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Rethinking the words hostspot reservoir
and pristine in the environmental
dimensions of antimicrobial resistance

Check for updates

Richard Helliwell1,2, Isabel Ewin3, Alexander D. Williams4,5, Diane T. Levine6,7, Andrew C. Singer 8,
Sujatha Raman9, Carol Morris1 & Dov J. Stekel 3,10

We assess three words commonly used to represent the environmental dimensions of antimicrobial
resistance (AMR) – ‘hotspot’, ‘reservoir’ and ‘pristine’ – through two questions: how are these terms
used in published research; and how do these terms shape research being conducted?We advocate
for the community to reflect on and improve its use of language, and suggest four potentially more
productive and precise terms for AMR hazard: presence; transmission; evolution and connectivity.

Antimicrobial resistance (AMR) poses a serious global threat to human
health1, with bacterial AMR being the central topic of scientific and reg-
ulatory interest2. The One Health paradigm has brought attention to AMR
as an interlinkedhuman, animal and environmental issue3. In this article we
focus specifically on research related to the environmental dimensions of
AMR. There are three major threats associated with AMR in the environ-
ment. First, from antimicrobial pollution, including both antibiotic4 and
non-antibiotic chemicals5, especially in water environments6,7, creating
selection8 and co-selection conditions9. Second, from the presence and
transmission of mobile and mobilizable resistance gene(s)10–12 through
horizontal gene transfer (HGT), ultimately into clinically important
pathogens13–15. This includes the risk of HGT transferring previously
undocumented antimicrobial resistance genes (ARGs)16, or giving rise to
new combinations of ARGs, conferring and spreading multi-drug or pan-
drug resistance17–19. Third, from the direct transfer of AMR pathogens to
humans via contaminatedwater20, and food21 or inadvertent colonization of
commensals containing ARGs through environmental exposure22.

The environmental dimensions of AMR poses a distinct set of
challenges in comparison with the human and livestock contexts. With
the latter, research and policy have drawn attention to failures of public
and professional knowledge leading to the overuse and prescription of
antibiotics, in turn presenting as a solution the promotion of
‘judicious’23, ‘prudent’24 or ‘rational’25 antibiotic prescribing and use
behaviors26,27. In contrast, research on the environmental dimensions of
AMR draws attention to a broader set of open-ended processes, flows
and interactions between society, the environment, antimicrobial

chemicals and bacterial ecosystems implicated in the rising prevalence
of AMR28–31.

There are considerable challenges in determining how complex social-
environmental systems can be made accessible to rigorous scientific study,
as well as practically or politically manageable. It requires decisions about
which environmental and AMR entities, interactions, and networks are
most important targets for scientific analysis, across scales from molecular
to the entire planet32. These decisions bring to the fore the importance of
scientific language in framing, describing, and representing these processes.

The relationship between language, science, and society is a long-
standing topic of research for social scientists and humanities scholars33.
Within this work, language is a fundamental tool for thinking about and
acting in theworld. Language usedby scientists influences scientific thought
processes and designs, hypothesis development, methods and thus, the
conclusions we can come to. How we represent the environmental
dimensions of AMR thus influences how science is done and understood34.
This includes what science is funded, where and what is sampled, choices
over data processing and analysis, and consequently, the picture that is
collectively developed through rigorous scientific research about the
environmental dimensions of AMR, the challenges it poses to human and
animal health, and the need for potential surveillance, mitigatory and reg-
ulatory actions.

A prominent example of the study of use of language inAMR is the use
of war or eschatological metaphors such as the ‘war on superbugs’ or the
‘antibiotic apocalypse’within publicmedia and science communication35–37.
But other terminology used to represent microbes and antimicrobial
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resistance, have largely escaped broader scrutiny38. In this piece we speci-
fically study the terms ‘hotspot’, ‘reservoir’ and ‘pristine’ identified in pre-
vious work as significant representations in the field39. These words sit
within a broad spectrumof descriptive scientific language that extends from
the precise, e.g., ‘NDM-1 metallo-beta-lactamase’, to less-precise termi-
nology, e.g., ‘hotspot’. Even widely used terms such as AMR, antibiotic
resistance or drug resistance have different meanings, significance and
framings depending on the community and context within which they are
used40,41. For example, ‘resistance’ can be seen by medical professionals as
treatment failure42, or by ecologists as a strain having selective advantage43.
This imprecise language can focus attention towards areas that are thought
to be most important, but risks overemphasis of certain sites or obscuring
important dimensions of the phenomena and the hazards they present.

This Perspective is specifically aimed at natural scientists who work in
the field of AMR in the environment.Wewish to provide a launching point
for considering the language used to represent the environmental dimen-
sions of AMR and reflect on its broader consequences for both science and
governance.This article assesses twokeyquestions in relation to these terms:
(1) howdoes the scientific community (ofwhichwe are part) use these terms
in our publications; and (2) how do these terms shape research being
conducted in the environment?

Unpacking environmental terminology
We start by providing an initial definition of each of the three terms. This is
followed by an analysis and discussion of how they are used in the literature.

Hotspots
Since the 1950s, epidemiological approaches sought to identify spatial
clusters or concentrations of illness or infectious disease44. In the 1980s and
90s, AMR research mainly referred to ‘genetic hotspots’45. This changed
when ‘hotspot’wasmore explicitly popularised around the early 2000s with
calls to target infectious disease hotspots in global public health policy and
research46. This concept is a spatial metaphor that represents environments
where there is an elevated concentration of pollutants, infectious agents, or
possibilities for disease transmission and thus with the highest risk of pro-
ducing carcinogenic or pathogenic results46,47. Regarding the environmental
dimensions of AMR, hotspots are areas in which the selection, accumula-
tion, and transmission of AMR genes and bacteria are anticipated to be
concentrated.The environmentalAMRhotspot doesnot necessarily refer to
heightenedpossibilitiesof infectionper se, but also includes siteswhere there
is an abundance of both microbial life and antimicrobial pollutants.

Reservoirs
In medicine, the notion of the disease ‘reservoir’ emerged around the 1900s
and was linked to colonial authorities’ efforts to control disease, human
populations, and relations between humans and animals48. It was more
widely popularised in the 1930s due to the development of ecological
approaches to understanding disease outbreaks44. Its use in relation toAMR
dates back to at least the late 1950s49. The reservoir conceptualizes a ‘vessel’,
or ‘source’, whether this is a population of organisms or an environment,
which harbors pathogens and/or transmits them to an at-risk population.
The pathogenic potential of the reservoir is always present but nascent,
requiring a moment of transmission to mobilize that potential. In the
context of AMR, the ‘reservoir’ partially differs, because it is often con-
ceptualized in relation to genes, rather than pathogenic bacteria: non-
pathogenic environmental bacteria are a source of diverse resistance genes
that can bemobilized into bacterial pathogens39. This genetic pool is framed
as a latent environmental threat50 or ‘resistome’.

Pristine environments
The idea of ‘pristine’ environments originated in late 19th century narratives
about the Americas as having been largely pristine, uninhabited natural
landscapes prior to European arrival51. Although this is a debunked pro-
position, thenotionof pristine environments has since become important to
environmental and biodiversity science52,53. ‘Pristine’ environments are thus

imagined as untouched by human activity, and in the case of AMR, less
exposed to antibiotic, bacterial or genetic pollutants that might result in
elevated levels of AMR39. Pristine environments are positioned as a com-
parator, enabling assessment of a natural baseline, background or bench-
mark against which more contaminated areas can be compared54.

LiteratureAnalysis of the useofHotspot, Reservoir and
Pristine
To assess how these terms are used within published research into the
environmental dimensions of AMR, we used a mini-scoping review fol-
lowingPRISMAguidelines (SupplementaryNote1; SupplementaryFigure1;
Supplementary Table 1). The review allowed a rapid assessment of appro-
priate studies suitable for the aims of the research, is transparent and
reproducible, but is not comprehensive of the full set of terminology that
could have been considered, nor does it consider (relevant) articles that use
none of these terms. The mini-scoping review identified 60 articles con-
taining at least one of the key search terms for detailed assessment (Sup-
plementary Table 2).

Hotspot and reservoir are the most popular terms, often being used in
the same papers, with pristine being used the least (Fig. 1). Out of the 60
papers 42 usedhotspot at least once, 44 used theword reservoir at least once,
and 12 used pristine at least once.

Use of Hotspot in the Literature
‘Hotspot’ appeared in 42 of the 60 articles. The most common use of
‘hotspot’ is to describe a place or area55, including pharmaceutical manu-
facturing sites, sewage and wastewater56–58, wastewater treatment plants
(WWTPs)59–71, biofilm72, aquaculture73, livestock farms74, paddy soils75, and
slaughterhouses76. Thus the term hotspot encompasses a variety of spatial
scales from aquaculture or farm sites to biofilms. However, the character-
istics of the hotspot can vary: to justify research in a particular location e.g.,
in a ‘recognized’hotspot such as aWWTP; as anobjective of thework e.g., to
identify hotspots within aquatic systems; or as a hypothesis to be tested e.g.,
slaughterhouses are a potential AMR hotspot77. The hotspot is, therefore,
also a possible conclusion, the results of analysis confirming or refuting the
hypothesis or establishing a new site as a potential hotspot.

Complicating the hotspot further is its use to describe processes.
‘Consumption’ was identified as a hotspot for AMR when, for example,
products containing antimicrobials were used, or residues in food could
encourage AMR when encountering the human microbiota55. ‘Disposal’
was another stage when antimicrobials could be introduced to soil, water
and air, stimulating selection and transmission78.While these processesmap
onto the spatial hotspots identified above (farm orWWTP), the emphasis is
shifted away from the spatial and towards a set of acts or practices.

In contrast, the notion of certain places as hotspots has been challenged
by some scientists due to conflicting empirical results. Rather than con-
firming the provenance of a hotspot, the presentation of empirical findings
from hypothesised ‘hotspots’ often complicates such ready characterization
with ambiguous results79,80 and the presence of confounding factors81. Other
work has been more explicit, arguing that WWTPs and animal slurries are
not necessarily hotspots82,83.

Thus the ‘hotspot’ provides quite different ideas about where andwhat
is important to sample and study. These ideas also communicate different
responsibilities and priorities, e.g., emphasising those responsible for anti-
microbial pollution, or on individuals entering areas of exposure. Including
biofilms as hotspots72 raises challenging questions about the scale of study
necessary to comprehend the hotspot accurately; is the challenge to com-
prehendAMR in relation to the farm as a whole, or just the biofilms on said
farm? The inclusion of acts of antibiotic consumption and disposal is
arguably an effort to refine the hotspot to identify times in which the con-
centration of antibiotics or potential for AMR selection or transmission is
higher at a particular site, such as an aquaculture farm. However, this
suggests that antibiotic concentration is the key factor in defining a hotspot,
neglecting the enduring effects of consumption or disposal, including
accumulation which could be just as significant.
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Use of Reservoir in the Literature
‘Reservoir’ appeared in 44 of the 60 articles. Similar to the hotspot, the
reservoir can be presented as a justification and an objective of the work e.g.,
to identify specific reservoirs within aquatic systems that might be of con-
cern or require more research. Specifically, ‘reservoir’ is used to describe
places andorganismswhere antimicrobial resistant andmulti-drug resistant
bacterial strains could be isolated in research and from which they could
spread further into other environments84.

The reservoir is often situated as the background, the ubiquitous pre-
sence of microbes that could harbor ARGs, upon which hotspots which
might mobilize these ARGS, could be identified. This is especially the case
with aquatic systems61,85–88, commonly referred to as a reservoir because they
harbor taxonomically large and genetically varied systems, with the
potential for selection and subsequent transmission of ARGs that could
contribute to AMR. Therefore, the task is to understand this aquatic
reservoir as a whole and identify the ‘hotspots’within it, e.g., aquaculture or
WWTPs55,56,73. Following this, the reservoir is, therefore, sometimes a
defined position within a broader system that is situated as a ‘distinct’
reservoir of interest: river sediments89,90, surface waters85, soil, animal
manures and slurries75,77,91, or activated sludge87,92,93.

Wild animals were also categorized as reservoirs in these articles, be
these wild birds94,95, wild owls96 or wild ungulates97,98. These organisms
contain distinct microbiota and encounter diverse environments, including
those polluted directly or indirectly with antimicrobial pollutants or ARGs.
But in contrast to the above framing inwhich the reservoir is a place, animal
reservoirs are organisms or living vectors that circulate ARGs and resistant
bacteria between people, agricultural animals and the environment94.

A very different andwidespread use for ‘reservoir’ is to discuss AMR at
a microbiological level. Papers identified Phyla as reservoirs99, phages as
reservoirs100, Bacteroides as reservoirs65, and specific microbial species as
reservoirs101. The reservoir, therefore, attempts to communicate highly
varied ideas about the nature of the environmental dimensions of AMR. Is
the reservoir everywhere, or is it particular organisms, sites or microbes?
Each of these raises quite distinct questions about the type of research
necessary, the important dynamics of study and, following this, how the
environmental dimensions might be practically managed and understood.

Use of Pristine in the Literature
Of the 12 articles that used the word ‘pristine’, 8 used it to designate a site to
take samples from for comparison with places deemed
contaminated59,90,91,95,102–105, including rivers or preserved or controlled soils,
particularly those that have not been amended with manures containing
antibiotics. The assumption is that pristine environments can offer a

window into undisturbed microbial communities, allowing us to identify
the changes in other locations due to human-caused pollution.

Consequently, pristine appeared most often in relation to methods
and research design102. This is not to say that pristine means a lack of
ARGs, though. Indeed, ARGs are expected to be naturally occurring as
reflected in some conceptualizations of the reservoir. Following this,
some studies used the concept of pristine to justify sampling in isolated
places, for example, Antarctica soil and deep-sea sediments for
comparison90.

The terminology of a pristine environment was used directly in sci-
entific practice and data interpretation, specifically, how to establish proper
comparators and identify control or blank samples. In contrast to the hot-
spot, which was re-established in new places in response to ambiguous
results, the notion of a pristine environment faces a more fundamental
challenge to its providence, namely, the difficulty of finding a genuinely
pristine place in a polluted world.

The Uses of Hotspot and Reservoir in the Same Paper
‘Hotspot’ and ‘reservoir’ were both used in 24 papers, the largest point of
overlap (Fig. 1). In some articles, reservoir and hotspot were used alongside
each other, but are used to describe different spaces and concepts. For
example one article85 described an aquatic environment as a reservoir with a
distinct genetic community; but also as an important place for transmission
of AMR genes, a characteristic more often attributed to the hotspot in
literature39. Some articles have also used these terms to refer to different
environments, for example calling a WWTP a hotspot and a biofilm a
reservoir69; or identifying a clinical facility as a hotspot and describing
surface waters as a reservoir74.

Other studies use hotspot and reservoir comparably. For example, in
the same article, ’hotspot’ is first described as WWTPs90, but then biofilms
are identified using both ‘hotspot’ and ‘reservoir’, which emphasizes how
these terms are interlinked. Other papers use these two terms completely
interchangeably57,106, e.g., to describe animal farms98. That paper, as with
many others identified in this study, was written by scientists for whom
English might be presumed to be an additional language, which raises
additional questions about how these terms are used and understood in a
global linguistic context.

Reflections and Recommendations
Our analysis highlights that there is significant diversity within the repre-
sentation of the hotspot and the reservoir that is then folded into a singular
specification. Indeed, their diverse and imprecise use emphasizes that the
meaning and understanding of these terms can be specific to the author,
leaving the reader the challenge of interpreting what the author is
attempting to portray. Such flexibility is arguably part of the appeal of the
words ‘hotspot’ and ‘reservoir’, and their utility for both justifying the
locations of scientific study and interpreting conclusions. But it also col-
lapses diverse phenomena with different temporal and spatial scales into a
common representation that masks the ontological complexity of the pro-
blem of AMR in the environment. Furthermore, we note that although we
have examined a sub-section of academic literature, these terms circulate
more broadly in scientific and popular material, from newspaper
articles107,108 to conference posters and presentations, as well as calls for
funding.

These representations also seek to enclose the problem, so that AMR is
seen as a problem that travels, rhetorically at least, between discrete places,
out of an environmental hotspot or reservoir into (say) clinical settings or
into otherwise pristine locations, whilst alluding to forms of spatial control
that restrict flows between them as the evident solution. Our analysis of
‘pristine’ suggests the incorrectness of this framing, because said locations
also consistently contain ARGs and ARBs. AMR is a phenomenon that is
produced through interactions between numerous interrelated biological
and social drivers109, and is therefore challenging to segregate via techno-
logical or managerial interventions that do not address these systemic
drivers.

Fig. 1 | Venn Diagram showing the occurrences of the terms (hotspot, reservoir,
and pristine) in 60 studies identified in the mini-review. Hotspot and Reservoir
are the more commonly used terms, with many papers making use of both terms.
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Furthermore, there is a risk that ingrained ways of thinking about the
world limit our research and potential interventions through narrowed
thought patterns arising from uncritical use of language; research based on
these ideas may undoubtedly be of value, but we may miss other valuable
approaches. One example of how these framings might make a practical
difference is in surveillance: the hotspot/reservoir/pristine framing could
lead to more focused surveillance on areas conceived as problem or com-
parator sites; alternative framings could lead to unbiased surveillance pro-
grammes e.g., based on a spatial grid. These two framings would produce
different evaluations of the prevalence of AMR.

As we have shown, AMR is more complex and varied than can be
reasonably describedby the representationswehave examined in this paper.
Based on our analysis, we suggest four terms that could be used more
precisely to describe the AMR hazard at sampling locations: prevalence,
transmission, evolution, and connectivity (Table 1). Our contention is that
these terms could be used either instead of the terms hotspot, reservoir and
pristine, amongst other metaphors, or, alternatively, form the basis for
justifying or clarifying the use of one or more of those terms, whilst also
capturing key facets of AMR as a phenomenon and challenge.

To show how these terms might be used, we have taken a number of
examples from our work and others’ that might fit the description of hot-
spot, reservoir or pristine, and assessed themagainst thefive criteriawehave
suggested (Table 2).

Given the information in Table 2, if one wanted to refer to (say) the
slurry tank as a ‘reservoir’, the low-income country water system as a
‘hotspot’ or the Arctic as ‘pristine’, this could now be done while attributing
precise meanings to those terms. Alternatively, those terms could be avoi-
ded altogether, and replaced with precise terms withmeasurable attributes.

To conclude, the world is not composed of neatly bound spaces; it
contains a continuous gradient of prevalence, hazard, transmission, evolu-
tion, and connectivity. Our intention is to establish some potential grounds
for clarifying the dynamics of a particular place of study, and the basis for
making judgements andassessments aboutwhere it sits on sucha continuum.

Data availability
This article contains no new data. The list of papers retrieved in the scoping
reviewanddata extracted fromthemare available in SupplementaryTable 2.
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