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Abstract The biological carbon pump (BCP) transfers large amounts of carbon from the atmosphere into
the ocean's interior, contributing to carbon sequestration. Studies on latitudinal variability in organic carbon
transfer to depth have yielded inconsistent results, likely due to methodological differences. To address this, we
compiled particulate organic carbon (POC) flux data and BCP metrics from time‐series locations across
biogeographically distinct ocean regions. We integrated multiple BCP observational techniques, including
diverse collection and processing protocols, capturing diverse facets of POC flux at varying spatio‐temporal
resolutions. To ensure comparability, we harmonized errors and usedMonte Carlo error propagation to calculate
uncertainties consistently. Our analysis reveals large local uncertainties that obscure expected latitudinal
variations in BCP metrics. While such variations may exist, they remain difficult to identify with current
observational data. Our findings underscore the need for sustained POC flux observations, standardization of
protocols, and intercalibration of technologies to identify geographic BCP patterns.

Plain Language Summary The biological carbon pump (BCP) transfers carbon dioxide from the
atmosphere into the deep ocean through sinking organic particles, helping sequester carbon for long periods.
Temperature is thought to strongly control how efficiently this particulate organic carbon is transferred into the
ocean's interior. However, this presumed temperature control, with its large‐scale geographic latitudinal
variability, remains contested. Studies disagree on whether temperature enhances or reduces the efficiency of
the transfer of organic particles from the surface to the deep ocean. Differences in particle collection and
statistical analysis methods across research projects create significant uncertainties in assessing BCP transfer
efficiency across oceanic regions. To explore these uncertainties, we analyzed BCP transfer efficiency data from
six data‐rich locations representing different biomes, applying a consistent error analysis approach. We found
that local uncertainties are so large that they obscure expected larger‐scale geographic latitudinal patterns driven
by temperature, raising questions about whether such patterns exist. Our findings suggest that current
observational data do not support the presence of latitudinal patterns in BCP metrics. If these patterns do exist,
sustained POC flux observations, standardised data collection and processing protocols, and intercalibration of
observational technologies will be essential to identify them accurately.

1. Introduction
The biological carbon pump (BCP) transfers CO2 from the atmosphere into the deep ocean primarily through the
gravitational sinking of biologically produced marine particles (Boyd et al., 2019; Volk & Hoffert, 1985), a
process that contributes to oceanic carbon sequestration. Much of the particulate organic carbon (POC) produced
by the surface ocean food web and exported to depth is remineralized to CO2 in the mesopelagic zone before
reaching 1,000 m, a key depth for long‐term oceanic carbon sequestration (Passow and Carlson (2012), but see
Ricour et al. (2023)). The BCP's efficiency in transferring POC flux through the mesopelagic zone is represented
by the metric transfer efficiency (Teff). It has been suggested that Teff varies geographically with latitude (as well
as over seasons), with certain oceanic regions argued to being more efficient in transferring POC flux beyond
1,000 m depth, making them more efficient oceanic carbon sinks. These geographical patterns in Teff are hy-
pothesized to be controlled by a variety of factors, such as seawater temperature, plankton community structure
and net primary production, which affect particle degradation rates, particle ballasting and particle palatability to
food‐web consumers. However, there is no consensus on the distribution of these patterns. Some studies indicate
that Teff is higher in the warm, subtropical oceans (Buesseler & Boyd, 2009; Guidi et al., 2015; Henson
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et al., 2012; Lam et al., 2011), while others suggest it is higher in cold, high‐latitude and equatorial upwelling
regions (Cram et al., 2018; DeVries & Weber, 2017; Marsay et al., 2015; Weber et al., 2016). This existing
discrepancy may be an indication that uncertainties in the observational datasets may be too large to diagnose a
relation with temperature with confidence. Given that the BCP's Teff has an impact on atmospheric CO2 levels
(Kwon et al., 2009; Lauderdale & Cael, 2021), this knowledge gap has significant implication for climate
modeling. It affects the representation of the BCP in the Earth System Models used to predict how the ocean's
capacity to sequester CO2 via the BCP will respond to ongoing ocean warming brought about by climate change
(Liu et al., 2023; Sanders et al., 2016; Siegel et al., 2016).

One reason for the diametrically opposed geographic latitudinal patterns in Teff, even in data‐based studies, is the
reliance on one‐off measurements, which risk capturing episodic events that are not representative of seasonal
variation (de Melo Viríssimo et al., 2024) or the long‐term average (Bisson et al., 2018). However, time‐series
measurements, which provide long records of data through repeated visits to ocean sites, enable the identifica-
tion and exclusion of anomalous data points by comparison with the long‐term average conditions, thus yielding
more robust data. Although about 30 ocean time‐series sites have been providing measurements of POC flux
using sediment traps (Figure 1), many ocean basins, including the South Pacific, South Atlantic and Indian Ocean,
lack such data due to their remote locations, rendering routine monitoring impractical. This much reduced spatial
coverage is a downside of time‐series measurements. A second reason for the differing patterns in Teff arises from
the choices related to the timing (pre‐bloom, bloom, post‐bloom) and depth (surface, mesopelagic, near seafloor)
of data sampling, as well as the choice of technology used for data collection and methods for data processing. For
instance, the dataset of Henson et al. (2012) spans all ocean basins and uses a radiometric technique (234Th/238U
radionuclide disequilibrium) to measure surface ocean POC flux, while using sediment traps for the deep ocean
(1.5–3.5 km) that record a full annual cycle. In contrast, Marsay et al. (2015) compiled sediment trap data for the
upper 500 m of the North Atlantic and North Pacific oceans, focusing on the summer months with a sampling
period of 2–4 days.

Here, we seek to understand the consequences of the uncertainties in oceanographic POC flux measurements for
robustly detecting geographic latitudinal trends by analyzing a variety of POC flux measurements and BCP
metrics in a self consistent manner. Specifically, we test the null hypothesis that Teff does not present coherent
geographical variability and that the suggested geographical patterns could instead be methodological artifacts
resulting from the choices made to collect and process POC flux measurements. We focus on six extensively
sampled ocean locations spanning distinct open‐ocean biomes: equatorial, subtropical, subpolar and polar oceans.

Figure 1. Geographic location of historical ship‐based time‐series research programs with particulate organic carbon (POC)
flux data in deep‐water sites (>1,000 m), with active stations (green) as of 2024. In bold are the six time‐series research
programs used in this study: the US Joint Global Ocean Flux Study (JGOFS) Equatorial Pacific process study experimental
site (EqPac), the Hawaii Ocean Time‐series (HOT) station ALOHA (HOT/ALOHA), the Bermuda Atlantic Time‐Series/
Oceanic Flux Program joint site (BATS/OFP), the Porcupine Abyssal Plain time‐Series Observatory (PAP‐SO), Ocean
Station Papa (OSP), and the Long‐Term Ecological Research observatory HAUSGARTEN. These sites use sediment traps
on fixed‐point moorings, encompassing both long‐term, time‐series (spanning many years) and temporary moorings (with a
shorter time span but no less than 1 year). Gray contours delineate the 54 biogeochemical provinces from Longhurst (2006),
color‐coded by marine biome. Station details were sourced from OceanSITES (http://www.oceansites.org/), IGMETS
(https://igmets.net/) and a Woods Hole Oceanographic Institution's sediment trap compilation (Benway, 2013).
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We analyze data from a variety of sources, including time‐series and one‐off measurements using diverse data
collection methods, from traditional techniques to imaging sensors. We derive average values and uncertainties
for three metrics characterizing mesopelagic POC flux transfer efficiency: Martin's b coefficient, the reminer-
alization length scale coefficient and Teff. Our analysis reveals large uncertainties in these metrics which obscure
geographical differences. These results suggest that limitations of currently available data may pose a major
challenge to ongoing efforts to understand the geographical variations of Teff, which is crucial for identifying the
factors that control Teff and predicting how it might change in response to climate change.

2. Data and Methods
2.1. Data Sources

We compiled a dataset of oceanic POC flux measurements from two traditional collection methods—sediment
traps and radionuclides—at six extensively sampled open‐ocean time‐series study sites (Figure 1, sites in bold).
Spanning 1978–2022, the dataset includes time‐series, one‐off measurements and cross‐project data from in-
ternational programs such as JGOFS (Joint Global Ocean Flux Study), GEOTRACES and EXPORTS (EXport
Processes in the Ocean from RemoTe Sensing), along with pivotal local programs like HOT and BATS. The
selected six sites—EqPac (central equatorial Pacific upwelling system), HOT/ALOHA (subtropical NE Pacific),
BATS/OFP (subtropical NW Atlantic), PAP‐SO (subpolar NE Atlantic), OSP (subpolar NE Pacific) and
HAUSGARTEN (polar Atlantic‐Arctic boundary)—cover a range of biomes, from cold equatorial and high‐
latitude regions to the warmer subtropical areas, a geographical gradient where other studies have shown vari-
ations (e.g., Marsay et al. (2015) and Henson et al. (2012)). Our site selection criteria, which excluded some
locations shown in Figure 1, were as follows: (a) open‐ocean biomes to ensure that particle fluxes primarily reflect
local ocean biogeochemical factors rather than terrestrial inputs from continents; (b) visits by multiple research
teams, providing data using diverse collection methods; and (c) extensive coverage across multiple depths to
capture mesopelagic attenuation processes. Tables S1–S6 in Supporting Information S1 summarize the references
used, including data acquisition and quality control details, and Text S2 in Supporting Information S1 outlines the
data processing methods.

The primary data collection method featured in our compilation is long‐term time‐series sediment traps on
bottom‐tethered moorings (i.e., near‐seafloor measurements). To enhance data representation in the upper water
column, we supplemented time‐series measurements with data from shorter‐term studies conducted in these
locations using surface‐tethered sediment traps, neutrally buoyant sediment traps and radionucldies. Despite the
different integration times of sediment traps and radionucldies (Th‐based estimates typically integrate over
3 weeks whereas trap measurements can span from days to months, Buesseler et al. (2007)), individual data points
show good overlap (Figure 2).

In addition to POC flux measurements from sediment traps and radionuclides, we explored an alternate collection
method: marine particle imaging using the Underwater Vision Profiler 5 (UVP5). Particle data from the UVP5,
sourced from the compilation by Kiko et al. (2022), was converted into POC flux using the approach outlined by
Bisson et al. (2022) (Text S3 in Supporting Information S1). The use of an underwater camera like the UVP5
offers significantly higher depth and temporal resolution than traditional POC flux sampling methods and has
gained popularity over the past decade as a valuable proxy for POC flux (Chai et al., 2020; Claustre et al., 2021;
Giering et al., 2020; Siegel et al., 2023).

2.2. Calculation of Metrics

Our study evaluates three BCP mesopelagic transfer efficiency metrics: Martin's b coefficient, which assumes a
power‐law decay of POC flux with depth (Martin et al., 1987); the remineralization length scale coefficient (z∗) ,
which assumes an exponential decay (Armstrong et al., 2002); and the fraction of POC flux exported from the
euphotic zone (∼50–200 m) that reaches the base of the mesopelagic ocean (∼1,000 m) (Teff between zeu–zmeso),
which makes no assumption on manner of decay (Buesseler & Boyd, 2009). These three metrics are interrelated
(can be derived from one another) and the equations for each are provided in Text S1 in Supporting
Information S1.

Metrics were derived from five distinct data groups: (a) POC flux measurements from sediment traps and ra-
dionuclides (compiled specifically for this study), (b) POC flux estimates from the UVP5 (sourced from Kiko
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Figure 2. Compilation of particulate organic carbon (POC) flux measurements from sediment traps and radionuclides at the six ocean time‐series sites used in this study,
showcasing data distribution by month and depth (N = 7162). Colored data points represent different collection methods and depth zones (see Table S7 in Supporting
Information S1) and are used for data summaries in Figures S1–S2 in Supporting Information S1. Note the y‐axis in log10 scale, and the x‐axis typically limited to the
maximum POC flux value at each site.

Geophysical Research Letters 10.1029/2024GL111203

RUFAS ET AL. 4 of 15

 19448007, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
111203 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [04/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al. (2022)), (c) published BCP metrics calculated from canonical fits to POC flux data from sediment traps,
radionuclides, UVP5 and in situ filtration systems (Buesseler & Boyd, 2009; Francois et al., 2002; Guidi
et al., 2015; Lam et al., 2011;Mouw, Ciochetto, et al., 2016), (d) published BCPmetrics calculated from statistical
fits to physical and biogeochemical data (Henson et al., 2012; Marsay et al., 2015), and (e) published BCPmetrics
estimated using a diagnostic model constrained by biogeochemical data (Weber et al., 2016). This approach
allowed us to incorporate metrics from a range of collection methods (e.g., collection technology, timing of the
sampling, depth resolution) and processing methods (e.g., data aggregation, error propagation and metric
calculation) across local and international programs. Table S8 in Supporting Information S1 lists the contributing
studies with local scope, while details of data processing for each data group are documented in Texts S2–S6 in
Supporting Information S1.

Error quantification for POC flux data from sediment traps and radionuclides (group i) distinguishes between
random and systematic errors (Text S2 in Supporting Information S1), following the ISO Guide to the Expression
of Uncertainty in Measurement (GUM, 2020). For UVP5 data (group ii), uncertainties were derived from particle
sampling volumes, as described by Bisson et al. (2022) (Text S3 in Supporting Information S1). Error propagation
to monthly POC flux averages in both groups was performed using MATLAB's Worst‐Case Propagation of
Uncertainty algorithm (Ridder, 2023). For all data groups (i to v), error propagation from monthly POC flux
estimates to BCP metrics, or between metrics, was performed using a Monte Carlo‐based approach implemented
in MATLAB by Robens (2023) (described in Text S7 in Supporting Information S1). This approach simulates the
probability distribution of the metrics, from which we can directly derive their confidence intervals, offering a
simpler alternative to more complex calculations typically required for error propagation when multiple sources
of uncertainty are involved.

3. Results
POC flux measurements from sediment traps and radionuclides (Figure 2) show good agreement in their ranges,
supporting their combined use for calculating monthly averaged POC fluxes (Figure S2 in Supporting Infor-
mation S1). While overlap is not always expected (e.g., Buesseler et al., 2006), here the two methods align well.
Both reveal substantial depth heterogeneity, with better coverage of the mesopelagic and bathypelagic zones
compared to the surface, and enhanced sampling of the surface ocean during warmer months (e.g., OSP and PAP‐
SO). Most monthly POC flux profiles show a typical depth decay (except HAUSGARTEN), indicative of sub-
surface attenuation processes. Notably, surface ocean POC fluxes vary up to 10‐fold (e.g., HOT/ALOHA in June;
BATS/OFP in March; EqPac in August; PAP‐SO in July; OSP in May).

Compared to UVP5‐derived POC flux (Figure S5 in Supporting Information S1), sediment trap and radionuclide
measurements show less overlap, with UVP5 estimates generally being higher, a trend confirmed by the BCP
metrics derived from POC fluxes (Figure S6 in Supporting Information S1 and Tukey‐Kramer post‐hoc test,
p ≤ 0.05). A matchup analysis of UVP5 and combined sediment trap and radionuclide POC flux data (Figure 3)
reveals a low (HOT/ALOHA and BATS/OFP) to moderate (OSP and PAP‐SO) correlation between these
collection methods (Spearman's rank, all statistically significant with p ≤ 0.05, except HOT/ALOHA). This
substantial mismatch was also noted by Fender et al. (2019, see their Figure 3).

Figure 4 compares three metrics of BCP mesopelagic transfer efficiency (Martin's b, z∗, Teff) across various
studies at our six study locations. Visibly, there is considerable variability within each location, making it difficult
to identify differences between biomes. In fact, statistical analysis reveals no significant differences between
locations for any of the metrics (Kruskal–Wallis ANOVA, p > 0.05), implying that distinct ocean biomes, as
represented by our locations, do not display significantly different BCP mesopelagic transfer efficiencies, thus
accepting the null hypothesis of this study. Our results contrast with previous studies suggesting geographic
latitudinal differences in these metrics and, in an effort to explain them, arguing that temperature may control their
large‐scale geographical variability. In Figure 4, such a temperature‐based control of Teff would imply a left‐to‐
right transition from warm (subtropical) to cold (upwelling equatorial, polar and subpolar) biomes. While this
pattern is evident in individual studies (e.g., Marsay et al. (2015), Weber et al. (2016), and Mouw, Ciochetto,
et al. (2016) show an increase of Teff left‐to‐right, while Henson et al. (2012) and Guidi et al. (2015) show a
decrease), such patterns do not hold when considering all studies collectively. Moreover, the sediment trap/
radionuclide and UVP5 datasets processed in this study—for which we did not have prior expectations of a
specific pattern—do not appear to follow a consistent trend.
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4. Discussion and Conclusions
In this study, we tested the null hypothesis that the BCP's mesopelagic transfer efficiency does not present
coherent geographic latitudinal variability by analyzing, in a self consistent manner, an extensive compilation of
open‐ocean data covering distinct ocean biomes. Previous studies have suggested that Teff is strongly controlled
by temperature (although the sign of the relationship is disputed), which should be reflected in geographic lat-
itudinal variations (Buesseler & Boyd, 2009; Cram et al., 2018; DeVries & Weber, 2017; Guidi et al., 2015;
Henson et al., 2012; Lam et al., 2011; Marsay et al., 2015; Weber et al., 2016). However, our analysis reveals no
such statistically significant geographical variations in Teff, accepting the null hypothesis. If such geographical
trends do exist, they are obscured by natural variability (associated with location, depth and season; Figure 2) as
well as differences in working protocols (associated with data collection and processing methods; Text S2–S6 in
Supporting Information S1).

Latitudinal gradients reflect the uneven distribution of sunlight and heat across the Earth's surface, closely linking
them to temperature. Many marine ecosystem variables, such as phytoplankton growth, heterotrophic respiration
and phytoplankton cell size, are temperature‐dependent. However, the invoked mechanisms through which
temperature affects Teff differ among authors. For instance, Henson et al. (2012) suggested that in warm, low‐
latitude systems, the tighter coupling between phytoplankton growth and zooplankton grazing—resulting in
the increased production of fecal pellets, which are fast‐sinking particles that are transferred more efficiently—
along with the smaller size of phytoplankton cells—producing particles that are less palatable and harder to
digest, resulting in slower decomposition of POC—leads to higher Teff. In cold, upwelling systems, the reverse

Figure 3. Comparison of particulate organic carbon (POC) flux matchups between Underwater Vision Profiler 5 (UVP5)
estimates and sediment trap/radionuclide combined measurements at the four ocean study sites used in this study with spatio‐
temporal matchups. Matchups were identified using a depth tolerance of 5 m, time tolerance of 2 days and a latitude/
longitude tolerance based on geographic search coordinates (see Tables S1–S6 in Supporting Information S1 for sediment
trap/radionuclide data and Figure S4 in Supporting Information S1 for UVP5 data). UVP5 error bars reflect uncertainty
propagated from water sampling volumes imaged during casts conducted on the same day, while sediment trap/radionuclide
error bars reflect the combined random and systematic measurement uncertainties in the collection of POC flux. Spearman's
rank correlation coefficient (r), p‐value and number of local matchups (N) are provided. A total of N = 209 matchups were
identified from 7,162 sediment trap/radionuclide measurements of POC flux and 43,703 UVP5‐derived estimates.
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Figure 4.
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pattern is observed. In contrast, Marsay et al. (2015) attributed lower Teff in warmer systems to slower hetero-
trophic metabolism, leading to slower degradation of POC, with the smaller size of phytoplankton cells
contributing to slow‐sinking particles.

The absence of a clear latitudinal gradient in BCP transfer efficiency metrics across studies (Figure 4)—despite
distinct latitudinal patterns observed in individual studies—can be attributed to six factors we identified. First,
differences in protocols for error quantification and error propagation may limit comparability between studies
(Text S2 in Supporting Information S1). Second, mathematical artifacts can affect metric calculation; for
instance, the coefficients b and z∗ are sensitive to the curve fitting method applied and reference depths (Text S2 in
Supporting Information S1; Figure S3 in Supporting Information S1; Olli (2015)), while UVP5‐based BCP
metrics are sensitive to range of particle size classes and assumptions made in the calibration of the power‐law
coefficients linking particle size to POC flux (Bisson et al., 2022; Iversen et al., 2010; McDonnell & Buesseler,
2012). Third, the collection method to acquire POC flux data introduces variability (Figure 3; Cael et al. (2018);
Fender et al. (2019); Bisson et al. (2022)), as methods differ in integration times (e.g., up to a year for a sediment
trap and instantaneous for UVP5), POC flux facets detected (e.g., UVP5 detect passively sinking particles, like
marine snow, and actively sinking particles, like zooplankton, whereas radionuclides measure only passively
sinking), or detection sensitivities (e.g., UVP5 is insensitive to very small and very large particles while radio-
nuclides are highly sensitive to physical processes in the water column). Fourth, the temporal sampling window
varies, with studies often focusing on different seasonal periods (pre‐bloom, bloom or post‐bloom period), which
may be more or less representative of the annual average (Bisson et al., 2018), and data gaps exist, particularly
during winter months at higher latitudes (e.g., OSP and PAP‐SO, Figure 2). Fifth, the depth resolution of sampling
varies across projects, affecting the choice of reference depths to obtain POC flux profiles (Figure S3 in Sup-
porting Information S1 and Buesseler, Boyd, et al. (2020)). Lastly, the dynamic nature of POC flux requires large
sample sizes for accurate long‐term estimates, rendering one‐off (episodic) measurements potentially biasing and
undersampling at different depths and times a concern (Cael et al., 2018, 2021). Indeed, the diametrically opposed
temperature‐driven geographical patterns in Henson et al. (2012) and Marsay et al. (2015) likely stems from
differences in the POC flux datasets they used, which amalgamate various collection technologies, depth ranges
covered, timings and sample sizes. Thus, researchers must carefully consider these factors before attributing
spatial or long‐term representativeness to their estimated metrics, as dataset limitations can significantly impact
results.

One implication of a lack of identifiable geographic latitudinal variability in Teff is that temperature may not be its
dominant control. Indeed, other factors controlling Teff have been proposed, such as net primary production and
phytoplankton community composition (Cram et al., 2018; Francois et al., 2002; Guidi et al., 2009; Lam
et al., 2011). Furthermore, a recent study by de Melo Viríssimo et al. (2024) examined the seasonal variability in
Teff and concluded that the high seasonality in POC flux attenuation patterns could preclude attributing a single
annual average mode of geographical behavior to Teff. Accounting for these additional factors could reveal
geographical patterns that temperature alone has not identified in our study.

Determining the fractional contribution of the six factors outlined above to measurement uncertainty would be a
valuable exercise but was beyond the scope of our null hypothesis testing exercise. While sustained observations
from time‐series sites could help sectioning uncertainty into its various contributors, future efforts should also
focus on reconciling methods and uncertainty quantification in raw POC flux data, alongside collecting equiv-
alent data from a broader range of contrasting sites. Our approach provides a first‐hand exploration of uncertainty
in POC flux measurements across a diverse array of methods, reflecting the real‐world, multiple‐choice chal-
lenges researchers face when selecting data to validate their studies. Given the variety of data collection and
processing methods, we opted to incorporate data from all available methods, addressing the researcher's practical
dilemma of dataset selection while recognizing the limits of detailed uncertainty quantification.

Figure 4. Comparison of published BCP mesopelagic transfer efficiency metrics (Martin's b coefficient, z∗ coefficient and Teff between zeu–zmeso) across six sites
associated with time‐series programs (HOT/ALOHA, BATS/OFP, EqPac, PAP‐SO, OSP and HAUSGARTEN) arranged by ocean biome (from warm subtropical, to
cold equatorial, subpolar and polar). The individual values shown are the median and 68% confidence intervals (equivalent to one standard deviation). The dark gray
horizontal line represents the group simple mean of study references, with overlaid gray bounds indicating standard deviation. For publications that employed different
methods to collect/process raw POC flux data, or sampled at different seasons of the year, their average values are reported separately and represented as distinct scatter
points (see Text S8 in Supporting Information S1 for further explanation). The y‐axis of b and z∗ is limited to a range of reasonable values (assessed after Henson
et al. (2012) andMarsay et al. (2015)); note that some values confidence intervals extend beyond this range and are truncated. All plotted values are provided in Dataset S2.
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Traditionally, assessing the BCP's mesopelagic transfer efficiency relied on sediment traps and 234Th measure-
ments. The advent of new technologies, like low‐powered optical scattering and chlorophyll fluorescence sensors
mounted on autonomous platforms such as gliders and floats (Briggs et al., 2011, 2020), and the UVP6 (Picheral
et al., 2022), brings a transformative change in the way oceanographers observe POC fluxes. These technologies
offer unprecedented spatio‐temporal resolutions, especially crucial in the undersampled mesopelagic zone (100–
1,000 m). However, as new technologies proliferate, there is a parallel need to work toward studies that inter-
compare them. Our analysis in Figure 3 highlights the importance of exercising caution when inferring large‐scale
patterns in POC fluxes from a single collection method or when combining datasets from different technologies,
as each captures different facets of POC flux at varying spatio‐temporal resolutions. Such comparative studies are
crucial for end‐users of the data, enabling them to make informed decisions about the most suitable data to use for
their specific research purposes. Importantly, uncertainties in oceanographic observations propagate into climate
models which, depending on their parametrization, variably project either enhanced or decreased mesopelagic
transfer efficiency under future climate change scenarios. This discrepancy in even the directionality—the
enhancement or reduction of POC flux processes—has obvious ramifications for our ability to predict the long‐
run effects of global warming in the ocean.

Data Availability Statement
The raw POC flux data compiled for this study and plotted in Figure 2 are available from the references cited in
Tables S1–S6 in Supporting Information S1. The data plotted in Figure 4 are available in Dataset S2. All analyses
were done using MATLAB (R2021a, MathWorks Inc) and the code and processed data are available in the
GitHub repository https://github.com/annarufas/Rufas_etal_2024_GRL and is archived at Rufas (2024). MAT-
LAB's Worst‐Case Propagation of Uncertainty algorithm (Ridder, 2023) and MATLAB's Monte Carlo Error
Propagation algorithm (Robens, 2023) were used to perform error propagation, and MATLAB's Shapiro‐Wilk
and Shapiro‐Francia normality tests (BenSaïda, 2024) were used for our ANOVA analysis. Required MAT-
LAB's toolboxes include “Curve Fitting”, “Optimization”, and “Statistics and Machine Learning.”
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