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A B S T R A C T

Soil Quality or Soil Health are terms adopted by the scientific community as metaphors for the effects of differing 
land management practices on the properties and functions of soil. Because they are metaphors, consistent 
quantitative definitions are lacking. We present here an approach based on expert elicitation in the field of soil 
function and management that offers a universal way of putting numbers to the metaphor. Like humans, soils 
differ and so do the ways in which they are understood to become unhealthy. Long-term experiments such as the 
Broadbalk Wheat experiment at Rothamsted provide unparalled sources of data with which to investigate the 
state and changes of soil quality and health that have developed from known management over timescales of one 
hundred years or more. Similarly, large-scale datasets such as the National Soils Inventory and Countryside 
Survey provide rich resources to explore the geographical variability of soil quality and health in different places 
against a background of different observed management practices. We structure experts’ views of the extent to 
which soil delivers the functions expected of it within Bayesian Belief Networks anchored by measurable 
properties of soil. With these networks, we infer the likely state of soil (i) on Broadbalk, (ii) at locations 
throughout England & Wales as well as inferring (iii) the most straightforward ways of improving soil quality and 
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health at the locations in (ii). Our methodology has general applicability and could be deployed elsewhere or in 
other disciplines.

1. Introduction

Soil Quality and Soil Health (SQH) are concepts (Janzen et al., 2021, 
Powlson, 2020) that have found considerable traction amongst soil 
scientists, practitioners and policy-makers alike, but can mean little 
without context. Their usefulness depends on quantitative deployment. 
There are many other terms and metaphors that are in use in scientific 
discourse that defy neat quantification: human health, for example. The 
use and function of these metaphors has proven incredibly effective 
within scientific disciplines, and when communicating with policy 
makers and the general public. Our challenge is to ground the use of 
such metaphors in the underlying scientific understanding upon which 
they are based so that their meaning is unambiguous. SQH is hard to 
quantify in a consistent, objective fashion (Bünemann et al., 2018). This 
has its origin in the complexity and multiplicity of the functions that soil 
is expected to fulfil and the fact that soil harbours a great diversity of 
organisms (e.g. Bardgett and van der Putten, 2014). For this reason, SQH 
(and other metaphorical measures) is often expressed as an index which 
is used to suggest that this soil or that practice is qualitatively better than 
another (Karlen et al., 1997. Karlen and Stott, 1994). Such one dimen-
sionality engenders spurious certainty, whereas multi-dimensionality 
seems comprehensive but can be vague. Hierarchical structures that 
lead to overall scores (Ros et al., 2022) and demonstrate how properties 
and functions combine to give rise to indices and thence SQH can go a 
long way to mitigating this difficulty.

It would undoubtedly be useful if the properties of soil that enable it 
to deliver substantial crop yields, for example, were the same as those 
that enable it to perform other important functions such as buffer water 
flow, resist erosion (e.g. Rickson et al., 2012), regulate greenhouse gases 
or provide habitat for biodiversity (Doran and Zeiss, 2000. Kleijn et al., 
2019), because development of a simple scored value for SQH would 
then be straightforward. However, the many characteristics of soil affect 
its functions to different degrees or in different ways (e.g. Wade et al., 
2022). Further, SQH has become a catch-all for the diverse aspirations of 
different stakeholders who may interpret a score or value of an index 
(Rutgers et al., 2012; Karlen and Stott, 1994) differently from one 
another. Given the need to answer the questions ‘How much better is this 
soil than another?’ or ‘What should be done to improve this soil?’, 
several intrinsic properties of soil are sometimes used to articulate SQH 
in a multi-dimensional index. An example is the well-known radar plot 
(e.g. Kleijn et al., 2019 or Rutgers et al., 2012) that compares several 
properties together in one diagram (see for an example and fuller 
explanation Fig E1 in the extended data section). However, such figures 
fail to capture interactions between the components that determine the 
dynamic nature of SQH (Rickson et al., 2012. Wagenet and Hutson, 
1997), and joining unrelated data points can be misleading, confusing, 
and presumptuous. Too often, the components are chosen in an ad hoc 
fashion (usually, they are those that are available), without due 
consideration of their functional importance or relevance (see Baveye, 
2020, for a critique and Harris et al., 2022 for a systematics approach). 
Formal visual assessment (VA) of soil according to some prescribed 
recipe overcomes the limitations of single or multiple unconnected 
indices (Schipper and Sparling, 2000. Guimarães et al., 2011) but is not 
fully objective and depends heavily on the expertise of the individual 
doing the assessing. Despite this, VA has the merit that it provides a 
number that is intended to represent SQH explicitly. As has been seen, 
other methods often supply a hotch-potch of data, indices or properties 
that are probably connected to SQH in some manner but without 
consistent recognition of the function a soil is performing. Logical sieves 
(Ritz, et al., 2009, Zwetsloot et al., 2022) have been used to great effect 
in the soil health arena, but come into their own when ranking or 

selecting which of many indicators to use before going on to articulate 
SQH. Benchmarking (Feeney et al., 2021) and cluster analysis (Seaton 
et al., 2021) have helpfully been used to establish thresholds of SQH and 
implicit interactions between determinants respectively. Machine 
learning techniques (El Behairy et al., 2024 or Wilhelm et al., 2022) 
have also been used to infer soil health, but such methods depend on 
large amounts of data. Training appears to be on prior SQH values ob-
tained from other index-based assessments, although latent variable 
analysis (Wade et al., 2022) is a step forward and similar to what we 
propose below.

Expert-systems are computer programs that rely on two components: 
a knowledge base and an inference engine. A knowledge base is an 
organized collection of facts about the system’s domain. An inference 
engine interprets and evaluates the facts in the knowledge base in order 
to provide information about e.g. SQH. Typically, expert systems 
combine expert knowledge and data into a system of very many rules 
and provide answers as probabilistic outcomes. Thus, expert systems 
overcome many of the shortcomings of the index-based or visual 
assessment approaches to SQH. However, they tend to be rule-based, 
somewhat inflexible as a result and it is not always straightforward to 
update or add to them.

Bayesian methods are among the most promising means to both 
structure and interpret a knowledge base (Bui et al., 1999) because of 
the sophistication of their inference and because of the natural manner 
in which expert opinion and data can be combined. To reflect this, they 
are sometimes known as Bayesian Belief Networks (or Bayes Nets, BN for 
short). They are graph-based, directional networks that can incorporate 
probability distributions of the component variables. They have had 
diverse applications in the biological and social sciences (Aalders, 2008. 
Corstanje et al., 2015. Levontin et al., 2011). Their directedness pro-
ceeds from multiple pieces of information or properties, such as soil 
organic matter content or texture, to a conclusion such as the extent of 
delivery of a function. BNs can be constructed either by data-mining or 
from knowledge-based approaches (Corner et al., 2002) or both. The 
second and third options mean that it is possible to apply BNs to study 
areas where there is a shortage of data by eliciting the views of experts 
(Taalab et al., 2015). Crucially the opinions of more than one expert can 
be incorporated alongside objective data thus overcoming the objections 
to visual assessment or the sometimes ad hoc nature of the data pre-
sented in, say, radar plots. BNs model the domain of interest (i.e. the 
soil) under considerations of uncertainty through probabilistic 
reasoning, whilst expert systems model what an expert would reason 
assuming a known, fully certain domain or support. A BN infers impacts 
on a soil property (a child node) in relation to multiple parent nodes thus 
explicitly taking account of interactions. Although BNs are not explicitly 
dynamic in the sense of a series of differential equations or a computer 
simulation model, the experts can be asked to keep in mind the changing 
nature of the processes that they are considering and they can also be 
mindful of the various purposes to which information on, for example, 
SQH will be put. A BN, therefore, gives us not so much an index for SQH 
as a quantified and interconnected network of all that experts think is 
vital.

Given the expertise-led focus on soil provided by BNs and the explicit 
way in which they define SQH and handle uncertainty and likelihood, 
we think BNs provide a more reliable, informative and explanatory 
means to articulate SQH and its nature than other methods currently in 
use. To date much published work with BNs has tended to trawl the 
literature for data to construct the BNs, only later linking the results 
using Bayesian methods coupled to expert opinion. Our approach is to 
quantify expert views alongside data from the start in order to capture 
the major interactions between variables and networks of variables that 
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the experts believe to be important. In this way our nets act as a definition 
of what SQH is, and in principle the method should extend widely to 
other scientific metaphors.

Our objective therefore is to demonstrate that a BN integrates the 
essential components and interactions between components of SQH in a 
meaningful way that naturally links soil properties to their functions and 
thus how the whole integrates to quality and health. Importantly, we 
structure experts’ views on exactly what SQH is via an inferential chain 
of reasoning through soil functions to measurable properties - something 
that index and other methods tend not to do.

Notwithstanding the need for universality, a single network for all 
soils that is relevant to all stakeholders would be very difficult to ach-
ieve. Context (which implies function), such as agriculture or nature is 
key. Therefore, we addressed three broad land-uses and elicited a BN for 
each: (i) arable, (ii) livestock agriculture or (iii) semi-natural land-use. 
Almost all land in England and Wales is managed to some degree, hence 
semi-natural. Further subdivisions are possible, but part of the appeal to 
different stakeholders is an index’s multi-functionality, so we aimed to 
retain the ability of each broad land-use to express the multi-faceted 
nature of soil function – e.g., production as well as environmental 
quality.

We describe first in detail how we built the nets and how we eval-
uated their sensitivity to variations in measurable variables. We 
demonstrate the use of a BN against (i) long-term field data and (ii) 
national surveys of soil properties and function and then go on to infer 
the likely health or otherwise of soils regionally in England and Wales, 
bearing in mind what these soils are expected to deliver, before inferring 
which properties, if changed, would most readily bring about the 
greatest improvement in SQH. Approaches based on expert opinion to 
articulate soil health have been criticised on the basis that the structure 
and content of these expert systems are sometimes opaque (Wade et al., 
2022). We seek to rectify these issues by (i) depicting both the structure 
and weight of connections within our nets fully and (ii) making explicit 
the elicited responses of the experts.

The Long-Term Experiments at Rothamsted and elsewhere have 
proven their worth again and again in the years since they began (e.g. 
Johnston and Poulton, 2018). Bearing in mind the different contexts of 
soils and their stakeholders, we look in detail at the quality and health of 
the soil in one of Rothamsted’s long-term arable experiments: Broadbalk 
field, parts of which have grown wheat almost every year since 1843 
(ERA). Data conservation and monitoring are also long-term activities 
from which environmental science benefits and in contrast to the field 
data from Rothamsted and in order to show the power of our method-
ology, we apply the nets to all three land-uses using data from Cranfield 
University’s National Soils Inventory (NSRI, 2001) on a gridded network 
of sampling points throughout the whole of England & Wales and sup-
plemented with observations from the UKCEH Countryside Survey 
(Carey et al., 2008).

2. Methods

2.1. Framing of a SQH BN

To develop meaningful models of SQH through an expert driven BN 
approach, we imposed a hierarchical structure to the networks. Specif-
ically, three different types of nodes were considered: 

1. The SQH node.
2. Functional and Process nodes
3. Measurable or Property nodes

SQH is to be defined in terms of the functional processes which a soil 
delivers, i.e. what is needed to ensure a good SQH, or what functional 
changes result in a bad SQH. These functional or process nodes are then 
connected through inferential chains to measurable nodes that can be 
directly connected to data. Thus, SQH is linked (via inference) to directly 

measurable quantities.

2.2. Expert selection

A schematic overview of the entire BN development, parameter-
isation and analysis process is given in Fig. 1. This starts with the careful 
selection of appropriate experts. We identified experts based on their 
knowledge and experience while seeking to cover different disciplines 
and land-management sectors. We invited 18 experts to participate in 
the elicitation process, mindful of a balance between genders and be-
tween experience and youthful enthusiasm. The experts invited ranged 
from soil scientists and soil surveyors to policy makers, farm advisers 
and managers. There were 3 agronomists, 2 biologists and 1 ecologist, 2 
physicists, 2 chemists, 2 policy-makers both with interests in semi- 
natural, and 3 representatives of different sectors of the agricultural 
community. Five to eight experts is considered the optimal number 
(Clemen and Winkler, 1985) of practitioners for the elicitation process. 
In all, 16 attended to represent three sectorally-based SQH BNs for: 
semi-natural (5 persons), livestock management (6 persons) and arable 
land-uses (5 persons). A slight imbalance arises because not all invitees 
were able to attend but more than half of those who did have interests 
that span more than a single discipline. Participants attended a two-day 
workshop where day 1 was focussed on training and day 2 on developing 
the three land-use specific BNs.

2.3. Elicitation protocol

Developing the BNs comprised several steps: 

(i) Identifying all relevant soil properties and processes,
(ii) reducing these to a manageable subset of the most important,

(iii) agreeing the relationships between this subset of properties and 
the ways that their interactions allow us to infer SQH,

(iv) quantifying these relationships using expert opinion

The protocol below evolved from a series of practice workshops that 
we held to hone our procedure.

Roughly one month prior to the two-day workshop we held 
15–30 minute one-to-one interviews via video link with each of the in-
vitees. These video meetings served to introduce the ideas behind the 
project and to focus attention on important aspects of SQH. We asked 
each expert two questions: (i) How might you build up the quality or health 
of soil? And (ii) If you had a high-quality soil, what might you do to degrade 
it? By means of shared screens, we captured the processes by which 
suggested actions might improve or degrade SQH in the expert’s mind. 
These networks were displayed, anonymously, at the start of the 
workshop for experts to peruse and compare. Following all preliminary 
interviews, we collated information from across the networks by means 
of word clouds and bar charts showing the frequency of use of particular 
terms. From these we identified commonalities and shared views and 
were able to then seek out datasets and literature for experts to refer to if 
they wished during the workshop. Displayed around the workspace, 
these preliminary views formed a conceptual (naïve) model that is the 
basis for refinement in the process of developing a BN.

On day one of the workshop, experts were given an introductory 
session on BNs and the value of inference. Experts listed and prioritised 
the most important functions and processes in soils that are needed to 
infer SQH generally. Specific land-uses were introduced on day two. The 
prioritisation step was needed to gain a consensus on a net of manage-
able size and because one shortcoming in the BN approach is that the 
inferential reasoning required is quite hard for humans to grasp. 
Training the experts on a common network for all soil as a preliminary 
exercise helped to prevent divergence between the eventual, specialised 
nets subsequently.

Participants were asked “What functions or processes define whether 
a soil has good or bad SQH?”; these ideas were recorded on post-its, 
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considered by the group and refined to a minimum set.
Candidate parents that had a similar definition were then amal-

gamated into a single node. Groups were also encouraged to form in-
termediate nodes to avoid too many parents leading into SQH directly. 
For example, under the semi-natural network (Fig. 2c), the node “Water 
Regulation” was formed as an intermediary node from both “Water 
flow” and “Water quality”.

A group consensus on the BN structure was achieved in most cases. 
For more contentious nodes, facilitators encouraged participants to keep 
the node present in the network, as the step of defining the conditional 
probability tables allowed individuals to essentially ignore its influence 
if they thought it was not important.

To link function and process nodes to measurable property nodes, 
participants were asked “What pieces of information do we need to be 
able to infer the identified functions delivered by the soil?”. This then 
defined the parents of the nodes identified in step (i).

Occasionally, experts wished to define an Action node, for example, 
Tillage. In such cases, facilitators worked to identify what functions or 
properties such an action would affect: a heavily tilled soil will be of 
poor quality because it contains fewer earthworms or a less varied 
structure. In this way, abundance of macro-organisms or structure 
became the property node.

Once a preliminary consensus was reached on the structure and 
constituents of the net, we asked experts to think carefully what they 
meant by each node, and agree quantitative divisions into as few cate-
gories as possible whilst maintaining a reasonable resolution, ideally 2 
or 3 reasonable categories, for example Light, Medium or Heavy, for a 
soil texture node corresponding to a combination of sand, silt or clay 
(Figure S1.1). Accordingly, we encouraged experts to introduce inter-
mediate nodes rather than set up networks consisting of child nodes that 
possess a large number of parents. The reason for this parsimony is that 
the conditional probability table, that is the crux of the network and 
which is needed to elicit the nets, has a total number of categories of: 
NC

∑P
i=1 NP(i) , where NC is the number of child categories, P the 

number of parent nodes and NP(i) is the number of categories in parent i. 
Thus, 3 parents each having 2 categories and feeding into a child with 3 
categories implies 18 probabilities. The interrelationship of many more 
connections and categories than this is difficult to manage conceptually. 

Our app ACE (Hassall et al., 2019), was designed to make completing 
these conditional probability tables as straightforward as possible and 
help avoid unlikely or impossible combinations. Experts were encour-
aged to think how these functions and processes link together, to infer 
SQH. In keeping with the need for nets to be of a manageable size, the 
experts developed generic nodes whose values were context dependent: 
appropriate biodiversity, adequate nutrient levels and so on (See SI- data 
sources). On day one the target was a general soil, but experts worked 
together in the groupings that we expected to keep together for day two. 
This introductory exercise took most of the first day, after which we gave 
workshop experts the opportunity to reflect, discuss and feed back their 
experiences of the elicitation process and procedure over dinner in 
advance of day two during which the three groups repeated the exercise 
but concentrated on developing nets within their core expertise 
restricted to one of three specific land-uses: (i) arable, (ii) livestock and 
(iii) semi-natural. With the structure in place, we set about eliciting the 
Conditional Probability Tables (CPT) using our bespoke ACE software 
(Hassall et al., 2019). A laptop, networked to the app, was provided to 
each expert, so that their individual choices could be captured 
throughout the elicitation process.

The CPTs were sense checked and because voice recorders were used 
to capture discussion it was possible to check the intentions of experts 
for certain issues. When constructing the nets, we queried odd-seeming 
views with experts by video link following the workshop using open 
questions so as to not to bias responses.

We held a video conference some weeks later to present the nets to all 
participants and ask them for comments on one another’s nets and 
confirm that they were content with their own. As a result, we changed 
the name of the node that represented soil organic matter to SOM in all 
three cases and converted this SOM node into a data node (which pre-
viously was not the case) in the arable net. At this stage, too, we reduced 
(with the experts permission and help) the number of categories in the 
SQH node in the Livestock net from five to two to match the arable and 
semi-natural nets.

The nature of each node, the states which each can take are given in  
Tables 1.1a & b, Tables 2.1 a & b, Tables 3.1 a & b; the means by which 
we populated the data nodes is described briefly below (2.2) and fully in 
Supplementary Information – data sources, processing and mapping. 

Fig. 1. Schematic representation of the elicitation, development and deployment of the Bayesian Nets. See 2 for full details.
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These BNs elicited in this way became the networks displayed in Fig. 2.
In the literature there are two approaches to combining views from 

multiple experts. Opinions can be combined either (i) through allowing 
a group of experts to reach a consensus by repeated discussion and 
revision or (ii) through mathematical aggregation. There is evidence to 
suggest that (i) may induce a dependence between responses (Hanea 
et al., 2017) whilst Taalab et al. (2015) recommend that a model go 
through several iterations until experts agree the structure. We adopted 
a hybrid approach in which the structure of the net, including nodes and 
categories were agreed in consensus but the experts populated the 
conditional probability tables (CPT) independently of one another. In 
this way, we obtained a consensus structure representing features 
important to inferring SQH from a variety of different disciplines and 
stakeholders, whilst maintaining the individual’s perspective on the 

importance of each feature.
For specific analytics (below) the individual CPTs were averaged 

(Sections 2.4 and 2.5). Nets and CPTs were incorporated into BNs using 
the Netica package (Norsys, 2016, Almond, 2022).

The methodology is updateable: views from other experts can be 
incorporated once elicited. The nets reflect current expert opinion. If 
other pressures become relevant, these can be added.

2.4. Network analytics

One of the merits of BNs compared with other approaches is that 
interactions and strength of interactions are made explicit. Specifically, 
the belief of a node is defined to be the posterior probability conditional 
on the status of the network. Within our derived BNs SQH is a two-state 
node, thus, this posterior probability (or belief) of SQH can be fully 

Table 1.1a 
Data nodes (coloured) in the Arable Net (Fig. 2a).

Node specified by 
experts

Source of data Thresholds or 
Categories

Texture NSI: CLAY, SILT, VSAND, 
MSAND, CSAND

{Heavy, Medium, Light}

pH NSI: PH {Extreme, 5.5− 7.5}
SOM NSI: CARBON {< 2 %, 2− 4 %, > 4 %}
Nutrients NSI: K_NITRATE, P_OLSEN {Inadequate, Adequate}
Contamination NSI, various. Thresholds: 

Charlton et al., 2016.
{No, Yes} mg kg− 1

Plough pan Bradley (2002) {Absent, Present}
Aggregate Stability Defra 2004 {Unstable, Stable}
Excess Nutrients NVZ maps {Absent, Present}
Beneficial Biology CS: Emmett et al., 2016a {Low, High}
Pests & Pathogens LandCover ® plus: Crops {Below Threshold, Above 

Threshold}
Ecological Diversity CS: Bunce et al. (2014) {Low, High}

Table 1.1b 
Intermediate nodes (grey) in the Arable net (Fig. 2a).

Node specified by 
experts

Parents Thresholds or Categories

WHC Water 
Holding Capacity

Texture {Low, High}

Agricultural 
Biology

Pests & Pathogens, Beneficial 
Biology

{Unsupportive, 
Supportive}

Chemistry Nutrients, Contamination, pH {Bad, Good}
Physical Condition Aggregate Stability, Plough 

Pan, Storage
{Bad, Good}

Productivity 
Consistency

Agricultural Biology, 
Chemistry & Physical 
Condition

{Below Average, Average, 
Above Average}

Regulation Excess Nutrients, Physical 
Condition, Storage

{Bad, Good}

Storage SOM, WHC {Low, High}

Table 2.1 
Data nodes (coloured) in the Livestock Net (Fig. 2b).

Node specified by 
experts

Source of data Thresholds or Categories

Compaction Estimated risk of poaching or 
impeded drainage

{No, Yes}

SOM NSI: SOM= 1.72 *Carbon {Red, Amber, Green}
Texture NSI: CLAY {Light, Medium, Heavy}
Soil Depth NSI + Soil series: DROCK {< 40, > 40} cm
Slope NSI: SLOPE {< 2◦ , 2◦ - 10◦, > 10◦}
Soil P NSI: P_OLSEN {< 15, 15− 45, > 45} mg/l.
Applied N BSFP 2019 {< 100, 100− 200, > 200} 

kg/ha
pH NSI: pH {0− 5, 5− 7, 7− 14} Experts 

{0− 6,6− 7,7− 14} AHDB
Micronutrients NSI: CA_ACID and MG_ACID {Insufficient, Sufficient}

Table 2.1b 
Intermediate nodes (grey) in the Livestock net (Fig. 2b).

Node specified 
by experts

Parents Thresholds or Categories

Air Ammonia, GHG Balance {Positive Outcome, Neutral 
Outcome, Negative Outcome}

Ammonia pH, Nitrogen Surplus {Low, High}
Animal Health Forage Nutritional 

Quality, Risk of Excess 
Water

{Good, Bad}

Environment Air, Water {Positive Outcome, Neutral 
Outcome, Negative Outcome}

Erosion Risk Slope, Soil Structure {Low, High}
Forage 

Nutritional 
Quality

Micronutrients, Sward 
Diversity

{Meets Requirements, Does not 
Meet Requirements}

Forage Yield pH, Soil Structure {Close to Potential, Below 
Potential, Well Below Potential}

GHG Balance Compaction, Nitrogen 
Surplus

{Sequestration, Neutral, 
Emitting}

Nitrogen Surplus Applied N {< 50,50− 75,> 75}
Productivity Animal Health, Forage 

Yield
{Meets Expectation, Below 
Expectation, Well Below 
Expectation}

P Surplus Soil P Flag, Soil Structure {Low below 15, Medium 15− 45, 
High Over 45}

Risk of Excess 
Water

Compaction, WHC {Low Risk, High Risk}

Soil Structure SOM, Texture {Good, Bad, Really Bad}
Sward Diversity Applied N, Soil P Flag {Grass Forbes adv spp5, 

Grass Forbes 25, 
Grass only}

Water Risk of Excess Water, 
Water Quality

{Good, Bad}

Water Holding 
Capacity

Soil Depth, Soil Structure 

Water Quality Erosion Risk, P Surplus {Meets WFD1, Does not meet 
WFD}

1Water Framework Directive

Table 3.1a 
Data nodes (coloured) in the Semi Natural Net (Fig. 2c).

Node specified by 
experts

Source of data Thresholds or Categories

Soil Nitrate CS: Emmett et al., 2016b {Low, High}
ΔpH1 Inferred from Pearsall 

(1952) & current values 
(NSI: PH)

{< 0.5 units below expected, 
expected, > 0.5 units 
expected}

Metals 
Contamination

NSI: acid extracted Cd, Cr, 
Cu, Ni, Pb, Zn

{No exceedance, Moderate 
exceedance, High 
exceedance}

Bare Soil Observation {< 10 % bare, > 10 % bare}
Soil Moisture NATMAP {Drained, Not drained}

1ΔpH is the difference between the currently observed and expected pH 
assuming no acidic deposition during the second half of the 20th Century.
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characterised by the probability that SQH is “Good” conditional on the 
network N having status n, 

Belief(SQHN ) = Prob(SQH = GoodN = n). (1) 

We analysed the derived BNs and what they meant in four different 
ways, we: i) investigated the local structures within the full BN, ii) 
assessed the importance of the different nodes in determining SQH, iii) 
assessed the relative importance of the observable data nodes in deter-
mining SQH and iv) examined combinations of node states in relation to 
SQH outcomes. The first three aspects are depicted in the network dia-
grams of Fig. 2 through arrow width, node size and SQH pie sector, 
respectively, with the fourth depicted in the associated regression trees 
(Figs. E2). These procedures are described below. Note, for these pro-
cedures all nodes had an additional parent to that depicted in Fig. 2, 
specifically, an elicitee (expert) node capturing each individual’s CPT. 

i) Local structure: Arrow Width in Fig. 2
The entropy of a node, X, is defined to be 

H(X) = −
∑

x
Prob(X = x)ln{Prob(X = x)} (2) 

where x is a particular state e.g. “Good” in SQH. The entropy, 
H(X), is a measure of the amount of information contained within 
a node. The entropy is maximised when the state of X is unknown, 
i.e. X has a uniform distribution. If X is known with certainty, the 
entropy is 0. 

Recall, that for a node with parent(s) Y, the marginal proba-
bilities are obtained by summing over the parental states, i.e. 

Prob(X = x) =
∑

y
Prob(X = x|Y = y)Prob(Y = y)

Thus, in all calculations of entropy, the distribution of the node 
X has been obtained by first summing over each elicitee node, 
assuming a uniform prior, in turn. 

The conditional entropy of a child X in relation to one of its 
parents Y is defined by, 

H(X|Y) =
∑

y
Prob(Y = y)H(X|Y = y)

= −
∑

y
Prob(Y = y)

∑

x
Prob(X = x|Y = y)log{Prob(X

= x|Y = y)}

and is a measure of the amount of information in X given 
knowledge about Y. If X and Y are independent, H(X) = H(X|Y). 
However, if there is a dependence between X and Y, we would 
expect H(X|Y) < H(X). 

The mutual information between a variable X and variable Y is 
defined to be, 

MI(X,Y) = H(X,Y) = H(X) − H(X|Y)

Thus, for each node in the network, we can look at the local 
structure between it and its direct parents. Specifically, the 
thickness of the arrows in Fig. 2 is given by the Mutual Infor-
mation (MI) between each node and its connected parent as a 
fraction of the entropy of the child node MI(child, parent) / H 
(child). Thus, the thicker the arrow, the larger the mutual infor-
mation and thus the greater the dependence between parent and 
child resulting in a greater reduction in entropy due to knowing 
the state of the parent.

ii) Importance of nodes: Node Sizes in Fig. 2
To investigate how different nodes affect the probability of 

SQH, we ran a large simulation study, or global sensitivity anal-
ysis, to calculate the belief of the SQH node for different statuses 
of the network. Specifically, a network status is defined by a 
particular combination of known node states (e.g. SOM is 
decreasing, Soil nitrate is low and metal contamination is in 
moderate exceedance. See Table 1.1a, Table 1.1b, Table 2.1, 
Table 2.1b, Table 3.1a, Table 3.1b for a definition of all node 
states). Given any status, the posterior probability of SQH can be 
calculated (Eq. 1). It was computationally infeasible to calculate 
the belief for every combination of node states (in the order of 10 
million combinations for the semi-natural network, 7.8 billion for 
the arable network and 2.2 ×1015 for the livestock network). 
Thus, the beliefs have been obtained for every combination of 
node states where up to five nodes are known, whilst simulta-
neously fixing the elicitee node to be unknown and hence aver-
aging over all experts. This study will be referred to as the 5-way 
study in what follows and generated 59,488 node combinations 
for the semi-natural, 478,040 for the arable and 286,512 for the 
livestock BNs. As with any model, not all scenarios for which the 
model is defined are equally likely in practice and here as below 
(iii), we have checked the nature of the node combinations. It is 
plausible that up to 10 combinations of the data nodes in the 
arable net are very unlikely or even impossible. Despite this, 
relative comparisons made using the global sensitivity analysis 
will be unbiased. 

A main effects linear model was fitted to the belief of SQH over 
these node combinations for each landuse in turn. For example, 
the model:   

Table 3.1b 
Intermediate nodes (grey) in the Semi Natural Net (Fig. 2c).

Node specified 
by experts

Parents Thresholds or Categories

Appropriate 
Chemistry

Contamination, ΔpH, 
Soil_Nitrate

{Bad, Good}

Appropriate Soil 
Biology

Appropriate Chemistry, 
Plant Community Type

{No, Yes}

Plant Community 
Type

ΔpH, Soil_Nitrate {Dominated by Competitors, 
Dominated by Stress 
tolerators}1

SOM (C Storage) Bare Soil, Plant Community 
Type, Soil_Moisture

{Decreasing, Stable, 
Increasing}

Water Flow Bare Soil, Soil_Moisture {Extreme, Normal}
Water Quality Appropriate Chemistry {Bad, Good}
Water Regulation Water Flow, Water Quality {Bad, Good}

1See Grime (1979)

Belief(SQH) = Soil_Nitrate + pH + Plant_Community_type + Soil_moisture + Bare_soil + C_Storage
+Metals_contamination + Appropriate_chemistry + Appropriate_Soil_biology
+Water_quality + Water_flow + Water_regulation

(3) 
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describes the effect each term has on SQH in the semi-natural 
landuse. This effect can be summarised by the type II F-statistic of 
each term (Fnode) in the fitted regression model and represents the 
amount of variation in SQH explained by the node. The diameter 
of each node in Fig. 2 is determined by ln(Fnode).

iii) Relative importance of data nodes: SQH sectors in Fig. 2
In practice, determining SQH comes down to observations on 

the measurable properties. These are what we have called the 
“data nodes” and which are depicted in colours other than light 
grey in Fig. 2. To investigate the relative importance of the data 
nodes in determining SQH, we ran a second simulation study. 
Here, the belief of SQH was calculated for every possible com-
bination of node states but restricted to knowing only the data 
nodes. There are 5 data nodes in the semi-natural landuse, 
resulting in 432 node combinations, 11 data nodes in the arable 
network resulting in 1480,352 node combinations and 9 data 
nodes in the livestock network resulting in 110,592 node com-
binations. As above, the overall effect of each data node was 
assessed through a main effects linear regression analysis, using 
the SQH belief as a response, and summarised by the associated 
type II F-statistic for each term. For example, the model 

Belief(SQH) = Soil_Nitrate + pH + Soil_moisture + Bare_soil

+ Metals_contamination
(4) 

was used to describe the effect of each data node in the semi- 
natural landuse. The relative areas of the coloured sectors in 
the SQH node of Fig. 2 are determined by the F-statistics of each 
term from model (4) expressed as a proportion out of the sum of 
all F-statistics from model (4).

iv) Regression trees: 
The analytics described in i)-iii) show which nodes are influ-

ential in determining SQH, but they do not identify the manner by 
which those nodes are important. Regression trees were fitted to 
the belief of SQH (e.g. probability SQH=Good) using results from 
the 5-way study and considering all non-SQH nodes as possible 
explanatory variables (Figure E2). A regression tree sequentially 
identifies the value of the explanatory variables (i.e. a node state) 
that results in the best partition of the response variable (the SQH 
belief). This partition is found through an assessment of the 
deviance. Explicitly, the deviance summarises the goodness of fit 
by assessing the difference between the observed SQH belief and 
the model prediction. For example, the belief of SQH in the semi- 
natural land-use is first partitioned into 2 categories based on 
whether SOM is decreasing or not. This partition of SQH belief is 
associated with the largest difference in deviance between any 
two possible partitions. The tree algorithm continues sequentially 
partitioning the response variable until the minimum difference 
in deviance between any two groups (set here at 0.01) is reached. 
The regression trees thus enable us to determine the combination 
of states that result in different SQH beliefs.

2.5. Interfacing the nets with data and mapping SQH

Inference of SQH in each net (Fig. 2) ends at measurable quantities 
(data nodes). These data are often spatially explicit, allowing a user to 
input local values to obtain a site-specific estimation of SQH. More 
generally, we aimed to estimate SQH in a spatially explicit way for 
mapping and validation against existing knowledge. To do so, we 
collated data on all input nodes such that either i) a spatially explicit 
value or ii) a distribution of values representative of a population was 
available.

To make the BNs operational, we need to have consistent, wide-
spread sources of data from which to derive background probability 
distributions of the values of the measurable properties as default (prior) 

positions for the network (Fig. 2). Alongside these, we also need specific 
point data values where we seek to produce maps of SQH or the potential 
for amelioration (Figs. 4 and 5).

Major sources of data used to achieve this are; the National Soil In-
ventory (NSI) for England & Wales (NSRI, 2001), NATMAP (Cranfield 
University), the UKCEH Countryside Survey (Carey et al., 2008 Emmett 
et al., 2010, Maskell et al., 2008, Rowe et al., 2012) and the UKCEH 
LandCover Plus © maps (2017, 2016, 2007). Sources of data and the 
ways they have been used are given in full in the Supplementary In-
formation – data sources.

Categories or thresholds for each node as defined by our experts are 
given in Tables (1a &b – arable net, 2a & b – livestock net and 3a & b 
semi-natural net) along with the sources of data where appropriate (data 
nodes Sections 1, 2 & 3 in SI). In some cases, measured or even 
measurable data do not map directly onto these categories and thresh-
olds as conceived by our experts and so a degree of pre-processing was 
involved. We tabulated the instructions left by the experts, but in many 
cases populating the probability tables for the data nodes with specific 
values was not straightforward. Although some items can simply be read 
from one of the databases, others require interpolation from spatially 
mapped data, some themselves require inference from more than one 
source of information some of which itself might be available as discrete 
data and some on a spatially-mapped basis. In all cases we detail (in SI) 
the course of action taken, working with publicly available data. We 
took the NSI locations, on their 5 km grid, as the basis for our maps 
(Figs. 4 and 5) and inferred values for data at these locations either 
directly from other datasets if available or indirectly as spelt out in SI. 
For the intermediate (grey) nodes we state the categories agreed upon by 
the experts, what they mean and if appropriate, numerical thresholds 
and units. The effect of these data is best seen within the networks 
themselves.

Whilst the maps derive from national datasets (Figs. 4 and 5), values 
of SQH can be made at specific locations if a land-manager has local 
information or a regulatory body mandates measurement. Site specific 
data could be subjective, such as the relative productivities of the target 
field compared with any nearby. Where data are available for the in-
termediate nodes (grey discs in Fig. 2), these may be preferred because 
the structure of the net is such that upstream parent nodes become un-
necessary. A number of pixels have No data land-use in Fig. 4. These are 
either urban pixels or ones where no land-use was recorded in the 
Countryside Survey (Carey et al., 2008). Where land-use was recorded 
but CS data was absent, the land-use given was: Deciduous (1 occur-
rence), horticultural crops (41), orchard (35), other (48), recreation 
(65), rough grazing (2), salt marsh (5), scrub (1), or blank (68).

For the Broadbalk Wheat experiment (Fig. 3) we used the arable net 
defaults supplemented with objective measurements as described in 
Supplementary Information (SI) 1a. Data was obtained from ERA and 
Watts et al. (2006)

To calculate opportunities for amelioration (Fig. 5), it should be 
noted that the BNs are not causal and therefore direct attribution cannot 
be given. Rather we calculated where the greatest opportunity for 
amelioration is by comparing the state of data nodes at each location to 
the state the data nodes should be in if SQH was in its “best possible” 
state. Note, this typically is not Prob(SQH = Good) = 1 due to the 
probabilistic relationships throughout the BN. Specifically, for each 
location, we identified the data node that was i) not in its optimal state 
and ii) was associated with the greatest improvement in SQH compared 
to all non-optimal node states at that location. This then identifies the 
data node that if it were changed through, for example, altering the 
underlying soil processes or functions, would be associated with the 
greatest change in SQH (hence “opportunities for” rather than direct 
amelioration).
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3. Results

3.1. Nets

We elicited the main determinants of SQH from our experts within 
three networks: one for each of arable, livestock and semi-natural land- 
uses. The three networks (Fig. 2a-c) reflect experts’ preferences as well 
as the nature of the land-uses. Consequently, they differ in composition. 
In what follows, we present the findings from the BNs, which in turn are 
inferred from the views of the experts. Each node can take a value 
depending on two or three states (Table 1). Part of the value of the BN 
approach is that our nets contain information not only on the most 
important factors that contribute to the SQH, but also the most impor-
tant combinations of factors (extended data, Fig E2a-c). Because we eli-
cited SQH first and asked our experts to reason inferentially back to 
measurable data those nodes closest to SQH carry more weight.

3.1.1. Arable
In contrast to the other soils, SQH in arable soil (Fig. 2a) has a direct 

parent data node – Ecological Diversity. Consequently, this node assumes 
great importance in inferring SQH relative to the other measurable data 
(Fig. 2a, size of coloured sectors in SQH node). Its state, Good or Bad, is 
virtually binary in suggesting good or bad SQH based on the subset of 
observable data nodes. If known and because they are also immediate 
parents in the net in Fig. 2a, Productivity Consistency and Regulation are 
also highly important in signifying arable SQH. Thus, provisioning and 
regulating ecosystem services are key and of similar combined weight. 
The dependence can be seen in the main branches of the regression tree, 
Fig E2a. Productivity Consistency is one and a half times as important as 
the other two regulating factors; this importance is represented by the 
arrow thicknesses in Fig. 2a. (Productivity Consistency: Regulation: 
Ecological Diversity = 1: 0.65: 0.63). Finding above average Productivity 
Consistency is key if the best probability of Good SQH (0.78) is to be 
inferred in arable soils (arrow thickness, Fig. 2a). If Productivity Consis-
tency is Unknown then the regression tree analysis suggests that either 
Regulation must be in a Good state or Ecological Diversity must be High to 
obtain a probability of at least 0.6 that SQH is Good (Fig E2a). In terms of 
other measurable nodes, the absence of a plough pan or managing nu-
trients well appears to be associated with best SQH

3.1.2. Livestock
In common with arable land SQH in livestock agriculture is chiefly 

inferred from production (Productivity in Fig. 2b, Productivity Consistency 
in Fig. 2a) and wider ecological considerations (Environment in Fig. 2b, 
Ecological Diversity in Fig. 2a). Good Productivity is essential for best SQH 
(0.72, Fig. 2b & E2b), followed by a positive score for Environment to 
obtain a probability of Good SQH equal to 0.63. However whilst 
Ecological Diversity was dominant among the measurable data feeding 
into SQH in the arable case, SQH can only be inferred reliably in live-
stock soils from good knowledge of several measurable factors, chief 
among these are the extent of Compaction or poaching, the pH of the soil 
and SOM – Soil Organic Matter content - (Fig. 2b). The complexity of 
livestock production is one reason why many interacting factors are 

needed to infer the state of the soil. Intermediate nodes generally 
contribute equally to their children and in similar proportion to other 
nodes (similar arrow thicknesses in Fig. 2b. Compare this with the 
variable importance of contributions of nodes in the arable and semi- 
natural nets (Fig. 2a and c).

3.1.3. Semi natural
In contrast to the agricultural soils the nodes closest to, and thus 

having greatest importance in inferring SQH are chiefly to do with 
regulating ecosystem services and less to do with provisioning: Water 
Regulation, SOM (where our experts focus on how carbon storage is 
changing) and Appropriate Soil Biology. Soil Moisture explains more 
variation in SQH in semi-natural soils (SQH node Fig. 2c) compared to 
other data nodes, with Soil Nitrate and whether or not the soil is Bare 
almost equally as important as one another. Good environmental Water 
Regulation and SOM are strongly associated with good SQH in these soils 
as seen in their key roles in the regression tree (Fig E2c). Note that the 
ΔpH node here represents the difference of the observed pH from the 
expected pH of a pre-acidic deposition soil (see SI). Although the impact 
of Appropriate Chemistry on Water Quality is very large (arrow size 
Fig. 2c) the eventual value of Water Regulation to inferring SQH is 
relatively small compared to SOM which is three times more likely to 
suggest Good SQH than the other parent nodes (SOM: Appropriate 
Biology: Water Regulation = 1: 0.32: 0.35). Increasing SOM and Good 
Water Regulation are required to achieve best values of SQH (probability 
equal to 0.81, Fig E2c).

In the livestock and to a lesser extent the arable net, most nodes are 
similar in size. In particular, several of the measurable data nodes are of 
a similar size to the intermediate function nodes. This is less true of the 
semi-natural net where the data modes are generally small. It perhaps 
suggests that it is the functioning rather than the state of soil that is 
thought (by our experts) to be responsible for delivering best SQH in 
semi-natural soils.

3.2. Broadbalk long-term experiment

The Broadbalk (Rothamsted) long-term experiment (see methods) 
has been running since 1843 and by applying data from this experiment 
to the arable BN, we derived estimates for SQH under a range of different 
crop management scenarios. Crop yield was used as an independent 
proxy for SQH for comparison because production is the main function 
for this arable field. This experiment was set up in the 19th Century with 
the specific aim of understanding how nutrients affect yield. The results 
are well known to us now, but at the time the results were of great 
importance. Broadbalk confirmed its originator’s hypothesis that wheat 
obtains its nitrogen from the soil and not the air and demonstrated the 
importance of N over P (in the first instance) for yield. The arable SQH 
net (Fig. 2a) is able to distinguish between the many differences in soil 
that result from the long-term application of particular management 
practices (Fig. 3). Where N is lacking, SQH is clearly poor on Broadbalk 
(Fig. 3) but the worst values are found in the middle of the field where 
the amount of N applied is moderate but P and K are in very short supply. 
Best SQH in this field experiment appears to be associated with greater 

Fig. 2. Bayesian Networks that define SQH. Networks of soils under (a) arable, (b) livestock, and (c) semi-natural land-uses. Networks display the lines of inference 
that lead to SQH; regression trees the importance of knowledge of the states of nodes. Discs are nodes in all BNs, black-ringed nodes are the SQH end-point. Distinct 
colours of the sectors in the SQH node correspond to those of the data nodes i.e. those which consist of measurable properties. Intermediate, potentially unobservable 
nodes are depicted in grey. For exact meanings and states of nodes see methods (SI). Where intermediate nodes are observable, such values may be preferred in 
practice. Nodes are connected by arrows representing the conditional dependence between the variables that the nodes signify. A sink/child node is conditionally 
independent from all other nodes in the network given the connection to the direct source/parent nodes. The size of each sector in the SQH node represents the 
proportion of variation explained by each data node as obtained from main effects regression analysis (only data nodes used as explanatory variables) of the 
probability of Good SQH using results obtained from network simulation runs (sensitivity: see methods). Node diameter (both data and intermediate) represents the 
amount of variation in SQH explained by the node as determined from a main effects linear regression (using all nodes as explanatory variables) of the probability of 
a Good SQH. The SQH nodes are arbitrarily large in order to make them and their sectors clearly visible. Arrow thickness represents the relative importance of parents 
in determining a connected child and can be compared within the same net. Relative node diameters and SQH sectors are compared on logarithmic scales; arrow 
thicknesses are compared linearly.
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amounts of either clay or organic matter. Poorest values of SQH are 
found where there is a nutrient deficiency, e.g plots 3 (all sections) 
which had received no fertiliser of any kind for 179 years, plots 5 and 6 
which are deficient in N, plots 10 which are deficient in K and P and 
plots 11 which are deficient in K. Amounts of Soil organic matter (car-
bon) are relatively small in Sections 2–7, possibly because these sections 
included regular fallow years as part of the rotation during 1968–1996, 
with less carbon input to the soil overall as a consequence. As with the 
map of England & Wales (Fig. 5), managing nutrients is the one action 
that would most improve these arable soils – because their desired 
function is to produce food without loss of nutrients to air or water. 
Similarly, reducing the incidence of fallow and otherwise improving 
ground cover would be likely to increase organic matter inputs to soil 
and thus incorporation into SOM. Figure E1 gives a comparison between 
the arable BN and a radar plot.

3.3. National scale

The nets can be applied nationally. The National Soil Inventory 

(NSRI, 2001) records a consistent set of data from measurements made 
on a 5 km grid across England and Wales. Information held in the 
database includes land-use. In broad terms the climate is drier in the East 
and warmer in the South; the North and the West are more hilly. Thus, 
arable land is to be found predominantly in the East, livestock, fed from 
grassland is more abundant in the North and West. Semi-natural land is 
largely found in the uplands.

The probability of finding good SQH in any part of England and 
Wales is generally greater in semi-natural soil than soil under livestock 
agriculture which in turn is greater than soil under arable use (Fig. 4a). 
Upland soil is generally in semi-natural land-use whilst many of the 
livestock soils of intermediate quality are found in the West (Fig. 4b). 
Arable soils appear likely to be worse in the North than the South of the 
country which derives from a finding that there tend to be more non- 
agricultural species in field boundaries in the South of the country 
(Carey et al., 2008) and so potentially greater levels of Ecological Di-
versity. The risk of Excess Nutrients is deduced from whether or not the 
land is in a designated Nitrate Vulnerable Zone (NVZ). Even if farmers 
take action to control nitrate efflux to water systems, there is an 

Fig. 3. The Broadbalk field experiment at Rothamsted has grown wheat on a silty clay loam soil under different but largely consistent management practices since it 
began in 1843. (a) Aerial photograph of the experiment oriented so that the sections (rows 0–9) descend from top to bottom. (b) Heatmap of SQH on Broadbalk field 
with the sections laid out in the same manner as Fig. 3a – section 0 is at the top, 9 at the base of the figure. The experiment tests the interaction between nutrient and 
manure applications (Plot treatments) against general crop management practices such as rotation or the use of biocidal chemicals (Sections). Sections 0, 1, 6, 8 and 9 
grow wheat continuously and so risk soil-borne pathogens; other sections carry wheat in rotation such that second wheats carry a greater risk from soil-borne 
pathogens than first wheats but less than third. Layout is for 2021. Section 8 does not receive weedkillers and has a diverse flora as a result; plots differ in the 
particular regime of nutrients they receive (mainly K, P or N); the strips 2.2 and 2.1 (labelled 22 & 21) receive 35 tonnes farm-yard manure (fresh matter) each 
autumn. Although silt contents of the soils in the plots are predominantly above 55 %, clay varies from below 20 % in the bottom right corner in the figure to almost 
40 % in the top left. These various factors influence SQH as shown; scale is identical to that used in Fig. 4a. Data to create the output using the arable net (SI: 1a) come 
from Watts et al. (2006) and from the Electronic Rothamsted Archive - ERA. Full details of the Broadbalk experiment can be found on ERA: or obtained from the 
curators on request. Author MJG is a curator.
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enhanced risk of poor SQH at locations within an NVZ all other things 
being equal. Soils in semi-natural habitats on the other hand can also be 
inferred to be in a poor state if the Appropriate Soil Biology is depleted 
(Fig. 2c). Both factors account for much of the geographical variation in 
values of SQH (Fig. 4a).

3.4. Improving SQH

The nets can be used to prioritise actions that might improve SQH. 
Although our nets are not causal, it is possible to identify the states of 
nodes which if changed would be most likely to lead to widespread 
improvement in SQH. We cannot say for certain that at this or that point 
better SQH will follow from an action but we can say that country-wide 
and over many instances of a similar intervention, better SQH would be 
likely.

Where arable land-use predominates in England and Wales, it is 
likely that more soils could be improved by reducing the risk of Excess 
Nutrients (1246 instances that are within a Nitrate Vulnerable Zone out 
of a total of 1901) than by any other intervention (Fig. 5a & b). Farmers 
may, indeed should, already be doing so of course. Our national maps 
present risk based on probabilities of land state or position rather than 
detailed knowledge of current management. The Broadbalk net (Fig. 3) 
demonstrates the power of more specific local knowledge about nutrient 
management in arable soils. Although knowledge about Ecological Di-
versity is the most important directly measurable contributor to good 
SQH (Fig. 2a), Productivity Consistency and Regulation (into which Excess 
Nutrients feed, Fig. 2a) are together vital for the very best quality (Fig 
E2a). These results reflect both the structure of the elicited network and 
the input values for the data nodes of soils derived from two large-scale 
ongoing surveys as explained in the SI: the National Soils Inventory 
(NSRI, 2001) and the Countryside Survey (Carey et al., 2008). Managing 
nutrients more carefully, by whatever means is thus likely to lead to 
arable soils that are of better quality and in better health in the sense that 
they are less eutrophic or less likely to transmit pollution to the wider 
environment.

Many opportunities exist to ameliorate livestock soils that are likely 
to suffer from Compaction (1132 instances out of 2063) or where the pH 

is too low (Fig. 5). The pH of soils over basic rock is difficult to change. 
Direct interventions to improve Productivity or Environment (Fig. 2b, 
E2b), would help too, in so far as this is possible. Other states of nodes 
that are associated with poor SQH are slow (SOM) or impossible 
(Texture, Slope) to change. If a poor soil is difficult to ameliorate for these 
reasons, a change of land-use may be the only way to achieve Good SQH.

Despite historical exposure to acid rain, ΔpH has improved in recent 
years (Rose et al., 2016). Nonetheless, the discrepancy between actual 
and expected pH is the factor that most frequently suggests poor SQH in 
semi-natural soils. In this case, as is general in semi-natural soils, the 
opportunity is most often to modify industry or land management 
elsewhere. Information about Soil Moisture and its child nodes, Water 
flow, Water regulation and SOM is of critical importance to determine 
good SQH (Fig. 2c, E2c), with knowledge about Water quality and Water 
regulation key to inferring the very best quality. Metals Contamination, 
which we infer from heavy metal concentrations in soils that are above 
ambient background levels, affects Appropriate Chemistry (Fig. 2c) and is 
an issue in about 40 % of semi-natural soils. (Fig. 5, 286 instances in 
High exceedance and a further 87 in Moderate exceedance for at least 
one metal out of 1251 soil samples where metals data is available.) High 
metal content in soil may imply deposition from the air, mine spoils or 
some other historical misuse of land that reduces its function. It can also 
arise, however, from natural causes such as the underlying geology. In 
any case, it is difficult to improve SQH by removing metals. Poor values 
of soil moisture or soil organic matter may be more easily amended, 
eventually.

4. Discussion

There are perhaps three limitations to the BN modelling that should 
be made explicit. The first is that our implementation uses a discrete BN. 
All nodes are assumed to have a finite number of distinct categories. A 
greater level of nuance could be captured if some nodes were considered 
as a continuous variable instead. For example, when integrating the top- 
level data nodes with data, it is often the case that a threshold value was 
needed to define the distinct categories such as Soil Nitrate which must 
above or below 10 mg N kg− 1. A more realistic scenario would be to 

Fig. 4. State of SQH in England & Wales: (a) map of the probability of finding Good SQH in England and Wales based on data on land-use, texture and nutrient status 
in the National Soils Inventory on a 5 km grid and on inferred biological parameters derived from the Countryside Survey. All land-uses. The three respective land-use 
nets were applied at locations in (b) and have been used to compile the map in (a).
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capture the continuity of nitrate values explicitly and this is a feature 
that should be investigated in future work. Eliciting such a distribution 
does, however, does make matters harder for the experts.

The second limitation is the diluting effect of intermediary nodes in 
certain subcases. Marcot (2017) explicitly states that i) summary inter-
mediary variables should be used to help structure a BN and ii) outcomes 
are not necessarily most sensitive to nodes that are closest to them. 
However, in our sensitivity analysis when looking specifically at the 
impact of nodes for which known data is available, it is often the case 
that nodes closest to SQH have the most influence (Fig E2). For example, 
Ecological diversity in the arable network. This is not a limitation of the 
modelling per se, but rather in the interpretation, so one should be aware 
of the need to compare like for like, that is, if we can directly observe a 

process we should, as opposed to observing proxies.
A possible third limitation is that BNs do not capture the dynamic 

nature of many soil processes explicitly and there are circumstances 
(draining of water from poached land for example) where that dynamic 
nature is key. This said, we asked our experts to be mindful of the dy-
namic nature of some nodes or interactions when devising and 
completing their nets.

Existing methods of inferring SQH such as indices (radar plots, 
Figure E1) or even visual assessment (despite its merit of directness) 
tend to be descriptive or do not integrate the separate components of 
SQH explicitly. Furthermore, these indices are normally used locally, on 
site, by the land-owner or manager, and it is not easy to see how to scale 
them up or down. Our approach captures both intrinsic soils data as well 

Fig. 5. Opportunity map for ameliorating SQH in England & Wales. (a) First-ranked factor which if improved would make most difference to SQH. Colours identify 
and locate factors by means of the key; one arable, 23 livestock and 293 semi-natural sites were in optimum condition and are coloured purple and labelled ‘Good’. 
Nets used to compile this map were used at the locations given in Fig. 4b. Consequently, the range of factors evaluated differs from place to place. (b) Frequency with 
which each factor ranks first for the net indicated. If a factor such as texture is difficult to change, the opportunity is to change the land-use, e.g. convert arable to 
grassland under livestock. Text colour corresponds to the legend in Fig. 5a; similar factors such as those dependent on physical condition or place are grouped by 
colour for convenience. A factor and any amelioration depend on land-use context. Thus, pH and measures to adjust it in arable or livestock soils differs from ΔpH in 
semi-natural soils.
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as management decisions in a transparent and traceable way and can be 
used at different scales of interest. The same tool is capable of use at both 
national (Fig. 4 and 5) and local scales: the plans of the Broadbalk 
experiment (Fig. 3) illustrates how the components of the arable net 
(Fig. 2a) can be used to distinguish impacts of land management locally.

Most practitioners would emphasise the importance of soil organic 
matter (SOM) in determining SQH, but research has sometimes failed to 
find strong links (Corstanje et al., 2015). Our nets suggest why this might 
be so: many factors depend on SOM and these intermediate factors in-
fluence SQH in different ways and moreover interact in ways which 
differ because of still other factors such as land-use. Where a parent node 
(such as SOM) spawned many children, we encouraged experts to 
articulate these effects explicitly, the result of which is to push influ-
ential nodes such as SOM further away from the SQH node with multiple 
pathways between. In the semi-natural net SOM assumes far greater 
importance in obtaining good SQH (Fig. E2c) suggesting that its role is 
greater in regulating than provisioning services. Indeed, the experts 
originally conceived of this node as Carbon Storage.

It is interesting to pursue the structure of the nets further. Texture is 
important as a measurable node in the arable and livestock nets (Fig. 2a 
& b) but not in semi-natural (Fig. 2c). Our experts seem to be telling us 
that semi-natural land acquires the appropriate vegetation for the given 
texture. Under agriculture it appears to be that the productivity of the 
chosen vegetation (and hence inferred SQH) is restricted by texture. 
Where texture matters as in agricultural soils it has multiple, indirect 
effects rather like SOM. It interacts with SOM (and other things) to affect 
the physical condition of soil which impacts regulation and productivity 
in turn. Thus, texture in semi-natural soils will affect the appearance of 
the landscape but the quality less so, whilst under agriculture the 
landscape is imposed by man and so SQH is thought by our experts to be 
determined, at least in part, by how well the soil copes with its some-
what unnatural land-use. Thus, nodes such as Texture and SOM are 
important, crucial even, but affect SQH indirectly and sometimes in 
diverse or even conflicting ways.

If a policy aim is to improve land significantly (Defra, 2018) then 
confidence in metrics that detect such change would be improved by 
better and finer scale monitoring and measurement. For example, our 
use of GB Nitrate Vulnerable Zones to assess Excess Nutrients in the 
arable net is rather imprecise. Likewise, and provided data of sufficient 
quality and resolution is available, it may be possible to detect and even 
warn of unsustainable practices before lasting damage occurs to soil. In 
this context, absolute precision in measurement is not as important as 
credibly detecting signs of change, positive, negative or none, enabling 
simpler measurement and the possibility of pre-emptive action.

Few soils could not be improved by one measure or another (Fig. 5) 
or by a change of land-use. This is not to say that all UK soils are in a 
parlous state but that most could be made at least slightly better and 
some, in agricultural use, substantially better (Fig. 4). Only one, 
5 × 5 km arable pixel is suggested to be of Good quality. Fig. 5 makes it 
clear that managing nutrients effectively is vital for the quality of the 
majority, and ought to prevent off-site pollution.

5. Conclusions

The explicit visualisation of the strength of interactions between 
components of soil that lead to good SQH is a powerful improvement on 
a simple index. The amalgamation of important subjective and objective 
determinants in BNs is an elegant solution to what is otherwise an 
intractable but vital problem in the international scientific literature and 
in soil management. It is not only the value of a property such as pH that 
determines SQH, but rather its context (e.g. Wade et al., 2022); here not 
only arable, livestock farming or semi-natural land-use but also whether 
the same soil is naturally acidic or rich in organic matter, for example.

The power of our approach derives from quantitative representation 
of the influence of objective, measurable information on the value of 
SQH (represented by the area of the SQH node and size of data node in 

Fig. 2) and the strength of interactions between components (thickness 
of arrows).

Directly addressable pressures, such as compaction by livestock, or 
the application of excess nutrients to arable land, are key to avoiding 
degradation or improving the quality of soil over large parts of the UK. 
This is widely acknowledged of course, but our analysis stresses the 
other issues that need to be addressed alongside the obvious in-
terventions, or the role of inherent properties such as texture in their 
context, if amelioration is to succeed. Measures that are often thought to 
be obvious steps to improving SQH, such as increasing soil organic 
matter, may improve soil in an indirect fashion or in different ways 
depending on factors such as management or land-use.

These arguments apply to most soils under similar land use in the 
temperate regions, so could form the basis for monitoring of the effects 
of management practices driven by legislative-regulatory compliance 
processes in support of Global initiatives to improve soil. Importantly, 
direction of travel to better or worse condition is easily identified and may 
offer the possibility of triage to identify which areas or practices need to 
be tackled first (Fig. 5). More widely, nets for use in tropical, boreal or 
montane environments, among others, would require re-elicitation 
because of the different stakeholders and conditions. Beyond SQH, the 
method is general and should be applicable to many other metaphors in 
need of quantification such as sustainability, resilience, air and water 
quality, human health or well-being.
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