the passive/gravitational
particulate carbon pump (Jonasdottir et al., 2015; Visser et al., 2017).

Though the Southern Ocean zooplankton community has long
been the subject of research, important questions remain about the
life history strategy of multiple copepod species. This is particularly
the case for winter when there is a paucity of data (Johnston et al.,
2022). Obtaining winter data is difficult due to the considerable
financial and logistical considerations of operating in the Southern
Ocean throughout the year. An example of this knowledge gap can
be characterized by Calanus simillimus, a dominant sub-Antarctic
species (Ward et al., 1996a). Though multiple studies have focused
on the life-history of C. simillimus (e.g. Atkinson and Peck, 1988;
Atkinson, 1989, 1991), its precise overwintering strategy is unclear.
It exhibits a bimodal overwintering depth-distribution; the majority
of C5 copepodites migrate to deeper water (> 250 m), with adults
and younger copepodites remaining closer to the surface (< 250 m)
(Atkinson and Peck, 1988; Atkinson, 1989, 1991). However, it is
unknown whether C. simillimus undertakes diapause or remains
active during winter (Atkinson, 1998).

Copepods can be highly plastic, altering their production cycles,
overwintering strategies and vertical distributions with
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environmental conditions and location (Strand et al., 2020;
Schmidt et al., 2025). We are aware of only one study assessing
the life cycle of Metridia spp. in South Georgia (Atkinson and Peck,
1988). However, assessment of Metridia gerlachei in other regions
have found their reproductive cycle can vary between one
generation (Weddell Sea, Kurbjeweit, 1993) and three generations
(Bransfield Strait, Huntley and Escritor, 1992; King and LaCasella,
2003). Indeed, genetic analysis of Metridia lucens has found two
genetically distinct groups in the Atlantic sector of the Southern
Ocean, likely divided by the Polar Front (Stupnikova et al.,, 2013).
Metridia spp. are ecologically significant grazers (Schnack, 1985;
Froneman et al., 2000) and perform a pronounced diel vertical
migration (DVM) whilst simultaneously remaining winter active
(Atkinson, 1989; Osgood and Frost, 1994; Lopez and Huntley,
1995). Consequently, they are an important component of the
BCP (King and LaCasella, 2003).

Recently, moored sediment traps have been used to observe and
monitor zooplankton communities in remote locations throughout
the year (e.g. Kraft et al, 2012, 2013; Ramondenc et al., 2022;
Gardner et al., 2023; Atherden et al., 2024). Zooplankton (referred
to as ‘swimmers’ in this context) actively swim into the trap where
they are preserved in formalin. For diel and seasonal migrating
organisms such as copepods, sediment traps offer another,
particularly useful function; catching individuals’ descent from
the surface to the deep ocean (Ramondenc et al, 2022). In this
study, we used a moored sediment trap to characterize seasonal
trends in copepod abundance, size and ontogenetic composition,
and used these patterns to identify life-cycle strategies. This study is
located in the Scotia Sea, a highly productive region in the Southern
Ocean characterized by high zooplankton biomass, which
substantially contributes to the carbon export of this region (Korb
etal., 2005, 2012; Whitehouse et al., 2012; Manno et al., 2015; Liszka
et al., 2019; Belcher et al., 2023).

Materials and methods
Sampling

Sampling took place at the P3 observation site (Northeast Scotia
Sea, 52.80° S, 40.14° W, bottom depth 3748 m), as part of the Scotia
Open Ocean Observatory programme (SCOOBIES, https://
www.bas.ac.uk/project/scoobies/) (Figure 1). A sediment trap was
deployed at 378 m during research cruise JR17002, RSS James Clark
Ross and recovered by research cruise DY098, RRS Discovery. The
sediment trap collected samples between February and
December 2018.

The opening of the sediment trap (McLane PARFLUX, 0.5 m?>
capture area; McLane labs, Falmouth MA, USA) was fitted with a baffle
to prevent larger animals entering the trap. 500 mL bottles were used
for automated sample collection. Bottles were filled to the brim with
formalin (filtered seawater containing 2% v/v formalin, mixed with
sodium tetraborate (BORAX; 0.025% w/v), and 0. 5% w/v sodium
chloride). The bottles were placed in a carousel, pre-programmed to
rotate and collect material every calendar month, although the
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Location of the moored sediment trap (400 m) at the P3 observation site (Northeast Scotia Sea, 52.80° S, 40.14"~ W, bottom depth 3748 m). Adapted

from Atherden et al. (2024), licensed CC-BY-4.0.

collection periods were shorter during the productive period (but
collated to 1 month for the present analysis). Once recovered,
samples were stored at 4°C until analysis.

Sample processing and copepod
identification

Specimens were identified, measured and counted under an
Olympus SZX16 fitted with a Canon EOS 60D DSLR camera. We
assumed that copepods with an intact prosome and urosome were
active swimmers. Due to their small size, nauplii, Oithona,
Microcalanus and Onacea spp. were excluded from any analysis.
It is not always possible to discriminate between swimmers and
carcasses (i.e., perfectly intact zooplankton that had died shortly
before sinking into the sediment trap). However, Ivory et al. (2014)
found the number of copepod swimmers to be an order of
magnitude higher than sinking carcasses, indicating that carcasses
are a relatively minor component. Copepod occurrence was
converted to abundance, as follows (Equation 1).

Copepod abundance (individuals m™ day™)

3 Occurence
" Trap Capture Area* Days bottle is open

1)

Where possible, copepods were staged and identified to species
and genus, however family classifications were sometimes required,
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particularly where younger developmental stages made precise
identification difficult. Copepod length, for each individual, was
calculated from images taken with a graduated Petri dish, and
subsequently analyzed using Image] (Version 1.54g).

Results
Copepod abundance and composition

It was not possible to identify all copepods to species level,
however a total of 14 different species were identified as well as 15
different genera. Calanus spp. and Metridia spp. were consistently
present and numerically represented a dominant component of
copepods throughout sampling, averaging 39.3 + 13.2% and 22.2 +
11.4% (mean + standard deviation) of taxonomic composition,
respectively (Figures 2A, B). Calanus spp. abundance reached their
maximum of 5 copepods m™> day™ in February, decreasing to< 1
copepod m™ day”' in May and increasing again thereafter. Metridia
spp. abundance followed a similar seasonal pattern with abundance
decreasing from March to June (with a minimum of < 1 copepod m™
day ! in March) and increasing thereafter into the spring and summer
(with a maximum of 2 copepods m™ day™ in September). Other taxa
only occurred seasonally or occasionally. Pleuromamma spp. and
Gaetanus spp. were either present in low abundance or absent from
March to August, reaching a maximum of 1 copepod m™> day ' in
December. Rhincalanus gigas was only present from June to October,
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FIGURE 2

Taxonomic (A.i, A.ii), ontogenetic stage (B.i, B.ii) composition of copepods present in a sediment trap deployed at 400 m in the Northeast Scotia Sea
(52.80° S, 40.14" W). The sediment trap sampled each calendar month from February until December 2018.

and in December (< 1 copepod m™ day™). Though the exact timing
and magnitude of abundance varied with specific taxa, there was a
strong seasonal pattern overall, with the total copepod abundance
maximizing at 8 copepods m™* day ™' in February with a minimum of
1 copepod m™ day™ in June.

Seasonality is also reflected in copepod stage (Figure 2B).
Copepodite abundance was greatest in the late spring/summer
months (December, February and March). Female copepods had
a strong presence throughout the year, however male copepod
abundance substantially increased from August onwards, reaching
a maximum in November (Figures 2B.i, ii). It should be noted,
however, that the presence of certain stages was highly species
specific. Metridia spp. and Pleuromamma robusta represented
46.7% and 32.8% of all males, respectively. February, the month
with the greatest number of copepodites (<= stage C5), also had the
lowest median copepod length (2.24 mm) (Figure 3A). Rhincalanus
spp. greatly increased the sampled size range when present,
resulting in the greatest copepod size range of 1.33-9.36 mm in
August. Median copepod length ranged between 2.24-2.94 mm.
From February the median copepod size steadily increases to 2.76
mm in June (wherein a high proportion of adults are present,
Figure 2Bii). In July the median copepod size drops to 2.30 mm as
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smaller taxa such as Ctenocalanus spp. start to appear, there is then
a general trend on increase until November and December wherein
again a large proportion of adults are present (Figure 2Bii). The
distribution of all copepod lengths is bimodal, with peaks at 2.75-
3.00 mm and 1.75-2 mm, with these peaks comprising largely of
Calanus and Metridia spp. respectively (Figure 3B).

Seasonal variations in size and stage are also apparent for
individual species or genera. For Metridia spp. females and
copepodites are the majority of stages present from February to
July, with males dominating from August onwards (Figure 4B).
Metridia spp. median copepod length increases from February to
June, reaching a maximum of 2.64 mm where females dominate.
Median copepod length then decreases to a minimum of 1.76 mm in
September, where the majority of individuals are males. Metridia spp.
length then increases in October, as females dominate the sample. For
Pleuromamma robusta, males were the dominant stage every month
other than July and October (Figure 4C). Consequently, P. robusta
median size remained relatively constant (3.13-3.38 mm) with the
exception of July and October, where the presence of females
increases median copepod length to 4.74 and 4.16 mm, respectively.

In contrast to the Metridinidae, only one male Calanus
simillimus was present throughout the sampling period (Figure 4A).

04 frontiersin.org
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Individual copepod length (A) and total distribution of copepod lengths (B) present in a sediment trap deployed at 400 m in the Northeast Scotia Sea
(52.80" S, 40.14" W). The sediment trap sampled each calendar month from February until December 2018. Size measurements are inclusive of both
the prosome and the urosome, with points indicating individual measurements, color indicating taxonomic identity, and curves indicating the density
distribution of measurements. The median value per month for individual length measurements (A) is indicated with a grey horizontal bar.

For C. simillimus (which represented 90.2% of all Calanus spp. in the
sediment trap), the majority of individuals in the sediment trap were
females, however younger copepodites dominated from February to
April and June. Variation in median C. simillimus size largely matched
this trend, as February to April had the lowest monthly median sizes,
with a minimum of 1.84 mm in March. For the remainder of the year,
C. simillimus monthly median size remained relatively consistent,
ranging from 2.62-2.79 mm as females dominated.

Discussion
The copepod assemblage

The sediment trap captured copepods from a range of taxa with
a variety of life history strategies. Despite the broad taxonomy and
varied copepod ecology present, there was a strong seasonal signal,
with abundance peaking in February, reducing until June and
increasing thereafter. The seasonal pattern in copepod abundance
concurs with previous net-based zooplankton studies in the Scotia
Sea (Atkinson and Peck, 1988; Ward et al., 2006, 2012; Atherden
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et al., 2024). Median copepod length peaked in both winter (June)
and spring (November, December) with a minimum in February.
Our results highlight taxonomic and ontogenetic composition as
important factors in body size structure within zooplankton
communities. Seasonal patterns in copepod body size at a
community and individual level have been attributed to changes
in temperature and food availability and species assemblage
(Landry et al., 1994; Garcla-Pamanes and Lara-Lara, 2001;
Palomares-Garcia et al.,, 2013; Horne et al.,, 2016). The observed
seasonal variation in copepod community size at 400 m may have
implications for mesopelagic predators. Larger copepods may be
more easily detected by predators, or conversely, larger copepods
may fall outside some optimal size ranges for certain predators
(Cowan, 1996; Saito and Kigrboe, 2001; Jackson and Lenz, 2016).
The adult stages in the winter months (June-August) may be either
early developers or remnants from the previous growing season.
Early developers can disproportionately contribute to recruitment
(Richardson et al., 1999; Daase et al., 2013), although their larger
body size may then also expose them to elevated predation risks.
Calanus simillimus and Metridia spp. dominated copepod
abundance over the year. The relative abundance of Metridia spp.
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FIGURE 4

Calanus simillimus (A), Metridia spp (B). and Pleuromamma robusta (C) with regards ontogenetic stage abundance (i), individual copepod length

(i) and total distribution of copepod length (iii) collected from a sediment trap deployed at 400 m in the Northeast Scotia Sea (52.80° S, 40.14" W).
The sediment trap sampled each calendar month from February until December 2018. Size measurements are inclusive of both the prosome and
the urosome, with points indicating individual measurements, color ontogenetic stage, and curves indicating the density distribution of
measurements. For individual copepod length (ii) the median value per month is indicated with a grey horizontal bar. Note that copepod length

was in good agreement with previous net-based community
assessments, with Metridia spp. representing between 5.3-36.4%
of individuals in our study and 12.9-38.8% of large (~< 1 mm)
copepods in Ward et al (2006, 2012). (Figure 2Aii; Supplementary
Table S1). Metridia spp. around South Georgia can perform diel
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vertical migrations to 400 m (Ward et al., 1995). This behavior may
facilitate entrapment rates in the sediment trap (deployed at 400 m)
comparable to net abundances. Conversely, Ward et al (2006; 2012,
sampling in summer and spring-autumn respectively) reported that
C. simillimus represented between 0.3-10.9% of copepods, whereas
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in our sediment trap, C. simillimus abundance was far higher
accounting for between 19.7-63.5% of copepods. Makabe et al.
(2016) directly compared sediment trap and net abundances in the
Canadian Arctic and found abundances of Metridia longa in
sediment trap collections to be directly comparable to those from
net catches. Conversely, the same was not found for C. hyperboreus
and C. glacialis, which were more abundant in sediment trap
samples during winter, coinciding with their reproductive season
(Makabe et al, 2016). It is likely that the comparatively high
proportion of C. simillimus in our sediment trap is also a
consequence of seasonal vertical migration patterns (Atkinson
and Sinclair, 2000) which are not resolved as effectively by net-
sampling at discrete time points. We found highest seasonal
abundances of Metridia spp. in spring (Figure 4Bi), whereas the
net-based study by Ward et al. (2012) found the highest abundances
in autumn. Atkinson (1998) found that the vertical distribution of
Metridia spp. varies seasonally, with pronounced DVM in spring,
DVM shallowing in summer and disbursement throughout the
water column in autumn. Consequently, differences between peaks
in seasonal abundance likely reflect the sediment trap catching
active, migrating individuals in spring, while nets sampled through
this depth range (0-400 m) would have integrated abundances over
400 m, downscaling overall abundance estimates. We found young
Metridia spp. copepodite stages were present in September,
November, and February, with spermatophores present on 5
females (from August to October) (Supplementary Table S2).
This suggests an extended reproductive season, with the
possibility of multiple generations. We are unaware of studies
assessing the reproductive phenology of M. lucens in the region.
However, our findings are in good agreement of the known
reproductive strategy of M. gerlachei in other productive regions
(e.g. King and LaCasella, 2003). For C. simillimus, we found females
and C5s to be present throughout the year, with their abundance
peaking in summer and decreasing in the winter months. Young
copepodites were present in March, April, and December. This
agrees well with previous work, supporting the hypothesis that C.
simillimus is capable of multiple generations within a year
(Atkinson, 1991, 1998).

Calanus simillimus overwintering

The precise overwintering strategy of C. simillimus is, as yet,
unknown. Atkinson (1989, 1991) demonstrate that C. simillimus
has a bi-modal, stage specific distribution. Females and males
overwinter at the surface (0-250 m) whereas C5s have been
found to overwinter at 500-1000 m (Atkinson, 1991, transect
from Falklands to South Georgia) and 250-500 m (Atkinson,
1989, South Georgia). However, it is not clear how C5s migrating
to depth sustain themselves and whether they enter diapause like
their northern congeners (C. hyperboreus, C. glacialis, C.
finmarchicus) (Lee et al, 2006) or are active overwinterers like
their southern congener C. propinquus (Bathmann et al., 1993).
Atkinson (1998) suggested that C. simillimus may undertake
diapause however, to our knowledge, no direct winter
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observations have been made. In our sediment trap, C5
abundance peaked in February, remaining relatively high until
April (autumn) (Figure 4Ai). We suggest the high abundance of
C5s in our trap from February to April represents individuals
descending to depth to begin overwintering. Other sediment trap
studies have caught copepods during their seasonal migration
(Makabe et al., 2016; Ramondenc et al,, 2022) typified by a peak
in sediment trap abundance at the end of summer/autumn followed
by a minimum in winter. This is similar to our study, where the
autumnal peak in C5 presence is followed by substantial reduction
throughout winter, during which time, only three individual C5s
were caught from May to August.

Situated at 400m, our sediment trap is within known
overwintering depths for C. simillimus C5s (e.g. 250-500+ m).
There are multiple explanations for our observed winter
minimum in C5 sediment trap abundance (Figure 5). In scenario
A, C5s migrate deeper than the sediment trap, but remain active. In
scenario B, C5s migrate deeper than the sediment trap, but then
enter diapause. Finally, in scenario C, C5s overwinter between 250
500 m and are therefore within the range of the sediment trap,
however, they do not enter the trap because they are in diapause and
vertically static. We suggest that Scenario A is perhaps the most
unlikely, as available food for scavenging tends to decline strongly
with depth (Parzanini et al., 2019; Henson et al., 2023). Indeed, the
active overwintering congener Calanus propinquus tends to be
found at< 250 m depth during winter (Schnack-Schiel and
Hagen, 1995; Atkinson and Sinclair, 2000; Pasternak and
Schnack-Schiel, 2001). Diapause behavior in C. simillimus
(Scenario B and C) may have previously been overlooked as C.
simillimus primarily store triacylglycerols (TAGs) rather than wax
esters (Ward et al,, 1996b). Wax esters are strongly associated with
diapause behavior whereas TAGs have been hypothesized to
indicate active overwintering (Sargent et al,, 1981; Hagen et al,
1993; Kattner et al.,, 2012). However, Eucalanus bungii, a TAG-
storing species, is fully capable of deep, sustained diapause (500-
2000 m), suggesting TAG storage does not preclude diapause
(Ohtsuka et al., 1993; Yamada et al., 2016).

Though direct observations are required to ascertain if C.
simillimus enters diapause, the implication that C. simillimus either
is capable of diapause or is active at depths > 400 m, has important
consequences for our understanding of their contribution to the
biological carbon pump and lipid pump (Jonasdottir et al, 2015;
Boyd et al,, 2019). With regards scenario A, active copepods maintain
a high respiration rate which may substantially contribute to the lipid
pump if fueled by stored reserves. Meanwhile, deep active feeding
will, on the one hand, contribute to the fecal pellet flux (Manno et al.,
2015) but, on the other, increase particle remineralization through
sloppy feeding and particle fragmentation (Mayor et al., 2020). For
scenario B, the contribution to the lipid pump will be less than
scenario A as respiration decreases in diapause (Hirche, 1996) but at
least there is certainty that it is fueled by stored reserves, which is a
prerequisite for this carbon flux via the lipid pump. The strength of
the lipid pump is affected by diapause depth. Pinti et al. (2023) found
that species which diapause deeper, and therefore respire their lipid
deeper in the ocean’s interior, sequester carbon for a longer period of
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FIGURE 5

_ C5s are dormant at a
C5s migrate deeper than | ghallow depth (~ 400 m)

400 m and are dormant
at depth

and do not actively enter
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Schematic of potential Calanus simillimus winter ecology (copepodite stage C5) with respect to sediment trap abundance in autumn and winter
(moored, 400 m depth). Yellow dotted arrows indicate active individuals entering the sediment trap. Red solid arrows indicate seasonal migration.
Copepods with upright orientation indicate individuals in a physiologically dormant state (Diapause)

time. However, the shallowest diapause depth range investigated was
500-800 m (Pinti et al., 2023). For scenario C, there is uncertainty
that diapausing at < 400 m is deep enough for significant carbon
sequestration. Determining whether C. simillimus C5s enter diapause,
and their winter depth distributions, would require a depth resolved
netting campaign in either late autumn or winter. Respiration
experiments or estimates (e.g. Electron Transport System activity)
and lipid analyses coupled with biomass estimates would help
quantify any potential contributions to the carbon flux. Copepods
in diapause are distinctively lethargic and unresponsive to physical
stimuli, however, transcriptomic signatures for diapause have been
established for C. finmarchicus (Lenz et al., 2021), and transcriptomic
data could strengthen identification of diapause in C. simillimus.
Since the Discovery era (1926-1938), C. simillimus abundance has
increased by ~ 55% (Ward et al., 2018) indicating that this species is
having an increasing influence on food webs and biogeochemical
cycling in an era of Southern Ocean climate change.

Sex specific distributions

We found males to be the dominant stage throughout the year
for Pleuromamma robusta and were between August to December
for Metridia spp. (Figure 4). In contrast, only one C. simillimus male
was captured throughout sampling (December, Figure 4Ai).
The high abundance of male P. robusta and Metridia spp. within
the sediment trap could reflect sex-specific depth distributions, with
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males occurring deeper in the water column and therefore entering
the sediment trap (400 m) more frequently. Sex-specific depth
distributions have been reported for Metridia spp. across multiple
environments, including the Southern Ocean. Often male Metridia
spp. reside deeper in the water column, with DVM behavior being
either weak or not apparent (Hattori, 1989; Osgood and Frost, 1994;
King and LaCasella, 2003). Sex-specific distributions of
Pleuromamma spp. have been reported in only a small number of
studies. In the North Pacific, Ambler and Miller (1987) and Haury
(1988) found males to reside deeper than females, with some
overlap. In the Iceland Basin, Gislason (2008) found male P.
robusta to be deeper than females in both winter (December) and
summer (June), but overlapping at other times of the year. To the
best of our knowledge, this is the first study to suggest P. robusta
males may reside deeper than females in the Southern Ocean.
Sex-specific depth distributions likely increase the chances of a
reproductive encounter (Titelman et al., 2007). The chances of
encountering a mate in a large, three-dimensional space are slim. If
males form a ‘deeper stratum’, where there is less light and a
reduced risk from visual predators, they can simultaneously
increase chance of encountering a female undergoing DVM and
increase their chances of survival (i.e. time for an encounter).
Indeed, females with spermatophores were present from August
until October, coinciding well with increased male presence in the
sediment trap. The sex-specific depth distributions of Metridinidae
warrant further investigations in high latitude regions. If males
remain consistently deep after maturation, they are either surviving
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using somatic reserves or particle-feeding; both activities can have
significant, but potentially opposing, influences on carbon export
through either respiration or particle fragmentation at depth
(Mayor et al., 2014; Jonasdottir et al., 2015).

Concluding remarks

This study emphasizes the critical role of data encompassing all
seasons in understanding copepod population dynamics in the
Southern Ocean and their influence in the carbon cycle. We
found that year-round copepod abundance assessments provided
ecologically and biogeochemically relevant patterns. Occurrence of
individuals in the sediment trap was likely influenced by abundance
in the water column as well as taxon-specific ecological traits.
Patterns in abundance in C. simillimus C5s suggest they may be
dormant over winter, perhaps entering diapause although the
possibility that they remain active over wintering cannot be ruled
out. This highlights a need for direct observation of C. simillimus
during autumn and winter as they may be a previously unaccounted
for yet significant contributor to particulate carbon- and lipid
pumps. The abundance of male Metridinidae in the sediment trap
indicated sex-specific distributions with males residing at greater
depths, possibly to enhance mate-encounter rates. This behavior
warrants further investigation, particularly to determine how males
sustain themselves, through starvation or scavenging. If these
deeper-dwelling males rely on somatic reserves, they may
contribute to the carbon flux in an analogous manor to the lipid
pump. Our findings emphasize the value of assessing zooplankton
ecology for understanding and predicting the zooplankton-
mediated carbon flux. Incorporation of specific overwintering
strategies, sex specific depth distributions and grazing behaviors
will improve estimates of zooplankton mediated carbon
sequestration, particularly in high latitude regions, where
zooplankton population dynamics are poorly constrained.
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