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Abstract 34 

 35 

West Africa is projected to face unprecedented shifts in temperature and extreme precipitation 36 

patterns as a result of climate change. The devastating impacts of river flooding are already 37 

being felt in most West African countries, emphasizing the urgent need for comprehensive 38 

insights into the frequency and magnitude of floods to guide the design of hydraulic 39 

infrastructure for effective flood risk mitigation and water resource management. Despite its 40 

significant socio-economic and environmental impacts, flood hazards remain poorly 41 

documented in West Africa due to the data-related challenges. This study aims to fill this 42 

knowledge gap by providing a large-scale analysis of flood frequency and magnitudes across 43 

West Africa, focusing on how climate change may influence future flood trends. To achieve 44 

this, we have used two large-scale hydrological models driven by five bias-corrected CMIP6 45 

climate models under two Shared Socioeconomic Pathways (SSPs). The Generalized Extreme 46 

Value (GEV) distribution was utilized to analyze trends and detect change points by comparing 47 

multiple non-stationary GEV models across historical and future periods for a set of 58 48 

catchments. Both hydrological models consistently projected increases in flood frequency and 49 

magnitude across West Africa, despite their differences in hydrological processes 50 

representation and calibration schemes. Flood magnitude is projected to increase for 94 % of 51 

the stations, with some locations experiencing increases exceeding 45 % in magnitude. In 52 

addition, the majority of trends are starting from the historical period, under both SSP2-4.5 and 53 

SSP5-8.5. The findings from this study provide regional-scale insights into the evolving flood 54 

risks across West Africa and highlight the urgent need for climate-resilient strategies to 55 

safeguard populations and infrastructure against the increasing threat of flood hazards. 56 

 57 
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1 Introduction 59 

Anthropogenic changes in atmospheric composition and land use have led to climate change 60 

(Houghton et al., 2001; Hansen et al., 2010; Santer et al., 2019; Masson-Delmotte et al., 2021). 61 

Climate change, in turn, amplifies the frequency, intensity, and impact of extreme events, such 62 

as heatwaves, storms, floods, and droughts at the global scale (IPCC, 2021). West Africa is 63 

identified as a hotspot for climate change impacts, as the region is projected to experience 64 

unprecedented shifts in both temperature and extreme precipitation patterns (IPCC, 2021). West 65 

African populations are therefore becoming increasingly vulnerable for floods and droughts 66 

(Tramblay et al., 2020, Rameshwaran et al., 2021). This vulnerability is due to multiple factors such 67 

as the region’s reliance on rainfed agriculture and the dependence of its rural communities on 68 

the natural environment (Krishnamurthy et al., 2012; Totin et al., 2016; Land et al., 2018; Diallo et 69 

al., 2020; De Longueville et al., 2020; Matthew et al., 2020). Additionally, the limited economic and 70 

institutional resources available to manage and adapt to climate change and natural hazards 71 

exacerbate this vulnerability (Roudier et al., 2011; Sultan & Gaetani, 2016; Lalou et al., 2019).  72 

 73 

A potential increase in river flooding risks is one of the most frequently studied impacts of 74 

climate change (Arnell & Gosling, 2016), because of the devastating economic and 75 

environmental impacts it may trigger (EM-DAT, 2015; CRED, 2022; UNDRR, 2023). Such 76 

impacts of climate change are already being felt in many West African countries, which 77 

experienced several catastrophic floods in the past few years, raising concerns for water 78 

management and livelihoods (World Bank, 2021a). It is therefore becoming crucial to develop 79 

efficient adaptation strategies for mitigating the adverse effects of flood hazards on West 80 

African communities and economies. 81 

 82 

Efficient water resources management is essential for sustainable development in West Africa 83 

in a changing climate (UNEP, 2020). However, water management requires comprehensive 84 

insights into the frequency and magnitude of floods to design appropriate hydraulic 85 

infrastructure (Feaster et al., 2023), and quantification of watershed runoff to design reservoirs 86 

for agricultural, industrial, and municipal water use (Song et al., 2022). In West Africa however, 87 

access to hydrometric data remains a challenge, as the number of stations within hydro-88 

monitoring networks has decreased in recent years (Bodian et al., 2020; Tarpanelli et al., 2023). 89 

Existing hydrometric databases, available to estimate design flows, only provide short and 90 

often old records (Agoungbome et al., 2018; Tramblay et al., 2021). Therefore, updating these 91 
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hydrological standards is essential to ensure that they accurately represent the current 92 

hydroclimatic context of the region (Wasko et al., 2021). 93 

 94 

Global Climate Models (GCMs) outputs from the fifth/sixth Coupled Model Intercomparison 95 

Project (CMIP5/6), which contributed to the fifth and sixth Assessment Report (AR5/6) of the 96 

Intergovernmental Panel on Climate Change (IPCC), have provided opportunities to simulate 97 

future hydrological impacts of climate change worldwide. Indeed, CMIP5/6 models use a range 98 

of scenarios that represent different future trajectories to simulate several climate variables, 99 

which help researchers assess the potential long-term impacts of near-term decisions on 100 

emissions reductions and climate policies (Riahi et al., 2017). To understand future trends in 101 

hydrological extremes, climate models are typically used in combination with hydrological 102 

modelling experiments.  However, the simulations from GCMs cannot be used directly to drive 103 

hydrological models as they are associated with systematic biases relative to observational 104 

datasets (Sillmann et al., 2013). Therefore, downscaling and bias-correction algorithms are 105 

routinely applied to leverage the information from GCM outputs (Ehret et al., 2012). 106 

Nevertheless, large uncertainties remain regarding future climate trends in West Africa, due to 107 

the sensitivity of different climate models contrasting warming in the North Atlantic and 108 

Mediterranean Sea, which are known to influence the West African Monsoon (Bichet et al., 109 

2020; Monerie et al., 2023), and due to contrasting emission scenarios (IPCC, 2021). 110 

 111 

As climate change may intensify the hydrological cycle (Gudmundsson et al., 2012), 112 

systematically assessing future flood risks and regional-scale hydrological impacts of future 113 

climate change is crucial for developing effective climate adaptation strategies (Huang et al., 114 

2024). The interest in large-scale hydrological models has increased due to the need to 115 

sustainably manage large river basins and the pervasive global environmental change (Döll et 116 

al., 2008). As global hydrological models can capture the variability of hydrological processes 117 

across different geographical and climatic contexts, large-scale hydrological modelling has 118 

become a key tool for analysing global and regional water resources, assessing climate impacts, 119 

and managing water resources (Kauffeldt et al., 2013; Prudhomme et al., 2024). However, 120 

running physically based large-scale hydrological models requires numerous input variables 121 

that describe the physiographic characteristics of the watersheds (such as soil moisture, land 122 

use/land cover, topography, etc.), along with several meteorological forcings. Thus, this 123 

complexity limits the widespread use of these models. Brunner et al. (2021) have argued that 124 

the limited information on regional flood trends is partly due to the data-related challenges. In 125 
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the West African context, several studies have shown the increase in extreme rainfall in 126 

observations (Taylor et al., 2017, Tramblay et al., 2020, Chagnaud et al., 2022) and future 127 

climate scenarios (Dosio et al., 2021, Chagnaud et al., 2023), but very few studies have used 128 

GCMs simulations as forcings to drive grid-based large-scale hydrological models to assess 129 

the potential impacts of climate change on river flows across West Africa (Rameshwaran et al., 130 

2021; Ekolu et al., 2024, https://africa-hydrology.ceh.ac.uk/). The main objective of this study 131 

is to address this gap by assessing the impacts of climate change on floods in the West African 132 

region from two large-scale hydrological models driven by data from five bias-corrected 133 

CMIP6 GCMs under two Shared Socioeconomic Pathways (SSPs; O’Neill et al., 2017). This 134 

article is organised as follows: In Section 2, we describe the study area. Section 3 outlines the 135 

materials and methods, including the data used in the analysis, the CMIP6 models and 136 

hydrological modelling approach, the non-stationary extreme value analysis framework, and 137 

the evaluation of climate change impacts on floods at both local and regional scales. In Section 138 

4, we present and discuss the findings. Finally, main conclusions and perspectives are given in 139 

Section 5. 140 

 141 

 142 

2 Materials and Methods  143 

2.1 Study area description 144 

West Africa covers about one-fifth of the African continent, extending from the Atlantic coast 145 

of Senegal (18°W) to eastern Chad (25°E) and from the Gulf of Guinea (4°N) to the Sahel 146 

(25°N) (Figure 1). The region's climate is governed by the Inter-Tropical Convergence Zone 147 

(ITCZ) or the Inter-Tropical Discontinuity (ITD), which represents the interface at the ground 148 

between moist monsoon air and dry harmattan air with a migratory annual cycle (Pospichal et 149 

al., 2010). The West African region features high climatic diversity (Vintrou, 2012), and covers 150 

a wide range of ecosystems and bioclimatic regions (Nicholson, 2018). The latitudinal and 151 

seasonal oscillation of the Inter-ITCZ divides the region into three main climatic domains, 152 

namely the Sahel, Sudanian and Guinean zones (Sule & Odekunle, 2016). The Sahel zone is a 153 

semi-arid region with a short rainy season and an annual average rainfall not exceeding 600 154 

mm (Figure 1). This domain is highly vulnerable to the adverse effects of climate change (Tian 155 

et al., 2023). The Sudanian zone stretches as a broad belt south of the Sahel, receiving an 156 

average rainfall of 600 to 1200 mm (Srivast et al., 2023). The Guinean zone, known for its 157 
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rugged terrain with steep slopes (Orange, 1990), receives abundant rainfall throughout the year, 158 

with an annual average between 1200 and 2200 mm (ECOWREX, 2018). These three climate 159 

zones are characterized by distinct vegetation (Biaou et al., 2023) and rainy season patterns. 160 

The Sahelian and Sudanian domains share a unimodal rainfall pattern, while the Guinean zone 161 

experiences a bimodal rainfall pattern of two rainy seasons, driven by the West African 162 

Monsoon (Rodríguez-Fonseca et al., 2015; Nicholson, 2018). It is worth noting that nearly half 163 

of Africa's continental watersheds are located in West Africa. The socioeconomic development 164 

(agriculture, energy production, and livelihoods) of the region relies highly on the water 165 

resources provided by these transboundary basins and aquifers (World Bank, 2021b). 166 

 167 

 168 

2.2 Observational data 169 

Daily streamflow data for the period 1950-2018 were obtained from the African Database of 170 

Hydrometric Indices (Tramblay et al. 2021b, Diop et al., 2025). This database provides 171 

hydrometric indices computed from different data sources, with daily discharge time series that 172 

span at least 10 years. In the ADHI database, the size of the 441 West African catchments 173 

ranges from 95 to 2,150,000 km2, and some stations have daily discharge data spanning over 174 

44 years. Figure 1 shows the spatial distribution of the ADHI stations used in this study. We 175 

only selected watersheds that met the following three criteria: (i) low regulation (see 176 

Supplementary Figure S1), (ii) surface area of less than 150,000 km², and (iii) a daily 177 

streamflow time series covering a minimum of 10 years between the 1950 and 2018. 178 

 179 
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 180 

Figure 1: Spatial distribution of the stations used in this study, covering the three climatic zones 181 

in the West African region, as delimited by the blue isohyets (600 mm and 1200 mm annual 182 

rainfall) on the map. The color of the circles indicates the record lengths of flood data (in years). 183 

The blue lines represent isohyets delimiting West African climatic regions, and the white lines 184 

indicate the borders of West African countries (African map from NASA 2005). 185 

 186 

2.3 hydrological models 187 

Two grid-based large-scale hydrological models were used to simulate river flows for the 188 

period from 1950 to 2010: the HMF-WA model (the Hydrological Modelling Framework for 189 

West Africa; Rameshwaran et al., 2021) and the Open Source (OS) LISFLOOD model (Van 190 

Der Knijff et al., 2010), thereafter referred to as LISFLOOD. The HMF-WA model is adapted 191 

from the modular HMF model, and enhanced by Rameshwaran et al. (2021) to include 192 

additional key regional hydrological processes in the region such as wetlands, anthropogenic 193 

water use, and endorheic rivers (Rameshwaran et al., 2021). The HMF-WA simulates spatially 194 

consistent river flows across West Africa at a 0.1° × 0.1° spatial resolution. Although the HMF-195 

WA model has not yet been specifically calibrated to individual West African catchments using 196 

observed flow data where the model hydrology is configured to local conditions using spatial 197 

datasets of physical and soil properties, its evaluation against observational data indicates that 198 
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it performs reasonably well in simulating both daily high and low river flows across most 199 

catchments. The median values of NSE (Nash-Sutcliffe efficiency), NSElog and BIAS are 0.62, 200 

0.82 and 0.06 (6 %), respectively (Rameshwaran et al., 2021). The LISFLOOD model is 201 

developed at the Joint Research Centre (JRC) of the European Commission (https://ec-202 

jrc.github.io/lisflood/). LISFLOOD is a hybrid between a conceptual and fully physically based 203 

distributed rainfall-runoff model, designed for simulating the hydrological processes that occur 204 

in a catchment (Van Der Knijff et al., 2010). It supports a range of applications, including flood 205 

forecasting, water resources management, and climate change impact assessments.  The 206 

LISFLOOD version used in this study (OS LISFLOOD v4.1.3) was calibrated using the 207 

discharge stations data described in the previous section, with a 0.05° (~5 km) resolution in its 208 

quasi-global implementation (-180, 180, 90, -60). This version of the LISFLOOD model, in 209 

combination with the 0.05° implementation maps (v1.1.1 openly available from https://global-210 

flood.emergency.copernicus.eu/), has allowed the generation of the latest Copernicus 211 

Emergency Management Service Global Flood Awareness System (CEMS GloFAS v4.0; 212 

https://www.globalfloods.eu/) reanalysis and forecast datasets. 213 

 214 

2.4 Bias-corrected CMIP6 models and scenarios 215 

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) provides simulations 216 

from GCMs for the preindustrial period (1850–2014) and future climate projections (2015–217 

2100) (Noël et al., 2022). To assess future climate impacts on floods, we have used five (5) 218 

daily GCMs rainfall and temperature outputs from the CMIP6 experiments (https://esgf-219 

node.llnl.gov/search/cmip6). Table 1 gives the institute name and references of the CMIP6 220 

climate models used in this study. These GCMS encompass a range of climate sensitivities, 221 

with Equilibrium Climate Sensitivity (ECS) values ranging from 2.98 to 5.34 (IPCC, 2021). 222 

The GCMs were selected based on their availability for the study area. Due to their 223 

accessibility, these GCMs have been widely used for climate impact assessments in Africa 224 

(Dosio et al., 2019; Almazroui et al., 2020; Klutse et al., 2021; Babaousmail et al., 2023; Nooni 225 

et al., 2023). The Cumulative Distribution Function-transform (CDF-t) (Michelangeli et al., 226 

2009) was used to bias-correct the GCMs outputs. The CDF-t approach involves mapping the 227 

cumulative distribution function (CDF) from a GCM in the historical period to the observed 228 

CDF, then applying the same mapping to the GCM’s future CDF (Flaounas et al., 2013; Pierce 229 

et al., 2015; Famien et al., 2018). The CDF-t method requires high-resolution observational 230 

data to work properly. The EWEMBI dataset (E2OBS, WFDEI, and ERA-I data, bias-corrected 231 
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for ISIMIP; Frieler et al., 2017; Lange, 2018, 2019) was used to bias-correct the climate 232 

variables to drive the HMF-WA hydrological model. Similarly, the ERA5-land reanalysis 233 

(Muñoz-Sabater et al., 2021). was used for bias-correcting the GCMs outputs for the 234 

LISFLOOD model. The bias-corrected simulations are post-processed onto the 0.1° x 0.1° (~10 235 

km x 10 km) HMF-WA model grid (Rameshwaran et al., 2021, 2022), and onto the 0.05° x 236 

0.05° (~5 km x 5 km) LISFLOOD model grid for the period 1950-2100. CMIP6 models use 237 

five Shared Socioeconomic Pathways (SSPs). SSPs are an updated framework of climate 238 

scenarios, building upon the CMIP5 Representative Concentration Pathways (RCPs) while 239 

maintaining consistency in the 2100 radiative forcing levels. SSPs describe the socioeconomic 240 

factors (population growth, economic development, technological advancements, and 241 

governance) which can influence greenhouse gas emissions and adaptation strategies (O’Neill 242 

et al., 2017). Two Shared Socioeconomic Pathways (SSPs) are analysed in this study: the SSP2-243 

4.5 (Middle of the Road) and the SSP5-8.5 (Fossil-Fueled Development). 244 

Table 1: Bias-corrected CMIP6 climate models used in this study 245 

Institute Climate Model References 

Max Planck Institute for Meteorology (Germany) MPI-ESM1-2-HR (Mauritsen et al., 2019) 

Meteorological Research Institute (Japan) MRI-ESM2-0 (Yukimoto et al., 2019) 

Institute Pierre-Simon Laplace (France) IPSL-CM6A-LR (Boucher et al., 2020) 

Met Office Hadley Centre (UK) UKESM1-0-LL (Mulcahy et al., 2020) 

Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM4 (Dunne et al., 2020) 

 246 

2.5 Evaluation of hydrological models 247 

The two hydrological models are evaluated over the period 1950-2014, which represents a 248 

compromise between the period covered by the ADHI database and the historical CMIP6 GCM 249 

simulations. To achieve this, we use the two-sample Anderson-Darling (AD) test at the 0.05 250 

significance level (Scholz & Stephens, 1986) to compare the distributions of extreme values 251 

observed and simulated by the hydrological models. The Block-Maxima approach (Gumbel, 252 

1958) is used to construct extreme value time series, by extracting the annual maximum flow 253 

(AMF) from the daily discharge time series over the period 1950-2014. Unlike the 254 

Kolmogorov-Smirnov (KS) test (Berger & Zhou, 2014), which measures the maximum 255 
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distance between two cumulative distribution functions (CDFs), the AD test assesses the 256 

overall distance between these CDFs, giving more weight to the tails of distributions. As a 257 

result, the AD test is more sensitive than the KS test in the tails of distributions and is therefore 258 

more suitable for comparing extreme values distributions (Engmann & Cousineau, 2011). That 259 

said, the AD test also has a limitation as the reliability of an empirical CDF can be affected by 260 

small sample sizes, particularly in the tails of the distribution. The performance of each 261 

hydrological model is given here by the proportion of CMIP6 simulations (among the 5) for 262 

which the AD test has failed. 263 

 264 

2.6 Extremes Values Analysis Framework 265 

2.6.1 The Generalized Extreme Value Distribution 266 

According to the theory of extreme values, based on the Fisher–Tippett theorem, the 267 

Generalized Extreme Value (GEV) is the limiting distribution of independent and identically 268 

distributed random variables (Coles, 2001). The GEV is among the most frequently used 269 

distributions for extreme value analysis. It is a continuous three-parameter distribution that can 270 

account for non-stationarity, which refers to changes in statistical properties over time. This is 271 

achieved by allowing the parameters to vary as a function of time or other covariates (Hamdi 272 

et al., 2018; Wilcox et al., 2018). We, therefore, used the GEV to model the AMF series from 273 

each hydrological model simulations forced with the five CMIP6 climate models at each 274 

catchment. There are three parameters (location, scale and shape) in the GEV distribution 275 

(Hossain et al., 2021). In flood frequency analysis, each GEV parameter plays a distinct role in 276 

understanding and projecting flood behaviour, thus guiding effective flood risk management 277 

(Lawrence, 2020). The location parameter (μ) indicates the central tendency of flood 278 

magnitudes, with higher values suggesting a shift towards more frequent or severe floods. The 279 

scale parameter (σ) measures the variability or dispersion of the distribution, with larger values 280 

indicating greater uncertainty and a broader range of flood magnitudes. The shape parameter 281 

(ξ) governs the tail behaviour of the distribution, with heavier tails suggesting an increased 282 

probability of extreme flooding events. This parameter is crucial for assessing the risk of rare 283 

floods and informing the design infrastructure to withstand such extremes. Equation (1) 284 

presents the cumulative distribution function (CDF) of the GEV (Coles, 2001).  285 
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𝐹(𝑥; 𝑢, 𝛼, 𝜉) = 𝑒𝑥𝑝 {− [1 − 𝜉

(𝑥−𝑢)

𝛼
]

1/𝜉

}     𝜅 ≠ 0 

(1) 

 𝐹(𝑥; 𝜉, 𝛼) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−
(𝑥−𝑢)

𝛼
]}            𝜅 = 0   

 286 

Where 𝑥, 𝑢, 𝛼, et 𝜉 are the data, location, scale, and shape parameters respectively, and (𝑢 +287 

𝛼/𝜉) ≤ 𝑥 < ∞  if  𝜉 < 0 ;  −∞ < 𝑥 < ∞  if 𝜉 = 0 ;  −∞ < 𝑥 ≤ (𝑢 + 𝛼/𝜉) if𝜅 > 0. 288 

 289 

Efficiently estimating the GEV parameters is crucial for the precise characterization and 290 

analysis of extreme events (Rai et al., 2024). We have used the Generalized (Penalized) 291 

Maximum Likelihood Estimation (GMLE) method (Martins & Stedinger, 2000) to estimate the 292 

GEV parameters in a non-stationary context. The GMLE method overcomes the limitations of 293 

the well-known MLE (Fisher, 1992) method for small sample size (Hossain et al., 2021). To 294 

achieve this, Martins & Stedinger (2000) used a beta distribution (with shape parameters p = 6 295 

and q = 9) as a prior to constraint the values of the GEV shape parameter in the interval [-0.5, 296 

+0.5], avoiding large negative values of the shape parameter. This approach has been used in 297 

several studies to estimate the GEV parameters in both stationary and non-stationary contexts 298 

(El Adlouni et al., 2007; Panthou et al., 2013; Tramblay et al., 2024). However, the original 299 

prior distribution from Martins & Stedinger (2000) is not well-suited for West Africa, as it 300 

results in shape parameter estimates below -0.5 for several stations, as illustrated in 301 

Supplementary Figure S2. Here, we therefore use a normal distribution as a prior for the GMLE 302 

method. This normal distribution is fitted to the GEV shape parameter values estimated on 98 303 

AMF series spanning a minimum of 20 years over the period 1950-2018 from the ADHI 304 

database Tramblay et al. (2021) using the L-moments method (Hosking, 1990). The newly 305 

developed regional prior, modelled as a normal distribution, has a mean of -0.24 and a standard 306 

deviation of 0.16 (see Supplementary Figure S2). 307 

 308 

 309 

2.6.2 Determining magnitude and direction of changes in flood events 310 

To analyse future changes in floods, we compare two 30-year future periods (a near-term future 311 

[2031–2060] and a long-term future [2071–2100]) to a reference historical period (1985-2014) 312 

at stations where there is a good fit between observed (OBS) AMF series and hydrological 313 

models simulations (HIST) according to the Anderson-Darling (AD) test (at 0.05 level), and 314 
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also in stations at which the null hypothesis of the AD test is rejected. We have chosen to work 315 

with the 2-year and 20-year floods to analyse the impacts of climate change in West Africa. 316 

The 2-year return period indicates relatively frequent flood events, and this information is 317 

essential for understanding and managing risks associated with flooding. The 20-year flood 318 

event is frequently used for comparative purposes in various studies, as it balances the rarity of 319 

extreme events (data length limitations) and the uncertainty in the estimated return levels 320 

(Dawson et al., 2005; Tramblay & Somot, 2018; Han et al., 2022). Thus, the 2- and 20-year flood 321 

quantiles are computed at each station for the three 30-year periods using the GEV model fitted 322 

to the AMF series by the GMLE method. Changes in flood are quantified in this study by 323 

computing the ratio of the difference between the future flood quantile (Qfuture) and the 324 

historical flood quantile (Qhist) to Qhist itself. To assess the statistical significance of the 325 

differences between the historical and future flood quantiles, we have used the parametric 326 

bootstrapping approach. After estimating the GEV distribution parameters, we have generated 327 

2500 simulations of annual peak floods for each subperiod (with each simulation representing 328 

a sample of 30 data points). We have then recomputed the 2-year and 20-year flood quantiles 329 

for each simulation. The significance of the differences between the quantiles was evaluated at 330 

the 0.05 level. It is crucial to consider the degree of consensus among multiple climate models 331 

to reduce the potential noise in the projections and reach robust conclusions (Awotwi et al., 2021; 332 

Dosio et al., 2021). Here we have computed a multi-model index of agreement (MIA) as 333 

introduced by Tramblay & Somot (2018), to present the results in terms of the proportion of 334 

CMIP6 models projecting significant change for each station. The MIA allows the assessment 335 

of the robustness of climate model projections, ensuring cross-catchment comparability due to 336 

its standardised scale ranging from -1 to 1, according to the direction of change (i.e., MIA = 1 337 

(-1) if all models project an increasing (decreasing) trend). 338 

𝑀𝐼𝐴 =
1

𝑛
(∑ 𝑖𝑚

𝑛
𝑚=1 )                                                           (2) 339 

From equation (6), for a given CMIP6 model (m), im = 1 for regionally significant upward 340 

trends, im = -1 for significant negative trends, and im = 0 when no significant trends are 341 

detected, across n climate simulations. 342 

 343 

2.6.3 Determining temporal functions for GEV parameters and modelling of non-344 

stationary extreme values 345 
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While the previous section focused on the magnitude and direction of changes in flood events 346 

under different scenarios, this section describes the methodology used to identify when these 347 

changes began. Understanding how the parameters of the GEV distribution might shift under 348 

future climate scenarios is a critical question that needs to be addressed given the accelerating 349 

impacts of global warming on environmental conditions. Answering this question can inform 350 

a more reliable modelling process to estimate flood quantiles. Several studies have suggested 351 

that both the location and scale parameters of the GEV distribution should be adjusted 352 

proportionally to account for the effects of climate change (Stedinger & Griffis, 2011; 353 

Prosdocimi & Kjeldsen, 2021; Jayaweera et al., 2024). Here, to determine the appropriate 354 

temporal function for the non-stationary GEV, the trends in GEV parameters are detected using 355 

the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975). As the test is applied to 356 

parameters estimated over moving windows, it is important to note that temporal correlation is 357 

introduced, which can bias the results of the original Mann-Kendall test, as it assumes 358 

independence of observations. To address this, we have applied a modified version of the test 359 

based on the Hamed & Rao (1998) variance correction approach, specifically adapted for 360 

serially correlated data. A window size of 30 years has been selected to ensure sufficient data 361 

to fit the SGEV, with a total of 121 windows. For each window, each hydrological model 362 

(LISFLOOD and HMF-WA) and each climate scenario (SSP2-4.5 and SSP5.8-5), the SGEV 363 

is fitted to AMF series from the averaged hydrological simulations driven by data from the 364 

CMIP6 models. The Mann-Kendall test is then applied to the series of estimated parameters at 365 

the 0.05 significance level. 366 

 367 

Based on the results of the trend analysis of the GEV parameters, the location (µ) and scale (σ) 368 

parameters are expressed as linear functions of time, denoted as µ(t) and σ(t), while the shape 369 

parameter remains constant. Thus, the non-stationary GEV model involves a vector 370 

ψ=[μ0;μ1;σ0:σ1:ξ] of five unknown parameters. We have decided to keep the shape parameters 371 

constant because it is uncommon for researchers to model all three GEV parameters as 372 

covariate-dependent functions. Indeed, adding this level of complexity can significantly 373 

complicate the model parameters estimation, particularly the shape parameter (Katz, 2013; 374 

Papalexiou & Koutsoyiannis, 2013). Allowing any starting date (year t0) of a possible 375 

significant trend in the GEV location and scale parameter, we have considered three cases of 376 

the non-stationary GEV (NSGEV; cf. Equations 3-5):  377 

 378 
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● Case 1 (GEV1): a linear trend with no breakpoint (i.e., a single trend over the entire 379 

record for both the location and scale parameters): 380 

      μ(t) = μ0 + μ1t ; σ(t) = σ0 + σ1t                          for    t ≤ t0 (3) 

 381 

● Case 2 (GEV2): a linear trend after a breakpoint (i.e., the location and scale parameters 382 

are constant before the year t0 and linearly dependent on time after t0): 383 

μ(t) = μ0 ; σ(t) = σ0                                             for    t ≤ t0 

μ(t) = μ0 + μ1(t-t0) ; σ(t)  = σ0 + σ1(t-t0)              for    t ≥ t0 
(4) 

 384 

● Case 3 (GEV3): both trends before and after a breakpoint are considered (i.e., a linear 385 

trend before and after year t0 for both location and scale parameters): 386 

μ(t) = μ0 + μ1(t0-t) ; σ(t) = σ0 + σ1(t0-t)              for    t ≤ t0 

μ(t) = μ0 + μ1(t-t0) ; σ(t) = σ0 + σ1(t-t0)              for    t ≥ t0 
(5) 

 387 

Unlike in Wilcox et al. (2018), where breakpoints are defined independently for μ(t) and σ(t), 388 

in the present study, we assume a common breakpoint for both parameters. This means that 389 

both μ(t) and σ(t) change simultaneously at the same point in time. To ensure that the NSGEV 390 

model is fitted with sufficient data, the first start year is set no earlier than 20 years after the 391 

beginning of the time series (1950) and the last start year is set no later than 20 years before 392 

the end of the time series (2100). Thus, the possible starting years of change (t0) fall between 393 

1970 and 2070. There are as many NSGEV models as there are breakpoints or starting years, 394 

and the non-stationary model with the highest log-likelihood is selected (see Supplementary 395 

Figure S3). The procedure described above is inspired by several studies that focused on 396 

detecting trends in hydroclimatic time series using non-stationary GEV (Hawkins & Sutton, 397 

2012; Panthou et al., 2013; Blanchet et al., 2018; Hamdi et al., 2018; Tramblay & Somot, 2018; 398 

Wilcox et al., 2018). 399 

 400 

Once the best breakpoint has been determined for each time-varying GEV model based on the 401 

log-likelihood profile, the trend models (GEV1, GEV2 and GEV3) are compared with each 402 

other using the Akaike information criterion (AIC; Akaike, 1974). The AIC criterion is widely 403 

used to compare multiple statistical models by assessing their goodness-of-fit. It accounts for 404 

the trade-off between a model's fit to the data and its complexity, by penalising for more 405 

complex models. While a more complex model may provide a better fit, it often does not 406 

https://doi.org/10.5194/egusphere-2025-130
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

provide sufficient improvement to justify the addition of extra parameters (Wilcox et al., 2018). 407 

Thus, the AIC is well-suited for evaluating the performance of non-stationary GEV models. 408 

Furthermore, a deviance test (D) based on likelihood ratio (LR; Coles, 2001) is performed at 409 

the 0.05 significance level between the best GEV trend model selected previously based on the 410 

AIC criterion and the stationary GEV model (SGEV). The LR test allows us to determine the 411 

best model between two competing nested models by comparing the D-statistic given by 412 

Equation (6) to the chi-square (ꭙ2) distribution. 413 

D = 2{log(MLNSGEV) - log(MLSGEV)}                                                    (6) 414 

From Equation (6), D represents the deviance test statistic value (referred to as D-statistic 415 

above), log(MLNSGEV) and log(MLSGEV) are the maximised log-likelihood functions of the 416 

NSGEV and the SGEV, respectively. Letting c⍺ be the (1 - ⍺) quantile of the chi-square 417 

distribution (where ⍺ represents the level of significance), with υ degrees of freedom equal to 418 

the difference in the number of model parameters between the non-stationary and stationary 419 

models, the non-stationary GEV is accepted at the level ⍺ if the D-statistic is greater than c⍺, 420 

meaning a significant trend in the data.  421 

To reduce Type 1 errors (Mudge et al., 2012) that could arise from the deviance test based on 422 

the likelihood ratio and assess the field significance of the detected local trends, the False 423 

Discovery Rate (FDR) procedure is implemented (Hochberg & Benjamini, 1995). The FDR 424 

procedure aims to reduce the proportion of false positives among the null hypothesis local 425 

rejections by adjusting the vector of p-values from the set of at-site tests (Wilks, 2006). The 426 

FDR approach has been used in many studies of hydroclimatic variables due to its advantages 427 

over other methods, such as dealing with spatial autocorrelation (Khaliq et al., 2009). For 428 

consistency with local deviance and MK tests, the FDR procedure is computed at 0.05 global 429 

significance level (αglobal). The FDR test rejects the local null hypothesis when the 430 

corresponding p-value is lower than αglobal. If the null hypothesis is rejected at least once within 431 

the study area, field significance is then declared (Wilks, 2016). 432 

 433 

 434 

3 Results and discussions 435 

3.1 Assessing the performance of hydrological models 436 
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The two hydrological models' performance is assessed over the period 1950-2014 by applying 437 

the two-sample Anderson-Darling (AD). The results of the statistical evaluation of the two 438 

hydrological models are shown in Figure 2. The performance of each model at each station is 439 

assessed based on the proportion of CMIP6 models that fail the Anderson-Darling test at the 440 

0.05 significance level. Specifically, if more than two out of five CMIP6 simulations fail the 441 

test at a given station, the hydrological model is considered to perform poorly at that station. 442 

Considering this evaluation criterion, the LISFLOOD hydrological model performs well at 64 443 

% of the stations, while the HMF-WA model performs satisfactorily at only 24 % of the stations 444 

(Figure 2). Although both models are semi-physically based and spatially distributed, the 445 

LISFLOOD model outperforms the HMF-WA model in simulating extreme flows in West 446 

Africa (Figure 2). This difference in performance can be attributed to several factors: (i) the 447 

LISFLOOD model was run at a finer resolution (0.05° x 0.05°) compared to the coarser 448 

resolution of 0.1° x 0.1° used by the HMF-WA model (Rameshwaran et al., 2021); (ii) the 449 

HMF-WA model includes fewer meteorological forcings and only a limited number of 450 

hydrological processes (specifically wetlands, anthropogenic water use, and endorheic rivers), 451 

whereas the LISFLOOD model can incorporate over 70 different processes depending on the 452 

target application (i.e., rainfall-runoff transformation, flood and drought forecasting) and the 453 

required level of configuration (more detailed information on the configuration of LISFLOOD 454 

can be found at https://ec-jrc.github.io/lisflood-model; and (iii) the HMF-WA model has not 455 

been calibrated to individual west African catchment conditions with observed flow data 456 

(Rameshwaran et al., 2021). In contrast, the LISFLOOD model, in its quasi-global 457 

implementation, has been calibrated using in-situ discharge observations covering several river 458 

basins worldwide, including most West African basins, and with discharge time series spanning 459 

at least four years after 01 January 1980. Consequently, while the distributed nature of the 460 

HMF-WA model aims to improve the understanding of regional climate change impacts in a 461 

spatially coherent manner across West Africa, it does not necessarily lead to better modelling 462 

of extreme flows in the various climates and socioeconomic contexts of the region without 463 

calibration.  464 
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 465 
Figure 2: Statistical evaluation of the two hydrological models: a) Two-sample Anderson-466 

Darling (AD) goodness-of-fit (GOF) test at 0.05 statistical significance level at each station 467 

between the AMF of daily OBS from the ADHI database and annual maxima flow of HIST 468 

from LISFLOOD daily simulations forced with the five CMIP6 GCMs (GFDL, IPSL, MPI, 469 

MRI, and UKESM) over the period 1950-2014. b) same as a) but using HMF-WA as 470 

hydrological model. The Performance of each hydrological model is given by the proportion 471 

of CMIP6 simulations for which the AD test has failed. The circles show stations where 60-472 

100 % of CMIP6 models fail the test, and squares represent stations where 0–20 % of CMIP6 473 

models fail the AD test. 474 

 475 

To further assess the performance of the hydrological models in capturing extreme flows, we 476 

computed the Relative Bias between the AMF simulated by the LISFLOOD-CMIP6 and HMF-477 

WA-CMIP6 hydrological models and the observed AMF from the ADHI database. This 478 

comparison was performed over the historical period (1950–2014), focusing on the 479 

climatological characteristics of AMF (median values) rather than on year-to-year 480 

correspondence. This approach allows us to evaluate whether the hydrological models tend to 481 

overestimate or underestimate flood peaks, considering climate models individually. As shown 482 

in Figure 3, the HMF-WA model consistently shows a negative relative bias across all GCMs, 483 

with median values ranging from -52 % (IPSL) to -46 % (UKESM) across the region. These 484 

negative biases suggest a tendency of the HMF-WA model to underestimate peak flow. The 485 

LISFLOOD model, in contrast, shows lower bias than the HMF-WA model, with a mix of 486 

slight underestimations and even overestimations (Figure 3). For instance, the median values 487 

for the LISFLOOD model simulations range from -14 % (MPI) to 7 % (GFDL). Although the 488 

LISFLOOD model also shows negative biases with most GCMs, such as IPSL, MPI, MRI, and 489 

UKESM, the magnitude of these biases is much smaller compared to the HMF-WA model. 490 

Nevertheless, whether a calibrated hydrological model offers more reliable climate change 491 

projections than an uncalibrated model, which may perform less accurately in reproducing 492 

historical conditions (Pechlivanidis et al., 2017), remains questionable. Examining whether 493 
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their capacity to simulate hydrological responses to historical climate is influencing projected 494 

trends for climate change impacts remain important, especially considering that most 495 

projections of climate change impacts on African hydrological trends were produced using 496 

uncalibrated models (Davie et al., 2013; Sauer et al., 2021). 497 

 498 

Figure 3: Relative bias (percentages) computed between simulated AMF from LISFLOOD-499 

CMIP6 and HMFWA-CMIP6 hydrological models’ simulations, and observed AMF from the 500 

ADHI database, for the historical period (1950-2014). 501 

 502 

3.2 Magnitude and direction of changes in flood events 503 

To analyse changes in floods, we have compared two 30-year future periods (a near-term future 504 

[2031–2060] and a long-term future [2071–2100]) to a reference historical period (1985-2014). 505 

To achieve this, we have fitted the GEV distribution the AMF series of each model simulation 506 

using the GMLE method. Then, the 2- and 20-year flood quantiles are computed at each station 507 

for the three 30-year periods. Figure 4 shows the MIA on the direction of changes in the 2-year 508 

and 20-year floods for the near-term and long-term futures, from both LISFLOOD and HMF-509 

WA models simulations under SSP2.4-5 and SSP5.8-5 scenarios. Despite their differences in 510 

terms of hydrological processes representation (model structures) and input data, the two 511 

hydrological models generally projected consistent impacts of climate change on future floods 512 

across the West African region. Both hydrological models consistently project an increase 513 

(positive change) in floods in the near-term and long-term futures across West Africa (Figure 514 

4).  515 

In the near-term future (2031–2060), there is a high level of agreement in projecting positive 516 

changes in the 2-year flood event under both SSP2-4.5 and SSP5-8.5 scenarios. The 517 
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simulations of the LISFLOOD and HMF-WA models show strong agreement across the 518 

CMIP6 models. Under SSP2-4.5, the MIA values range from -0.2 to 1 for the LISFLOOD 519 

model (Figure 4a-1), and from -0.2 to 0.8 for the HMF-WA model (Figure 4b-1). This 520 

agreement increases for both hydrological models under SSP5-8.5, with MIA values falling 521 

between -0.2 and 1 for both LISFLOOD (Figure 4a-3) and HMF-WA models (Figure 4b-3). 522 

The consistent climate change impact projections suggest that more frequent flood events are 523 

expected to become increasingly common across the West African region. For the 20-year 524 

flood event, which is less frequent but more severe, MIA values range from -0.2 to 0.8 (-0.2 to 525 

1) and from 0 to 0.8 (0 to 1) under the SSP2-4.5 (SSP5-8.5) for the LISFLOOD (Figure 4a-2 526 

and Figure 4a-4) and HMF-WA (Figure 4b-2 and Figure 4b-4) models, respectively.  527 

 528 

In the long-term future (2071–2100), considering the 2-year flood, MIA values range from -529 

0.6 to 1 (-0.6 to 0.8) and from -0.6 to 0.6 (0.4 to 0.8) under the SSP2-4.5 (SSP5-8.5) for the 530 

LISFLOOD (Figure 4a-5 and Figure 4a-7) and HMF-WA (Figure 4b-5 and Figure 4b-7) 531 

models, respectively. For the 20-year flood, model agreement in projecting the positive changes 532 

in flood magnitude remains relatively high, with MIA values ranging from -0.4 to 0.6 (-0.4 to 533 

0.8) and from 0 to 0.6 (-0.2 to 0.8) under the SSP2-4.5 (SSP5-8.5) for the LISFLOOD (Figure 534 

4a-6 and Figure 4a-8) and HMF-WA (Figure 4b-6 and Figure 4b-8) models, respectively. It is 535 

also worth noting that negative changes are projected in the 2-year flood in the long-term future 536 

in a few sets of catchments located in the western part of the region (Figure 4a-5, 4a-7, 4b-5 537 

and 4b-7). This area is also projected to experience a decrease in annual rainfall when looking 538 

at the full CMIP6 ensemble (IPCC, 2021). However, the agreement between the CMIP6 models 539 

remains very weak, indicating a lower confidence in the robustness of these negative changes 540 

compared to the regional pattern. Overall, the agreement between the CMIP6 and the 541 

hydrological models is higher for the near-future than for the long-term future, reflecting 542 

increased uncertainty as the projection timeline extends. 543 

 544 

 545 
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 546 

Figure 4: Spatial distribution of the multi-model index of agreement (MIA) on the direction of 547 

changes in 2-year and 20-year flood events for the near-term (2031-2060) and long-term (2071-548 

2100) futures, compared to the historical reference period (1985-2014). This analysis combines 549 

simulations from: (a) LISFLOOD and (b) HMF-WA hydrological models, forced with five 550 

bias-corrected CMIP6 models (GFDL, IPSL, MPI, MRI, and UKESM), under the SSP2.4-5 551 

(a1 to a4 and b1 to b4) and SSP5.8-5 (a5 to a8 and b5 to b8) scenarios. Flood quantiles are 552 

estimated using the GEV distribution fitted with the GMLE method. Negative change (decrease 553 

in flood quantiles) is represented by shades of blue, and positive change (increase in flood 554 

quantiles) is represented by shades of red. 555 

 556 

Figure 5 summarises the projected climate impacts on floods in the near-term (2031-2060) and 557 

long-term (2071-2100) futures in West Africa across the different CMIP6 models (GFDL, 558 

IPSL, MPI, MRI, and UKESM). Both hydrological models' simulations consistently suggest 559 

strong changes in floods, with most median values falling above the zero-change baseline.  560 

Considering the CMIP6 models' projections individually in the near-future, under both 561 

SSP2-4.5 (Figure 5a) and SSP5-8.5 (Figure 5b) scenarios, the most pronounced changes are 562 

obtained for both hydrological models when forced with IPSL, MRI, and UKESM models. 563 

These near-term projections highlight the potential for more frequent extreme flood events, 564 

leading to increased flood risks and greater socioeconomic vulnerability in the West African 565 

region. In the long-term future, the distribution of flood trends is quite consistent between the 566 

two hydrological models, and the variability stems only from GCMs. For instance, under 567 

https://doi.org/10.5194/egusphere-2025-130
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

SSP2-4.5, the variability between the different CMIP6 models is very pronounced, with most 568 

projections showing relatively modest changes compared to the SSP5-8.5 scenario, where most 569 

of the GCM agree for a positive change in floods magnitudes. 570 

 571 

Figure 5: Synthesis of the projected changes in the 2-year and 20-year floods in West Africa 572 

from the LISFLOOD (black boxplots) and HMF-WA (grey boxplots) model simulations forced 573 

with the five CMIP6 GCMs (GFDL, IPSL, MPI, MRI, and UKESM), under both SSP2-4.5 574 

(top row) and SSP5-8.5 (bottom row) climate scenarios, for the near-term (2031-2060) and the 575 

long-term (2071-2100) futures. The black dotted line represents the zero-change baseline. 576 

 577 

To further assess the agreement between the two hydrological models, Figure 6 shows the 578 

scatter plots illustrating how projected changes (Δ Flood) in floods compares between 579 

LISFLOOD and HMF-WA model simulations. Overall, both models project positive change 580 

in floods in West Africa regardless of the climate scenario considered. Indeed, most data points 581 

fall above the zero-change baseline, indicating a global positive change in floods from both 582 

hydrological model simulations (Figure 6). To confirm the agreement between the two models, 583 

we have computed the Spearman coefficient (ρ) between the projected multi model mean 584 

changes in floods (Δ Flood) from the simulations of the LISFLOOD and HMF-WA models. 585 

Supplementary Table S1 gives the Spearman coefficient (ρ) values for the 2-year and the 20-586 

year floods, under the SSP2-4.5 and SSP5-8.5 scenarios. The correlation analysis shows that 587 

the agreement between the two models is particularly pronounced. under the SSP5-8.5 588 

scenario, suggesting a stronger influence of climatic changes under the high emissions 589 
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scenario. In the near-term future, the Spearman correlation coefficient is 0.75 (0.63) for the 2-590 

year (20-year) floods. In the long-term future, the correlation remains high, with 0.71 (0.69) 591 

for the 2-year (20-year) floods, suggesting that the models continue to show strong agreement, 592 

even for long-term projections. These results indicate a relatively high level of consistency 593 

between the two hydrological models for projecting future flood changes, despite the 594 

systematic biases in HMF-WA model over the reference historical period. Thus, using both 595 

models, the climate forcing has more importance than the hydrological representation itself. 596 

 597 

Figure 6: Comparison of projected multi model mean changes in flood (Δ Flood) between 598 

LISFLOOD and HMF-WA hydrological models, under SSP2.4-5 and SSP5.8-5 scenarios, for 599 

the near-term (2031-2060) and the long-term futures (2071-2100), compared to the historical 600 

reference period (1985-2014). The gray dashed lines represent the zero-change baseline and 601 

the red diagonal line represents the theoretical 1:1 line where projected changes from both 602 

hydrological models would be identical. 603 

The relative magnitude of change in floods was also analysed by computing the mean relative 604 

change. (i.e., ratio of the difference between the flood quantiles of the future periods and the 605 

reference historical period) across CMIP6 models for each hydrological model. The spatial 606 

distribution of the magnitude of changes, as simulated with the LISFLOOD and HMF-WA 607 

hydrological models under both SSP2-4.5 and SSP5-8.5, is shown in Figure 7a and Figure 7b, 608 

respectively. Supplementary Table S2 summarises the overall mean relative change in floods 609 

across the region from both hydrological model’s simulations. The two hydrological models 610 

consistently project an increase in future floods across the West African region, with flood 611 

magnitudes at most sites exceeding 50 %, particularly under SSP5-8.5 (Figure 7a-3, 7a-4, 7a-612 
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7, 7a-8, 7b-3, 7b-4, 7b-7, and 7b-8). These results are consistent with previous studies that 613 

argued for the ongoing rising trend in extreme streamflow across the West African catchments 614 

(Nka et al., 2015; Aich et al., 2016; Wilcox et al., 2018). Furthermore, the findings from the 615 

studies of Almazroui et al. (2020), Dosio et al. (2021) and Dotse et al. (2023) have shown that 616 

CMIP6 models contain a robust signal of the intensification of the rainfall regime in West 617 

Africa. The increasing trend in floods across the region may be partly explained by the trends 618 

in extreme precipitations, as their variability influences the hydrological dynamics of the region 619 

(Panthou et al., 2013; Wilcox et al., 2018; Elagib et al., 2021). 620 

 621 

Figure 7: Mean relative changes in the 2-year and 20-year Floods in West Africa for Near-term 622 

(2031-2060) and Long-term (2071-2100) futures, based on simulations from the LISFLOOD 623 

(a-1 to a-8) and HMF-WA (b-1 to b-8) hydrological models, under SSP2-4.5 and SSP5-8.5 624 

scenarios. 625 

 626 

3.3 Onset of changes in AMF series 627 

3.3.1 Observed trends in GEV Parameters 628 
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As the climate and environment change (Lee et al., 2023), it is essential to examine how these 629 

changes affect the parameters of GEV distributions. Figure 8 shows the spatial distribution of 630 

trends detected by the Mann-Kendall test on GEV parameters estimated on multi model mean 631 

streamflow over 30-year moving windows from 1950 to 2100. Both hydrological models 632 

project upward trends in the location and scale parameters across the West African region with 633 

a strong agreement between the two hydrological models (see Figure 8).  All local trends are 634 

field significant at 0.05 level according to the FDR procedure. The simulated upward trends in 635 

both parameters, observed across various watersheds and emission scenarios, emphasize the 636 

importance of accounting for temporal variability in GEV parameters to reliably model future 637 

flood risks. An increase in the location parameter suggests more frequent and severe floods, 638 

while an upward trend in the scale parameter indicates greater variability in flood magnitudes. 639 

In contrast, the "mixed" trends observed in the shape parameter, with no distinct spatial 640 

patterns, support the decision to model it as constant over time, as there is no strong regional 641 

evidence of consistent temporal changes in its behaviour across the region. 642 

 643 

Figure 8: Direction of significant trends detected using the Mann-Kendall trend test (at the 0.05 644 

significance level) for GEV parameters: location (top row), scale (middle row), and shape 645 

(bottom row). The GEV parameters are estimated based on multi-model mean streamflow over 646 

30-year moving windows. Panels (a-1) and (b-1) display the results for the LISFLOOD model 647 

under SSP2-4.5 and SSP5-8.5, respectively, while panels (a-2) and (b-2) show the results for 648 

the HMF-WA model under SSP2-4.5 and SSP5-8.5, respectively. The red upward triangles 649 

indicate significant upward trends, and the blue downward triangles indicate significant 650 

downward trends, both at the 0.05 significance level. Gray rectangles represent cases where no 651 

significant trends are detected. The pie charts summarize the proportion of stations showing 652 

significant positive trends (red), significant negative trends (blue), and non-significant trends 653 

(gray).  654 
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3.3.2 Selection of the best-suited GEV trend model 655 

Using non-stationary GEV models, we analyse temporal shifts in floods by fitting 656 

time-dependent GEV parameters to the AMF series from both hydrological model’s 657 

simulations. To detect the onset of significant trends in flood events, we have allowed any 658 

starting year (t0) of a possible trend in the GEV location μ(t) and scale σ(t) parameter between 659 

1970 and 2070. To select the best non-stationary GEV model for each site, we have compared 660 

the goodness-of-fit of three different time-varying GEV models. The models evaluated are: (1) 661 

a linear trend for both the μ(t) and σ(t) parameters without a breakpoint (GEV1); (2) a linear 662 

trend for μ(t) and σ(t) starting after a specific breakpoint (GEV2); and (3) linear trends for μ(t) 663 

and σ(t) both before and after a breakpoint (GEV3). Figure 9 shows the GEV trend model 664 

selected at each station according to the AIC criterion and the deviance test for the 665 

LISFLOOD-CMIP6 and HMFWA-CMIP6 simulations under both SSP2-4.5 and SSP-8.5 666 

scenarios. Although both hydrological models project an increase in floods (Figure 5), they 667 

simulate slightly different trend patterns across the study area. Considering the LISFLOOD 668 

model (Figure 9a), the GEV3 (double linear trend) is constantly best suited at most stations, 669 

with a high agreement between the CMIP6 models. For instance, under the SSP2-4.5 scenario, 670 

the GEV3 distribution outperforms other models at 66 %, 79 %, 76 %, when the LISFLOOD 671 

model is driven by the GFDL (Figure 9a-1), IPSL (Figure 9a-2) and MPI (Figure 9a-3) climate 672 

models, respectively. A similar trend is observed under the SSP5-8.5 where the GEV3 is best 673 

suited when the LISFLOOD is forced with the MPI (62 %), MRI (77 %), IPSL (78 %), and 674 

UKESM (66 %) models (Figure 9a-7, 9a-8, 9a-9 and 9a-10). The HMF-WA simulations show 675 

a mixed spatial pattern between the GEV2 and GEV3 models (Figure 9b). For both 676 

hydrological models, the single linear trend model (GEV1) is selected at very few stations (less 677 

than 5 %). Meanwhile, the stationary behaviour observed at few sites under SSP2-4.5 suggests 678 

that certain river basins may experience little to no change in their hydrological extremes under 679 

moderate emissions pathways. 680 

 681 
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 682 

Figure 9: Best-fitting GEV trend models at each station, determined using the AIC criterion 683 

and the deviance test, based on simulations from (a) LISFLOOD-CMIP6 (top rows) and (b) 684 

HMF-WA-CMIP6 (bottom rows) simulations under SSP2-4.5 and SSP5-8.5 scenarios. The 685 

green points represent stations best modelled by GEV1, which assumes a linear trend over the 686 

entire record. The orange points indicate stations best modelled by GEV2, which assumes 687 

stationarity before a breakpoint followed by a linear trend after the breakpoint. The blue points 688 

denote stations best modelled by GEV3, which assumes a double linear trend. The grey points 689 

represent stations where all non-stationary GEV models are rejected based on the deviance test. 690 

 691 

3.3.3 Starting years of trends in flood hazards 692 

The spatial distribution of the starting years of significant flood trends detected with the GEV 693 

trend models are shown in Figure 10. The projections from the two hydrological models are 694 

spatially coherent, and the temporal variability on the start of flood trends in the region seems 695 

to depend on climate models. Overall, under both SSP2-4.5 and SSP5-8.5, the majority of 696 

significant trends are identified almost on the whole record, from the 1980s onward, in 697 

agreement with long-term trends observed in this region (Tramblay et al., 2020), particularly 698 

with the GFDL, IPSL, MPI, and UKESM models. This consistent pattern of early starting years 699 

suggests that West African communities are already facing high flood risks, and are likely to 700 

experience exacerbated conditions in the near-future. 701 
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 702 

Figure 10: Spatial distribution of the starting years of significant flood trends projected by (a) 703 

LISFLOOD and (b) HMF-WA hydrological models, forced with CMIP6 models (GFDL, IPSL, 704 

MPI, MRI, and UKESM), under SSP2-4.5 and SSP5-8.5 scenarios. The color gradient indicates 705 

the years of significant breakpoints in flood trends, ranging from 1970 (purple) to 2070 706 

(yellow). Circular markers represent sites where trends began at the start of the time series 707 

(before 1970). Triangular markers indicate sites where trends emerged after 1970 (the linear 708 

trend GEV2 case). 709 

 710 

 711 

Conclusions 712 

This study has assessed the regional-scale hydrological impacts of climate change in West 713 

Africa, specifically focusing on floods, from two large-scale hydrological models (HMF-WA 714 

and LISFLOOD) driven by five bias-corrected CMIP6 climate models under SSP2-4.5 and 715 

SSP5-8.5 scenarios. A multi-model index of agreement (MIA) was used to assess the 716 

robustness of the projections from the hydrological model. The statistical evaluation of the two 717 

hydrological models, performed using the two-sample Anderson-Darling test between the 718 

annual maximum flows observed from the ADHI database and those simulated by the 719 

hydrological models, revealed that the LISFLOOD model outperforms the HMF-WA model in 720 

simulating extreme flows in West Africa. The GEV distribution was used to analyse trends and 721 
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detect change points by fitting and comparing multiple GEV models to the AMF series, 722 

covering both the historical and future periods. Two 30-year future periods (a near-term future 723 

[2031–2060] and a long-term future [2071–2100]) were compared to a reference historical 724 

period (1985-2014).  Despite differences in hydrological processes representation, model 725 

architectures and calibration, the two hydrological models generally projected consistent 726 

impacts of climate change on future floods across the West African region with a relatively 727 

high level of consistency. This agreement between the two hydrological models suggests that 728 

the climate forcing has more importance than the hydrological representation itself, and un-729 

calibrated models can provide reliable scenarios in this region. An increase in floods (2-year 730 

and 20-year) is observed at more than 94 % of the stations, with some locations experiencing 731 

flood magnitudes exceeding 45 %. The results of the comparison between GEV trend models 732 

show that the double-linear trend GEV model with both location and scale parameters 733 

expressed as time-dependent is the best suited for most stations. The analysis of the starting 734 

years of significant flood trends revealed that most shifts in extreme flood patterns occurred 735 

early in the time series, as early as the 1970s in several basins. 736 

 737 

The use of the GCM outputs to drive hydrological models introduces uncertainties in 738 

hydrological simulations. Indeed, the outputs of General Circulation Models (GCMs) are 739 

characterised by uncertainties, arising from several factors such as the simplified representation 740 

of complex Earth system interactions and atmospheric processes, the uncertain socioeconomic 741 

pathways, the coarse spatial resolution of these models, along with challenges related to model 742 

parameterization (Hawkins & Sutton, 2009). In addition, the performance of large-scale 743 

hydrological models is influenced by the driving inputs, the representation of the hydrological 744 

process, and the model parameterization (Andersson et al., 2015). Current models also have 745 

difficulties in reproducing hydrological processes in arid regions (Heinicke et al., 2024). It 746 

would therefore be interesting to explore in more details the main sources of uncertainties in 747 

hydrological projections in West Africa to improve the realism of such modelling approaches 748 

in the future. 749 

 750 
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The codes used in this study are available upon request. The implementation of these codes 752 

primarily relies on the R extRemes library (https://www.jstatsoft.org/article/view/v072i08). 753 
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