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A B S T R A C T

Predicting coastal wave overtopping is a significant challenge, exacerbated by climate change, increasing the 
frequency of severe flooding and rising sea levels. Digital twin technologies, which utilise artificial intelligence to 
mimic coastal processes and dynamics, may offer new opportunities to predict coastal wave overtopping and 
flooding reliably and computationally efficiently. This study investigates the effectiveness of training various 
artificial intelligence models using wave buoy, meteorological, and recorded coastal wave overtopping obser
vations to predict the occurrence and frequency of overtopping at 10-minute intervals. These models have the 
potential for future large-scale global applications in estimating wave overtopping and flood forecasting, 
particularly in response to climate warming. The model types selected include machine-learning random forests, 
extreme gradient boosting, support vector machines, and deep-learning neural networks. These models were 
trained and tested using recorded observational overtopping events, to estimate wave overtopping and flood 
forecasting in Dawlish and Penzance (Southwest England). The random forests performed exceptionally well by 
accurately and precisely estimating coastal wave overtopping and non-overtopping 97 % of the time within both 
locations, outperforming the other models. Moreover, the random forest model outperforms existing process- 
based and EurOtop-based models. This research has profound implications for increasing preparedness and 
resilience to future coastal wave overtopping and flooding events by using these random forest models to predict 
overtopping and flood forecasting on wider global and climate scales. These trained random forests are signif
icantly less computationally demanding than existing process-based models and can incorporate the important 
effect of wind on overtopping, which was neglected in existing empirical approaches.

1. Introduction

Anthropogenic climate change is increasing the frequency and 
magnitude of coastal flooding and wave overtopping (Jennath and Paul, 
2024). By mid-century, 300 million individuals worldwide may expe
rience frequent coastal flooding (Kulp and Strauss, 2019). Coastal 
flooding can cause significant fatalities; in 2022 alone, it resulted in 
7398 fatalities worldwide (Rae et al., 2023). Currently, coastal flooding 
causes considerable infrastructural damage across Europe, amounting to 
€1.4 billion annually (Vousdoukas et al., 2018). Predicting coastal wave 
overtopping accurately and precisely is highly desirable given the severe 
fatalities, economic damage, and growing concerns over climate change 
(Whittaker et al., 2018).

Both empirical (for example, ‘EurOtop’ and process-based (for 
example, ‘SWASH’ (Suzuki et al., 2017) modelling approaches are now 
used to predict wave overtopping discharge at seawalls. However, they 
often incur errors due to inadequate spatiotemporal resolution, forcing 
data, bathymetry, and seawall geometry, applicability to non-deep wa
ters, as well as uncertainties in the underpinning statistical relationships 
in the case of empirical approaches (Buccino et al. 2023). Furthermore, 
important physical processes, such as wind effects, are often over
simplified or neglected altogether due to insufficient empirical under
standing (EurOtop., 2018). These factors all introduce uncertainties 
regarding the model performance (Lerma et al., 2018). Systems to 
forecast and forewarn against coastal overtopping have also been 
developed, including the Coastal Storm Modeling System (CoSMoS; 
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Barnard et al., 2014), Resilience-Increasing Strategies for Coasts tool Kit 
(RISCKit; Van Dongeren et al., 2018), Operational Wave and Water 
Level (OWWL; Stokes et al., 2021) model, and the Clouds-to-Coast 
modelling framework (Zou et al., 2013). These systems require spatial 
downscaling of wave, tide, and meteorological conditions from ocean to 
coastal scales using process-based models (e.g., Stokes et al., 2021). 
However, these models are also computationally expensive because they 
include wave transformation processes such as nearshore shoaling, 
refraction, dissipation effects, and wave-current interactions (Zhang 
et al., 2011).

Tools such as EurOtop are computationally inexpensive if adequate 
forcing data is available near the location of interest. EurOtop provides a 
set of static empirical equations derived from extensive physical model 
data, which can be performed using basic computational tools 
(EurOtop., 2018). Nonetheless, the empirical equations in EurOtop 
exhibit scatter, as some beach-structure profiles are not well represented 
by the underpinning database that is mainly representative of laboratory 
experiments (Brown et al. 2020). This scatter can cause EurOtop pre
dictions to sometimes be significantly different (i.e., out of range) from 
the observed overtopping results (EurOtop., 2018).

The OWWL model (Stokes et al., 2021) is an example of an over
topping early warning system that utilises EurOtop by integrating 
nearshore wave and water level forecasts, a roller dissipation model, and 
up to date coastal profiles to predict wave runup and overtopping at >
200 locations, over 100 km coastline. This moves beyond the static 
equations within EurOtop originally designed for seawall design and 
assessment, to a real-time forecasting system (Stokes et al., 2021). 
However, such systems inherit the shortcomings of EurOtop, notably not 
accounting for onshore and offshore wind speeds and directions, which 
are fundamental to overtopping, yet are poorly represented within 
EurOtop (Stokes et al., 2021). Moreover, coastal processes influencing 
overtopping are highly complex, interactive, and dynamic, presenting 
challenges for predictions based on empirical physical model data. 
There is an increasing desire to improve predicting wave overtopping 
beyond these conventional means using newly deployed technologies, 
such as artificial intelligence (AI), offering faster and more reliable re
sults (Habib et al., 2023). However, major advancements regarding 
observational overtopping data, which is accurate, extensive, and high 
resolution, are needed (Yue et al., 2022).

The recent development of the WireWall instrument by the National 
Oceanography Centre (NOC) marked a significant advancement in 
recording and analysing wave overtopping (Brown et al., 2020; Yelland 
et al., 2023). WireWall is an in-situ system that records field observa
tions of wave overtopping suitable for comparison with numerical pre
dictions (Lashley et al., 2022). The capacitance wire system samples at 
400hz, recording the contact signal of each wave that passes through the 
array of wires (Brown et al., 2020; Yelland et al., 2023). A quality 
control is performed to ensure at least two wires are hit within a couple 
of seconds of each other, and that predetermined signal thresholds are 
exceeded to remove noise. By correlating the corresponding wind and 
wave characteristics along with the recorded overtopping by WireWall, 
it provides, for the first time, an opportunity to develop a deep under
standing of which variables are influencing overtopping (Brown et al., 
2020).

Moreover, with the increased coastal resolution of large-scale nu
merical weather prediction models and the potential of AI, approaches 
that could serve as prototypes for real-time forecasts of coastal flooding 
are yet to be explored (Den Bieman et al., 2021). WireWall data have 
been used for validation of some overtopping systems (e.g., Lashley 
et al., 2022), however, their use as a training dataset for AI is also to be 
explored.

Several studies have examined training AI models to predict wave 
overtopping (e.g., Alshahri and Elbisy, 2022; Alvarellos et al., 2024; Den 
Bieman et al., 2020; Elbisy, 2023; Habib et al., 2023). These studies 
highlight the significant opportunities for AI to predict wave over
topping and determine which variables influence overtopping the most 

and least significantly. However, many of these studies listed above rely 
on multiple datasets used by EurOtop. These datasets do not account for 
the important variables influencing wave overtopping, such as the 
onshore and offshore wind speed and directionality. Moreover, EurOtop 
uses static empirical equations, not high temporal-resolution (wave-
by-wave) recorded observational overtopping data (Yelland et al., 
2023).

AI can incorporate machine and deep learning approaches (Gupta 
et al., 2021). Machine learning models include random forests, extreme 
gradient booster (XGBoost), and support vector machines (SVM) (Habib 
et al., 2023). Deep learning AI include recurrent, feedforward, and 
convoluted neural networks, to name a few (Schmidhuber, 2015). 
Training different AI models using high-resolution recorded overtopping 
data from WireWall, coupled with the corresponding water levels, and 
meteorological and wave characteristic data, may significantly enhance 
the quality and quantity of the training data. Moreover, WireWall 
overtopping is recorded throughout the year, providing a seasonal 
comparison of how the different variables influence overtopping. 
Training AI models on recorded overtopping data collected throughout 
the year, with relevant variables, such as wind and wave data, could 
unlock new revelations around understanding the nature of wave 
overtopping.

This study aims to train and evaluate the testing performance accu
racy of machine and deep-learning AI to predict wave overtopping 
occurrence and frequency (i.e., number of overtopping events per 10- 
min interval) in Dawlish and Penzance, southwest England. This study 
will train random forests, XGBoost, SVM, and neural networks using in- 
situ overtopping data (i.e. WireWall data). These models were selected 
to compare machine and deep learning performances for predicting 
wave overtopping. The study will also compare these AI models pre
dictions against EurOtop overtopping estimates generated by OWWL. By 
using two different observation-rich study locations, this allows the 
demonstration of the potential to scaling these AI models to be appli
cable to various flood-prone coastal locations across the UK and 
elsewhere.

2. Methods and materials

2.1. Study area

Wave overtopping was investigated in Dawlish (50◦35′01″ N, 
3◦27′52″ W) and Penzance (50◦07′10″ N, 5◦32′15″ W), southwest En
gland (Fig. 1). These locations are susceptible to frequent and intense 
overtopping, especially between September and April (Dawson et al., 
2016). On February 7th, 2014, an intense overtopping event breached 
the Dawlish seawall, causing significant infrastructural damage 
amounting to £50 million (Dawson et al., 2016). Penzance also suffers 
from frequent overtopping, whereby the promenade is often closed be
tween October and March, irrespective of the seawall defences (Yelland 
et al., 2023).

Both study locations are characterised by predominant south- 
westerly Atlantic swell waves that refract, resulting in many inshore 
waves being southernly; and less frequent, easterly wind waves (Fig. 1). 
Dawlish and Penzance wave period averages 4–10 ss (s) and 5–12 s, 
respectively (National Coastal Monitoring, 2024). Dawlish mean tidal 
range is approximately 4 - 4.4 ms (m) for spring tides and for neap tides 
is 0.2 - 2.7 m. For Penzance, the mean tidal range for spring tides range 
are approximately 5.5 m and for neap tides is 2.5 m. Dawlish has a 
prevailing south-westerly wind direction, averaging 5–7 m/s. Penzance 
has a prevailing west-southwest wind direction, averaging 5 - 10.3 m/s. 
The beach geometry for Dawlish and Penzance contains a gentle to 
moderate slope elevation (Jane et al., 2018).

The Dawlish seawall (Fig 2a) was constructed using precast concrete 
sections. This seawall reaches 5.64 m above Ordnance Datum (ODN), 
with the walls toe extending, on average, 2.8 m further out towards the 
sea (Adams and Heidarzadeh, 2023). This seawall also includes a 
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recurved section at the top for deflecting oncoming waves. The Penzance 
seawall (Fig 2b) reaches approximately 3.7 m above ODN and is slightly 
curved (35◦) for dissipating wave energies.

2.2. Wave overtopping and metocean observations

WireWall data recorded overtopping events on Dawlish and Pen
zance seawall (Yelland et al., 2024). The capacitance wire system de
tects waves contacting the wires. We use the overtopping data (Brown 
et al., 2022; Yelland et al., 2024) from wires inland of the crest of the 
seawall to assess the wave overtopping that has an inland motion and 
can potentially pose a hazard to people and infrastructure. Penzance 
WireWall deployment period was November 16th 2021 to March 15th 

2022, and March 10th 2021 to March 17th 2022 for Dawlish. The 
temporal resolution of the WireWall observations was every tide, from 
three hours before and after high tide, and the data were sampled at 
400hz and processed into 10-min statistics, intervals suitable for com
parison to operational monitoring of other metocean parameters and for 
capturing the change in environmental conditions at the coast. Two 
WireWall systems were deployed at the crest of the seawall in Penzance 
capturing long-shore variability and two other WireWall systems 
deployed in Dawlish, one at the seawall crest and a smaller (WireWand) 
system deployed behind it to measure cross-shore variability (Brown 
et al., 2022).

For Dawlish, “Rig 1″ refers to the WireWall system at the seawall 
crest and “Rig 2″ is closer inland behind Rig 1. Penzance has two rigs at 

Fig. 1. Bathymetric contoured map with deployment location for Dawlish (top) and Penzance (bottom). Wave roses of Southwest Coastal Monitoring directional 
waverider buoy for Dawlish for 2010–2023 (A) and Penzance for 2007–2023 (B).
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the seawall crest; “Rig 1″ exposed to SE and SW winds (Eastern location 
near Queens Hotel) and “Rig 2″ which is sheltered on SW winds (west
erly rig near the harbour). The Dawlish WireWall was configured with 
two adjacent rows 50 cm apart. Each row consisted of three capacitance 
sensors measuring the aerated water depth (solid flow and spray) 10 cm, 
47 cm, and 84 cm inland from the seawall edge (Fig. 2c). In Penzance, 
both rigs had similar configurations to Dawlish Rig 1, with sensors 
placed at 0 cm, 37 cm, and 74 cm inland from the seawall crest (Fig. 2d). 
This study utilised the middle wires, as the outer and inner wires a 
couple of times were washed away from the waves. Corresponding 
meteorological conditions (Fig 1) like the wind speed (U10) and the 
mean wind direction (U10 Dir) during the recorded overtopping events 
were measured at 30-min intervals using local weather stations 
(NNRCMP, 2024). 30-min wave characteristics, such as the significant 
wave height (Hs), mean period (Tm), peak period (Tp), and the mean 
wave direction (Dm) were extracted from the directional wave buoy 
(NNRCMP, 2024). A marine radar system (WaveRadar REX) recorded 
the water level (WL) every 10-min and 15-min for Dawlish and Pen
zance, respectively.

2.3. Model data processing

The wind, wave, WL, and WireWall data were processed and inter
polated in 10-min intervals. All the feature variables were assessed for 
multicollinearity using the variance inflation factor. Homoscedasticity 
was assessed using residual plots and dataset normality was analysed 
using the Shapiro-Wilk Test. Any relevant feature variables to predict 
wave overtopping were determined using the random forest variable 
importance metric (VIM). The VIM uses the random forest out-of-bag 
data to establish which feature training variables reduce the testing 
error Gini Impurity (classification) or mean square error (regression) 
(Janitza and Hornung, 2018). If a particular feature variable trained 
within the random forest considerably reduces the Gini Impurity or 
mean squared error, then this variable would be assigned a “high” 
importance (Janitza and Hornung, 2018). The AIC (Akaike Information 
Criterion) and BIC (Bayesian Information Criterion), which evaluates 
the goodness of the model fit, while penalising the model complexity, 
were used to assess the effectiveness of the different AI models training 
using various feature variables (Güney et al., 2021). See Appendix 
Table 4 for term definitions.

Fig. 2. Seawall cross section for (a) Dawlish and (b) Penzance and WireWall apparatus setup for (c) Dawlish and (d) Penzance.
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2.4. AI development

This study trained, tested, and compared supervised machine 
learning models - specifically random forests, XGBoost, and SVM - with a 
multilayer deep learning perceptron neural network to predict over
topping and frequency of overtopping during 10-min intervals for the 
two rigs at the two study locations (i.e., Dawlish and Penzance). These 
AI models were selected to compare the performance metrics between 
machine and deep learning models and different architecture designs.

Each model incorporated a binary classifier for estimating over
topping occurrence (yes/no) and a regression predictor for analysing 
overtopping frequency (i.e., number of overtopping events per 10-min 
intervals). All the models were computed using the TensorFlow library 
for neural networks (Version 2.16), XGBoost library for XGBoost algo
rithms (Version 2.0.3), and scikit-learn library for the random forests 
and SVM modelling (Version 1.4) (Chen and Guestrin, 2016; Pedregosa 
et al., 2011).

The input dataset, consisting of wave, wind, and overtopping ob
servations, for Dawlish and Penzance, was randomly partitioned into 
training (80 %), testing (10 %), and validation (10 %) for all the machine 
and deep-learning models to predict wave overtopping. By randomly 
partitioning the data, this avoids the unintentional bias in data splitting. 
This larger ratio of training data (80 %) ensured the models could suf
ficiently capture intricate relationships and correlations within the 
dataset, improving the classification accuracy (Ramezan et al., 2021). 
Additional training data also enhances the AI models understanding of 
how different feature variables influence overtopping across seasons, 
improving the predictive robustness and generalisability. Any over
fitting exhibited was evaluated using learning curves and 10-fold 
cross-validation (Nti et al., 2021). We selected 10-fold cross validation 
over 5-fold, aiming to increase the machine and deep learning model 
robustness by validating the performance on more data split combina
tions (e.g., Tsung and Yeh, 2019).

If overfitting was exhibited, the machine or deep learning models 
were regularised using Lasso regression, i.e., L1 regularisation (Yang 
et al., 2023). This regularisation type was selected from its ability to 
handle many feature variables. There was considerable class imbalance 

for the overtopping class, which represented approximately 6 % of the 
total dataset, with the remaining 94 % representing non-overtopping 
classes. To address this class imbalance, a synthetic minority 
over-sampling technique (SMOTE) was deployed for all the models. 
SMOTE creates synthetic samples for the minority overtopping class to 
balance the dataset (Wongvorachan et al., 2023). Importantly, some of 
the majority class “0″ non-overtopping values were removed from the 
initial training dataset to minimise this class imbalance. During low tide 
periods when the WireWall was not recording, this information was not 
included in the training, validation or testing as there are no observa
tions to determine if overtopping was or was not occurring. All the AI 
training datasets, including the code for constructing each model can be 
found in the supplementary material (McGlade et al., 2024).

2.4.1. Random forests
Random forests are ensemble classifiers containing multiple decision 

trees that formulate a prediction (Fig. 3a) (Galiano et al., 2012). Each 
decision tree is uniquely different through sampling the dataset with 
replacement. Sampling with replacement in a random forest means that 
each decision tree samples data randomly from the dataset, and after 
each selection, the data point is placed back into the dataset, allowing it 
to be potentially selected again with the same statistical probability 
(Özçift, 2011). By sampling with replacement, each decision tree 
uniquely trains on different data subsets, learning intricate relation
ships, correlations, and patterns within each subset (Rigatti, 2017). The 
subset of data that was not selected during the “sampling with 
replacement” process were the “out-of-bag” data (Wu et al., 2024). The 
out-of-bag data determined the variable importance for influencing 
overtopping and frequency.

A random forest model using bootstrap aggregation was constructed 
to predict the binary wave overtopping occurrence and wave frequency 
(i.e., number of overtopping events within a 10-min interval). The Gini 
Impurity assessed the random forests classification accuracy and the 
mean squared error determined the accuracy of counting the frequency 
of overtopping. The random forest model was hyperparameter tuned 
using systematic grid searches, adjusting variables such as the decision 
tree depth, number of splits and, decision tree number. The random 

Fig. 3. AI schemes for (a) random forest models (b) XGBoost, (c) SVM, and (d) neural networks.
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forest was then regularised (if needed) and the threshold was adjusted to 
optimise the performance.

2.4.2. XGBoost
An XGBoost is another decision tree classification model (Fig. 3b) 

(Ghatkar et al., 2019). XGBoost iteratively learns from the mis
classifications of previous trees (Velthoen et al., 2023). The XGBoost was 
constructed using the booster parameter set to ‘gbtree.’ This XGBoost 
algorithm was programmed originally for 100 boosting rounds. The 
number of rounds was selected to view, using learning curves, the 
optimal number of boosting rounds to maximise performance and 
minimise overfitting. This XGBoost was then hyperparameter tuned 
using grid searches, altering the learning rate, booster type, verbosity, 
eta, decision tree depth, and the maximum number of decision tree 
nodes. After tuning, the XGBoost was regularised (if necessary), and the 
threshold was adjusted to yield optimised performance.

2.4.3. Neural networks
A neural network differs from machine learning models by gener

ating predictions using a design inspired by the human brain (Park et al., 
2019). In this design, the neural network receives the training dataset 
through its input layers (Fig. 3d) (Wright et al., 2022). Like the human 
brain, the input layer simulates an external sensory stimulus (Prieto 
et al., 2016). The neural network has hidden layers with multiple neu
rons that receive and process information from the input layer (Wright 
et al., 2022). The hidden layer is essentially the centre of the 
decision-making process, and the output layer represents the final pre
diction (Shen et al., 2021).

A neural network was computed using a sigmoid activation function 
for binary classification and a rectified linear unit for regression classi
fication. The neural network was compiled using the Adam optimiser. 
This optimiser was chosen for its ability to adjust its adaptive learning 
rate for each feature variable within the dataset, which is critical for 
parameters with considerably different scales (Nwankpa, 2020). Early 
stopping was deployed during stochastic gradient descent to prevent 
overfitting by reducing the number of necessary epochs during the 
model training. The neural network was hyperparameter-tuned to 
optimise performance using systematic grid searches, adjusting the 
number of hidden layers, activation function type, neurons per layer, 
batch size, and learning rate. After the neural network was constructed, 
tuned, and regularised (if needed), the threshold was adjusted to 
harmonise the balance between the recall and precision values (i.e., F1 
score, see Section 2.5).

2.4.4. SVM
SVM using a non-linear kernel can map the data into a high dimen

sional hyperspace (Fig. 3c) (Balraj et al., 2022). The SVM then finds the 
optimal hyperplane which separates the data within this hyperspace 
(Balraj et al., 2022). A SVM was computed using a linear kernel to map 
the dataset onto a higher dimensional hyperplane. This kernel was 
selected using systematic grid searches to find the optimal kernel type. 
The SVM was hyperparameter tuned, regularised (if overfitting was 
exhibited) and evaluated on the testing dataset.

2.5. AI performance metrics

The accuracy of the AI for predicting the binary classification of 
overtopping was evaluated using the F1 score, described as the har
monic mean between the model precision and recall (Chicco and Jur
man, 2020). The F1 score is calculated as: 

F1 =
TP

TP + 0.5(FP + FN)
(1) 

where TP represents the number of true positives, FP is the number of 
false positives, FN denotes the number of false negatives. The F1-score 

can have values between 0 and 1, with 1 representing the best score. 
This study selected this score to balance consideration between the 
recall and precision, aiming to lower the total number of false positives 
and negatives. For machine learning purposes, an F1 score exceeding 
0.70 is considered a good and adequate model (Humphrey et al., 2022; 
Yacouby and Axman, 2020). There were considerable data imbalances 
for the overtopping class with WireWall recording non-overtopping 94 
% of the time and only 6 % overtopping events. The study by Chicco and 
Jurman (2020) cautions only using the F1 score for evaluating the model 
accuracy with these data imbalances, recommending using the Mat
thews Correlation Coefficient (MCC). Unlike the F1 score, MCC ad
dresses the AI performance within all four quadrants of the confusion 
matrix (true positives, false negatives, true negatives, false positives) 
(Chicco and Jurman 2020). Therefore, in addition to using the F1 score, 
this study also evaluated the model performance using MCC. The MCC 
score is calculated as: 

MCC =
TP x TN − FP x FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) + (TP + FN) + (TN + FP) + (TN + FN)

√ (2) 

where TP is true positives, TN is true negatives, FP is false positives, and 
FN is false negatives. Receiver operating characteristics (ROC) evaluated 
all the machine learning performances by plotting the model’s true 
positive rate (sensitivity) against false positive rate (1-specificity). The 
total Area Under the ROC curve (AUC) measures the model’s ability to 
categorically distinguish between positive and negative examples. An 
AUC of 1 indicates perfect classification.

The AI performance predicting overtopping frequency was also 
evaluated using the correlation coefficient (R2). However, this study 
goes beyond the conventional means of only reporting this statistic and 
analyses a suite of error metrics relating to R2. Additional error metrics 
include the testing dataset root mean square error (RMSE), mean ab
solute error (MAE), mean square error (MSE), bias and the Brier Skill 
Score.

2.6. AI framework

The development, training, and evaluation of all the AI models to 
predict wave overtopping followed a three-step workflow (Fig. 4). The 
first step involved incorporating the relevant training data, including 
weather station, wave buoy, tide gauge, and WireWall overtopping data. 
The second step involves selecting the relevant AI model and following 
the guidelines to construct the model. The third step involves reviewing 
the probability of overtopping occurrence along with the overtopping 
frequency per 10-min window.

2.7. Comparison to EurOtop predictions

To provide a comparison to a traditional method, predictions of 
overtopping discharge were generated using EurOtop equations. The 
same wave and tide forcing was used as in the machine learning models, 
but as EurOtop equations require information about hydrodynamic 
forcing at the seawall toe, the nearshore wave conditions at the wave 
buoys were first transformed into the coast using the parametric breaker 
dissipation model described by Janssen and Battjes (2007). This itera
tively solves for wave induced set up and shoaling/broken wave height 
across a coastal bathymetric profile. The coastal profiles at Penzance and 
Dawlish were obtained by merging RTK-GPS topographic surveys of the 
intertidal beach beneath the WireWall with nearshore multibeam 
bathymetric surveys (nominal vertical accuracies of ±0.03 m and ±
0.15–0.20 m, respectively) collected by the regional coastal monitoring 
programme (NNRCMP, 2024). More details on the method for 
computing wave conditions at the seawall are provided in Stokes et al. 
(2021). The wave overtopping discharge (Eq. (3)) (m3/s per m crest 
width) at a given point in time was then estimated using EurOtop’s 
equations for a vertical seawall, given as (EurOtop, 2018) 
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q
̅̅̅̅̅̅̅̅̅̅̅

gH3
m0

√ aexp
[

−

(

b
Rc

Hm0

)c]

for Rc ≥ 0 (3) 

which predicts that Q/

̅̅̅̅̅̅̅̅̅̅̅

gH3
m0

√

increases exponentially as the crest free
board (Rc) decreases relative to the spectral significant wave height at 
the seawall toe (Hm0). "a, b, and c" are fitted coefficients which vary 
depending on the structure type and forcing conditions. The left-hand 
side of Eq. (3) represents the wave overtopping discharge normalised 
by wave height. The right-hand side represents the crest Rc normalised 
by wave height. Stokes et al. (2021) found that overtopping enhance
ment due to onshore winds combined with impulsive breaking using γw 
= 2 (as suggested in EurOtop., 2018) was found to produce unrealisti
cally high overtopping volumes in many cases and the effect of wind on 
overtopping was therefore disregarded (γw = 1), highlighting the de
ficiencies that traditional methods have regarding the influence of wind. 
The influences of a shallow foreshore at both sites, a toe mound in front 
of the seawall at Dawlish, and ‘impulsive’ wave breaking (when 
breaking occurs directly onto the sea defence) were included in the 
calculations as per the guidance in EurOtop. (2018). EurOtop generates 
wave discharge output volumes. Any overtopping volumes exceeding 

0.1L/s/m were converted to overtopping (1) classification, and any 
volumes below 0.1L/s/m were converted to non-overtopping (0). The 
value of 0.1L/s/m was selected based on the EurOtop Manual (2018) as 
the tolerable mean wave overtopping discharge to ensure pedestrian 
safety.

3. Results

3.1. Variables influencing wave overtopping

According to the AIC and BIC estimates, the optimal variable com
bination to train these machine and deep learning models, which yielded 
the highest AIC and BIC scores, were the Hs, Tm, U10 Dir, Dm, U10, and 
the freeboard (Rc) (computed as the distance between the seawall crest 
and WL). In accordance with EurOtop. (2018), the random forest vari
able importance metric identifies the Rc and Hs as important variables 
which influence wave overtopping for both rigs in Dawlish and Pen
zance (Fig. 5). Specifically, Hs influences wave overtopping more 
noticeably in Dawlish (Fig. 4a) and the Rc in Penzance (Fig. 5). These 
findings highlight the need to incorporate these variables into AI models 
to predict wave overtopping accurately. The SVM yielded poor predic
tive performance results (not shown).

Fig. 4. Workflow process to build the overtopping AI models.

Fig. 5. Variable importance for (a) Dawlish at Rig 1 (dark blue) and at Rig 2 (light blue) and (b) Penzance at Rig 1 (dark green) and at Rig 2 (light green). The relative 
importance for each feature variable is computed using the Gini Impurity. Variables include Hs, Tm, Dm, U10 Dir, U10, and Freeboard (Rc).
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In both locations, Tm has the least influence on overtopping for both 
rigs, whereas U10 and U10 Dir are very important variables (fourth and 
third in variable importance, respectively). There is likely significant 
correlation between the wind and wave variables, potentially leading to 
interchangeability in feature importance depending on the random 
forest initialisation. To fully assess U10 and U10 Dir unique contribution, 
the random forest model was retrained without these wind features. 
Including wind variables improved the overtopping occurrence pre
dictions, with F1 scores consistently above 0.75 and R2 > 0.70 (Tables 1 
and 2). Excluding the wind features decreased the F1 scores significantly 
(e.g., Penzance Rig 2; F1 = 0.27) and reduced the R2, especially at Rig 2 
in Dawlish and Penzance (R2 = 0.19, R2 = 0.25, respectively).

The key number feature variables influencing wave overtopping 
varies between Dawlish and Penzance. In Penzance, Hs and Rc notice
ably influence overtopping, suggesting these two variables alone could 
reliably and accurately predict overtopping (0.3 and 0.28 mean 
importance, respectively). While Rc and Hs are important in Dawlish, 
wind-related variables, such as U10, have a more pronounced impact (e. 
g., 0.18 at Rig 1 in Dawlish). These findings suggest that while all these 
variables are important for predicting overtopping, locations like Pen
zance have fewer predominant variables influencing overtopping, 
whereas, in Dawlish, the influence is more distributed among various 
variables.

In Dawlish, overtopping frequency increases with increasing Hs once 
Hs exceeds 2 m (Fig. 6). Overtopping frequency exceeds 100 events per 
10-min interval when Hs is around 2 m, and the Rc is approximately 
4.5–5 m Chart Datum (CD). The overtopping frequency is significantly 
influenced by local winds, exceeding 50 overtopping events per 10 min, 
during moderate wind speeds (U10 = 5–15 m/s). In Penzance, high 
overtopping frequency is observed for Hs ≥ 2.5 m, and Rc is 3.5 - 5 m CD. 
Overtopping occurs most frequently during SE winds when the U10 is 
approximately 5 - 20 m/s.

In both locations overtopping occurrence is less frequent but still 
happens during low wave conditions (Hs < 1 m). Overtopping occurs at 
both sites during E low SE-E winds. These findings demonstrate the 
importance of appreciating which feature variables are more relevant 
than others when predicting overtopping occurrence, potentially 
reducing the data intensity required for training these AI models, 
excluding redundant and unnecessary feature data. However, these 
findings do not suggest or recommend ignoring low scoring variable 
importance features, such as Tm and Dm, but rather, suggests a careful 
consideration when inputting such variables into predictive AI model
ling like random forests with the aim of reducing performance error 
metrics.

3.2. Predicting wave overtopping occurrences

For Dawlish, the random forest model outperformed the XGBoost 
and neural network for estimating wave overtopping occurrence (i.e., 
overtopping versus non-overtopping) at Rig 1 and Rig 2, yielding an F1 
score of 0.83 and 0.80, respectively (Table 3). The random forest had a 
high cross-validation accuracy for estimating overtopping and non- 
overtopping classes for both rigs at 96 % and 97 %. For both rigs, the 
random forest model correctly identified wave overtopping 80 % and 81 
%, with 85 % and 79 % precision for Rig 1 and Rig 2, respectively. MCC 
confirms the high F1 scores for both rigs at 0.79 and 0.76. The other 

models, particularly the XGBoost, performed very well for estimating 
overtopping and non-overtopping; however, regarding the predictive 
performance, the random forest model outperformed the other models. 
For the specific random forest hyperparameter tuning metrics, as well as 
the tuning metrics for the XGBoost, neural network, and SVM, see 
Tables 1–3, Appendix. The ROC curves for the XGBoost, random forest, 
and neural networks all show low instances of false positives with a high 
area under the curve (> 0.97) for Dawlish at Rig 1 and Rig 2 (Figs. 7 and 
9). The AUC values indicate that each model has an excellent discrimi
nation between overtopping and non-overtopping classes (AUC = 0.95 – 
0.97). All three models have slightly more challenges detecting over
topping compared to non-overtopping. The Penzance ROC curves for the 
XGBoost, random forest, and neural networks all show reasonably low 
instances of false positives, with a high area under the curve for Pen
zance at Rigs 1 and 2 (Figs. 8 and 10). However, the neural network, 
particularly at Rig 2, shows high instances of false positives and 
negatives.

For Penzance, again the random forest model outperformed the other 
models for estimating wave overtopping within both rigs (Table 4). For 
Rig 1 and Rig 2, the random forest model yielded an F1 score of 0.86 and 
0.75, and an accuracy of 86 % and 85 %, respectively. Moreover, the 
random forest precision was 86 % and 65 %. Overall, considering 
overtopping and non-overtopping classes, the random forest achieved a 
cross-validation accuracy of 97 % and 95 %. MCC confirms the 
reasonably high F1-scores of 0.81 and 0.71, respectively. Since false 
negatives are significantly important, minimising such false negatives, 
specifically for random forests, Gupta et al. (2021) recommends 
adjusting the model’s recall level. This adjustment involves changing the 
threshold level, which may negatively impact the precision score. 
Increasing the recall reduces false negatives at the expense of potentially 
increasing false positives. For predicting wave overtopping, with the aim 
of minimising casualties, this approach may indeed be appropriate. The 
trade-off with reducing false negatives at the expense of more false 
positives may have economic implications with unnecessary closure of 
locations for safety purposes.

The random forest model achieved the highest predictive perfor
mance for both rigs at Penzance and Dawlish, followed by the XGBoost, 
with the neural network showing the weakest performance, likely 
attributing to limited training data. The random forest exhibits variable 
importance metrics, allowing the model to prioritise on more important 
variables, potentially giving this model better performances over the 
others. See Section 4.2 for detailed performance insights.

3.3. Random forest model error performance

The evaluation of the misclassified predictions in the confusion 
matrices for Dawlish and Penzance shows the random forest out
performing the other AI models (Figs. 7 and 8). This analysis focuses on 
the misclassified variables within the random forest model testing 
dataset, particularly examining the relation between the misclassified 
instances and the different feature variable values (e.g., Hs, Tm). We 
emphasise analysing false negatives due to their significant implications 
for safety and damage. In other words, it is important to understand the 
model classifications and mainly address the random forest limitations 
when, falsely reporting non-overtopping.

In Dawlish, several false negatives occur when the overtopping 

Table 1 
Random forest performance (binary model) for the testing dataset comparing the addition and exclusion of U10 and U10 Dir features.

Including U10/U10 Dir Excluding U10/U10 Dir

Rig Location F1 Recall Precision MCC F1 Recall Precision MCC
1 Dawlish 0.83 0.80 0.85 0.79 0.78 0.76 0.81 0.77
2 Dawlish 0.80 0.81 0.79 0.76 0.67 0.58 0.80 0.67
1 Penzance 0.86 0.86 0.86 0.81 0.84 0.82 0.87 0.81
2 Penzance 0.75 0.85 0.85 0.71 0.32 0.27 0.38 0.30
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Table 2 
Random forest performance (regression) for the testing dataset comparing the addition and exclusion of U10 and U10 Dir features.

Including U10/U10 Dir Excluding U10/U10 Dir

Rig Location R2 MAE RMSE MSE R2 MAE RMSE MSE
1 Dawlish 0.81 0.66 3.05 9.28 0.65 0.87 4.07 16.6
2 Dawlish 0.76 0.23 1.90 3.62 0.19 0.40 3.47 12.1
1 Penzance 0.84 2.53 7.87 6.91 0.73 3.41 10.24 104
2 Penzance 0.84 11.8 15.3 2.33 0.25 0.70 5.37 29

Fig. 6. Wave and wind overtopping relationship for Dawlish (a,b) and Penzance (c,d). (a,c). Scatter plots for freeboard (Rc) and Hs for Dawlish and Penzance, 
respectively. (b,d). Scatter plots for U10 and U10 Dir for Dawlish and Penzance, respectively. Scatter colours represent recorded overtopping frequency.

Table 3 
AI performance metrics for estimating overtopping occurrence in Dawlish.

Rig Model AIC BIC F1 Precision Recall Accuracy MCC Brier Score

1 Random Forest 421 467 0.83 0.85 0.80 96 % 0.79 0.031
XGBoost 394 345 0.81 0.82 0.79 94 % 0.77 0.032
Neural Network 400 354 0.70 0.72 0.67 93 % 0.77 0.032

2 Random Forest 345 433 0.80 0.79 0.81 97 % 0.76 0.011
XGBoost 367 400 0.78 0.74 0.80 95 % 0.71 0.019
Neural Network 342 361 0.72 0.70 0.74 93 % 0.70 0.034
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frequency is low, typically around 1–2 overtopping events per 10-min 
window. (Fig. 11). In other words, when the random forest creates 
false negatives, the overtopping frequency is not severe. There is one 
recorded instance in April 2021 when the random forest model mis
classified no overtopping when the overtopping frequency was four 
overtopping events per 10-min window. There are several patterns be
tween misclassified false negatives and the feature variable values. For 
example, when the Hs is between 0.7 and 1.1 m, false negatives 
considerably increase. Several false negatives derive when the Tm is 
between 3.8 and 4 s and when the Rc levels range between 2.5 and 3 m.

In Penzance, like Dawlish, misclassified false negatives only occur 
when the overtopping frequency is low (Fig. 12). In late January and 

mid-February, the random forest model misclassified non-overtopping 
in two instances during an overtopping event with a frequency of 
four. Similar patterns exist between the feature variable values and the 
recording of false negatives. Many false negatives occur when the Rc is 
between 4 and 5 m. Moreover, when the Hs is approximately 1 m, the 
random forest sometimes misclassifies. Overall, false negatives occur 
when overtopping frequency is low with these false negatives occurring 
between Hs = 0.7 to 1 m and with Rc = 2.5 to 3 m for Dawlish, and Rc =

4.5 to 5 m in Penzance.
The random forest model misclassification attribute to small ranges 

in Rc, Hs, and Tm levels (wave steepness). This misclassification within 
these ranges is unsurprising, given that several of these key variables, 

Fig. 7. Confusion matrix for machine and deep-learning models at Dawlish: random forest Rig 1 (a) and rig 2 (b); XGBoost Rig 1 (c) and Rig 2 (d); and neural network 
Rig 1 (e) and Rig 2 (f). In each panel, top left corresponds to TN, top right to FP, bottom left to FN and bottom right to TP.
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particularly the Hs and Rc, were regarded as the most important vari
ables influencing overtopping for both locations (Fig. 5). These mis
classifications are similar for Dawlish and Penzance, irrespective of local 
wave and wave differences. The random forest model is highly robust 
above and below this specified Rc of 2.5 - 3 m, Hs, and Tm ranges; 
however, the random forest is sensitive to uncertainty within these 
ranges. These feature variables have complex non-linear interactions. 
For example, a combination of high Tm levels and low Rc may typically 
indicate overtopping; however, if the Hs is also low, overtopping may 
not occur.

This non-linear relationship may become stochastic during these 
specified ranges. By “stochastic” in this context, there is noise within 

these feature variable ranges, which “confuses” the random forest model 
to report non-overtopping during overtopping events. Moreover, many 
of these false negatives, particularly for Dawlish, occur during the 
summer. These findings are unsurprising given that there are fewer 
overtopping events during summer, meaning the random forest has 
fewer training data to learn, suggesting that seasonality is not fully 
addressed. The random forest needs further improvement for predicting 
overtopping occurrences during summer periods, indicating that there 
are potential challenges for the model to discern between overtopping 
and non-overtopping classes. Wave overtopping is considerably less 
problematic during the summer compared to spring and winter, with 
many businesses and local authorities easing restrictions to prevent 

Fig. 8. Confusion matrix for AI models at Penzance: random forest Rig 1 (a) and Rig 2 (b); XGBoost Rig 1 (c) and Rig 2 (d); and neural network Rig 1 (e) and Rig 2 (f). 
In each panel, top left corresponds to TN, top right to FP, bottom left to FN and bottom right to TP.
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overtopping hazards. These easing restrictions, coupled with the prob
ability of misclassifying false negatives during the summer periods, 
further emphasise the importance of addressing such misclassifications 
during the summer. These findings demonstrate many instances of the 
random forest correctly classifying overtopping and non-overtopping 
during the summer; however, the results emphasise the importance of 
addressing these few instances of misclassification.

3.4. Predicting wave overtopping frequency

Many overtopping predictive tools, such as EurOtop, have been 
developed for coastal scheme design which focuses on extreme events to 
test design criteria. These tools have since been adopted for hazard 
forecasting services. However, nuisance overtopping, under less extreme 
conditions, is not well predicted by existing tools because the datasets 
underpinning the development of numerical tools is typically generated 
using physical models also designed to simulate extreme conditions. The 
WireWall dataset used here, contains data for all overtopping conditions 

(severities) over several seasons, and thus, has enabled the development 
and testing of three different AI approaches to identify a reliable 
approach suitable for predicting typical, windy spring tide, conditions, 
which are likely to be experienced by coastal locations at any time of the 
year alongside the low probability of extreme conditions.

In Dawlish, the random forest model for both rigs exhibited the 
strongest predictive performance for estimating the frequency of wave 
overtopping (Fig. 13; Table 5). There were no statistically significant 
differences between the random forest predictions and the overtopping 
frequency estimations in Dawlish for Rig 1 and Rig 2 (t = 1.37, p = 0.17; 
t = 0.55, p = 0.58, respectively). The random forest also had very low 
testing error metrics (Table 5). However, as the overtopping frequency 
increases the random forest error performance increases (Fig. 13). The 
XGBoost, particularly for Rig 1, exhibited high predictive performance; 
however, it had difficulties estimating overtopping frequency, unlike the 
random forest in Rig 2. Both the random forest and XGBoost exhibited 
lower mean bias rates than the neural network. In Penzance, the random 
forest model exhibited the highest predictive performance for estimating 

Fig. 9. Receiver operating characteristics (ROC) curves for Dawlish at (a,b) Rig 1 and (c,d) Rig 2. Right panels (b,d) represent the zoomed area in left panels 
(dashed rectangle).
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overtopping frequency within Rig 1 (Fig. 14; Table 6). However, the 
neural network has the highest predictive performance to predict 
overtopping frequency in Rig 2 (Table 6). These findings demonstrate 
the ability of random forests predicting overtopping frequency; how
ever, they indicate the opportunities of using different AI model types to 
estimate overtopping frequency. There were no statistically significant 
differences between the random forest overtopping predictions and the 

overtopping observational data for Rig 1 and Rig 2 (t = 2.33; p = 0.17; t 
= 0.55, p = 0.58, respectively). The XGBoost exhibited a strong pre
dictive performance with low error metrics for both locations. However, 
the neural network indicated a low predictive performance with a high 
error (RMSE = 18.9) for estimating overtopping in Rig 1.

The random forest best predicted overtopping frequency for both rigs 
at Dawlish and Rig 1 for Penzance. The XGBoost performed the second 

Fig. 10. Receiver operating characteristics (ROC) curves for Penzacne at (a,b) rig 1 and (c,d) rig 2. Right panels (b,d) represent the zoomed area in left panels 
(dashed rectangle).

Table 4 
AI performance metrics for estimating overtopping occurrence in Penzance.

Rig Model AIC BIC F1 Precision Recall Accuracy MCC Brier Score

1 Random Forest 489 476 0.86 0.86 0.86 97 % 0.81 0.006
XGBoost 467 460 0.85 0.88 0.82 95 % 0.80 0.025
Neural Network 386 311 0.74 0.64 0.87 93 % 0.64 0.089

2 Random Forest 345 433 0.75 0.65 0.85 95 % 0.71 0.032
XGBoost 411 423 0.71 0.77 0.66 92 % 0.71 0.023
Neural Network 364 334 0.59 0.70 0.74 84 % 0.70 0.034
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best, followed by the neural network. However, the neural network 
performed the best at Rig 1 in Penzance. These findings demonstrate the 
neural network exhibits unstable behaviour, with its predictive perfor
mance varying significantly (i.e., R2 = 0.92 at Penzance Rig 2 and R2 =

0.45 at both rigs in Dawlish). These varying performances likely result 
from the imbalances in the training data. Approximately 97 % of over
topping within the training dataset was categorised as non-overtopping, 
while the remaining 3 % represented overtopping. These data imbal
ances may cause the neural network to struggle to capture patterns in 
the minority class (overtopping). At Rig 2, data imbalances were still 
exhibited (94 % non-overtopping: 4 % overtopping); however, such 
imbalances were less extreme than Dawlish at both rigs (98 % non- 
overtopping: 2 % overtopping). The more extreme data imbalances at 
Dawlish may explain this significant drop in model performance. 
Random forests ensemble learning captures patterns from different data, 
reducing the overreliance in the majority class. XGBoost model itera
tively learns from mistakes from inaccurately predicting the minority 

class, essentially improving over and handling class imbalance. These 
findings suggest using random forests and XGBoost over neural networks 
when datasets are imbalanced.

3.5. Comparing AI with EurOtop guidance

The random forest model, which demonstrated having the highest 
predictive performance for estimating overtopping, was compared 
against OWWL. To reiterate, OWWL is currently one of the most 
developed operational suite of models for predicting overtopping 
(Stokes et al., 2021). OWWL, like many other models rely on static 
equations derived from EurOtop and omit key parameters like U10 for 
estimating overtopping. The focus of this study is to evaluate the highest 
performing AI model (i.e., random forest) against OWWL for predicting 
overtopping. The results confirm the random forest significantly out
performing OWWL for estimating overtopping in Dawlish (F1 = 0.81, F1 
= 0.65, respectively) (Fig. 15). The random forest outperforms OWWL 

Fig. 11. Random forest false negatives predictions for estimating wave overtopping in Dawlish ± 3 h either side of high tide. Scatter colours in green represent the 
number of missclasified events.
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slightly for estimating non-overtopping instances (F1 = 0.98, F1 = 0.97, 
respectively). These findings indicate the OWWL model having a strong 
performance for estimating non-overtopping; however, a considerably 
weaker performance estimating overtopping, which the random forest 
can reliably estimate. The results indicate the potential importance of 
incorporating U10 and U10 Dir when predicting the overtopping class. 
These are significantly important variables influencing overtopping, 
that the OWWL model (as well as most current empirical approaches) 
disregard.

For Penzance, the random forest model significantly outperforms 
OWWL for estimating overtopping instances (F1 = 0.86, F1 = 0.07, 
respectively) (Fig. 15). Moreover, the random outperforms OWWL 
slightly for estimating the non-overtopping class (F1 = 0.90, F1 = 0.97, 
respectively). However, indicated by the standard error bars, there is 
much improvement needed for the random forest, particularly for Pen
zance. These error bars likely attribute to the random forest model 
having challenges addressing false negatives outlined in Section 3.3. The 

error bars may be attributed to the smaller training dataset within 
Penzance, meaning the random forest has fewer data points to learn 
intricate relationships.

4. Discussion

This study explored the role of AI in predicting wave overtopping 
occurrence and overtopping frequency (i.e., number of overtopping per 
10-min) in Dawlish and Penzance. The results indicated that Hs, Rc, and 
U10 are key variables that influence overtopping. The strong predictive 
skills presented here demonstrate the significant opportunities of using 
AI to predict overtopping accurately and precisely. The random forest 
exhibited the highest predictive performance for estimating occur
rences, followed by the XGBoost and the neural network, likely attrib
uting to the ability of the random forest to rank feature importances.

The random forest also exhibited the highest performance for pre
dicting overtopping frequency, followed by the XGBoost and neural 

Fig. 12. Random forest false negative predictions for estimating wave overtopping in Penzance ± 3 h either side of high tide. Scatter colours in green represent the 
number of missclasified events.
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network. The neural network presented varying performance results, 
likely because the neural network was most sensitive to class imbalances 
present. The central finding of this study is the random forest model 
outperforms existing models, such as OWWL, which is reliant on 
EurOtop, for estimating overtopping. This study sheds light around the 
significant opportunities for AI within the field of coastal engineering 
and ocean modelling.

4.1. Variables influencing overtopping

Hs, Rc, and U10 were identified as significant variables influencing 
overtopping. As expected, Hs and Rc are critical variables influencing 
overtopping (Salauddin and Pearson, 2019; Zheng and Li, 2015). Higher 
Rc levels increase the wave energy dissipation before waves reach the 
crest, decreasing the likelihood of waves exceeding the crest height and 
overtopping. Our study highlights the important effect of U10 on 

Fig. 13. Regression analysis comparing the random forest predictions against the observational overtopping data in Dawlish: (a) random forest - Rig 1, (b) random 
forest - Rig 2, (c) XGBoost - Rig 1, (d) XGBoost - Rig 2, (e) neural network - Rig 1, and (f) neural network - Rig 2.

Table 5 
AI model performance for estimating wave overtopping frequency in Dawlish.

Rig Model R2 RMSE MSE MAE Mean 
Bias

T-Test

1 Random 
Forest

0.81 3.05 9.28 0.66 0.11 % t = 1.37; p =
0.17

XGBoost 0.77 3.28 10.7 0.69 0.01 % t = 0.15; p =
0.88

Neural 
Network

0.45 5.1 26 2.43 0.83 % t = 6.42; p =
< 0.01

2 Random 
Forest

0.76 1.90 3.62 0.23 0.08 % t = 0.55; p =
0.58

XGBoost 0.53 2.65 7 0.30 0.16 % t = 1.03; p =
0.30

Neural 
Network

0.45 2.85 8.14 1.08 0.83 % t = 5.57; p =
0.675
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overtopping, which is not currently included in existing empirical ap
proaches. Scaling the impact of U10 on overtopping is challenging, 
particularly in laboratory or physical models. Wind effects on wave 
transformation (from deep water to the structure tow) are highly 
case-specific, causing significant location-based variability that empir
ical models struggle to account for. Recent work by Van Gent et al. 
(2024) addresses the challenge, demonstrating that wind can increase 
overtopping discharges at seawalls by a factor of up to four and provides 
an empirical guideline for incorporating this effect. While this random 
forest does not yet incorporate this guidance directly, acknowledging 
the influence of U10 offers valuable context and may significantly 
improve the predictive performance of estimating wave overtopping, as 
demonstrated from our results, which show the exclusion of wind 
related variables significantly decreasing the random forest predictive 

performance.
Several studies have investigated the effects of onshore wind on 

wave overtopping, with some prediction (static) formula proposed (e.g., 
De Chowdhury et al., 2019; Di Leo et al., 2022; Durbridge, 2021; Mur
akami et al., 2019; Pullen et al., 2009). Di Leo et al. (2022) shows 
onshore wind significantly enhancing overtopping, particularly with 
overtopping discharges below 1L/s/m, with the study proposing a wind 
factor influence on overtopping. Pullen et al. (2009) demonstrated high 
onshore wind speeds (15–20m/s) increase overtopping discharges by 
dispersing water farther inland, suggesting an empirical “spray transport 
factor” that could triple discharge under high wind conditions. U10 is 
very important, particularly for Dawlish Rig 2 (i.e. inland rig), demon
strating the importance of U10 dispersing water inland. Additionally, 
wind direction almost equals the importance of Hs in wave overtopping 

Fig. 14. Regression analysis comparing the random forest predictions against the observational overtopping data in Penzance: (a) random forest - Rig 1, (b) random 
forest - Rig 2, (c) XGBoost - Rig 1, (d) XGBoost - Rig 2, (e) neural network - Rig 1, and (f) neural network - Rig 2.
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in Rig 2 in Penzance, again demonstrating the significance of including 
the wind in locations affected by bimodal conditions, such as the ones 
presented in our study.

Wind shadowing (contribution) can decrease (enhance) Hs and water 
levels, and ultimately overtopping (Young et al., 2012). The results 
reveal the ranking of these variables is consistent across the two study 
locations. These findings reveal the opportunities of using these selected 
few variables to estimate overtopping across large spatial scales accu
rately. However, this study only investigated two locations, so the 
analogy of using these three variables to predict overtopping across 
multiple locations must require verification and further testing (Yalta 
and Jenal, 2009). Our study reveals Tm as a minor variable influencing 
wave overtopping, which agrees with Buccino et al. (2023), showing 
that in the surf zone, wave energy is linked with Tm, creating a false 
impression that Tm influences overtopping, where in reality, the study 
shows overtopping is influenced by wave height and water levels near 
the seawall. For our study sites, it is thought that the seawalls are more 
exposed to wind sea than swell waves due to the structure orientation 
and bay geometry relative to the prevailing swell direction. This may be 
a factor influencing the importance of Tm.

This study deviates from the EurOtop model, which employs Hs 
measured directly at the seawall toe. Given the limited availability and 
operational challenges of direct Hs measurements from the seawall toe, 
Hs was recorded from nearshore coastal waters using wave buoys. This 

modification of obtaining Hs from nearshore coastal waters is supported 
by Lashley et al. (2023), who advocate using deep-water wave param
eters for training predictive models to estimate overtopping. This study 
obtained wave characteristics from deeper waters, which may explain 
better how these variables interrelate to influence wave overtopping and 
strengthen the robustness of the dataset used for training these AI 
models. While some relationships between Hs, Rc, and U10 are well un
derstood and captured in empirical rules, the complexity and in
teractions between these variables are still poorly understood 
(Chiapponi et al., 2020). AI offers an opportunity to be able to develop 
predictive tools where the detailed process parameterisation is not yet 
available.

The results highlight that when considering the interaction effects of 
many wave and weather conditions, the Hs, Rc, and U10 when interacting 
is quantitatively significant in terms of their influence on overtopping. 
These findings are significant because, for the first time, this study 
identifies which variables influence overtopping when considering these 
complex interaction effects. Moreover, the results show the ranking of 
these variables is generally consistent across the two study locations, 
revealing an opportunity of using these select few variables to estimate 
overtopping across large spatial scales accurately. However, this study 
only investigated two locations, so the analogy of using these three 
variables to predict overtopping across multiple locations must require 
verification and further testing (Yalta and Jenal, 2009). Moreover, 
consideration of beach level, especially for climate assessment, is 
another important parameter that should be considered in future 
development (Stokes et al., 2021).

4.2. Predicting wave overtopping and frequency

Random forests outperformed the other AI models for predicting the 
frequency of overtopping. This outperformance may be attributed to the 
random forest’s inbuilt features around “sampling with replacement” 
and the “out-of-bag” data (Hong et al., 2020; Mitchell, 2011; Özçift, 
2011; Salles et al., 2015). Sampling with replacement reduces the like
lihood of individual decision trees overspecialising on a particular 
pattern or noise within the dataset, decreasing the probability of over
fitting. Identifying less important features may also simplify the random 
forest, causing the random forest to prioritise feature variables that lead 
to the greatest reduction in the leaf node’s Gini Impurity, and ignoring 

Table 6 
AI model performance for estimating wave overtopping frequency in Penzance.

Rig Model R2 RMSE MSE MAE Mean 
Bias

T-Test

1 Random 
Forest

0.84 7.87 6.91 2.53 0.35 % t = 2.33; p =
0.434

XGBoost 0.81 8.70 7.54 2.74 0.44 % t = 0.12; p =
0.322

Neural 
Network

0.52 13.7 18.9 6.22 1.22 % t = 1.33; p =
< 0.01

2 Random 
Forest

0.84 15.3 2.33 11.8 0.07 % t = 3.42; p =
0.233

XGBoost 0.80 9.88 9.71 8 0.33 % t = 5.66; p =
0.122

Neural 
Network

0.92 1.22 1.22 3 0.18 % t = 2.22; p =
0.543

Fig. 15. Comparing the random forest and OWWL predictions for overtopping and non-overtopping classes in (a) Dawlish and (b) Penzance. The bars indicate the 
standard error for each prediction at the 95 % confidence interval. Orange bars illustrate the OWWL, and red denote the random forest.
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redundant and unnecessary features (González et al., 2015). The im
plications of sampling with replacement and the out-of-bag samples 
place random forests at a unique advantage, allowing them to specialise 
in different data subsets and identifying key variables influencing the 
model predictions potentially better than the neural network and 
XGBoost. Habib et al. (2023) showed similar findings, which analysed 
and compared the predictive performance of random forests, 
gradient-boosted decision trees, and neural networks for estimating 
overtopping discharge at vertical seawalls, again showing the random 
forests outperforming the other model types.

There are several reasons why sampling with replacement and this 
out-of-bag data is relevant for predicting wave overtopping. The vari
ables influencing wave overtopping are highly correlated and interre
lated, and models that can distinguish between variables influencing 
wave overtopping and those creating noise within the data is funda
mental. The results revealed many variables, like the Tm and Dm, were 
not as statistically important regarding their influence on wave over
topping. The ability of the random forest model to place less priority on 
these variables, unlike the different AI models used, may explain why 
the random forest outperformed the others.

The neural network demonstrated prediction instability, likely due to 
limited training data and challenges with class imbalances. The EurOtop 
manual includes a neural network tool for predicting wave overtopping, 
raising questions about its predictive stability under similar conditions. 
Although examining EurOtop’s stability is beyond this study’s scope, 
EurOtop has undergone significant improvements, including refining 
the training dataset and hyperparameter tuning, to improve stability 
(Zanuttigh et al. 2016).

Meanwhile, Habib et al. (2023) demonstrated that, despite these 
improvements, decision tree models - particularly random forests - 
outperformed neural networks in predictive accuracy. Their study did 
not reveal that the EurOtop neural network produced unstable pre
dictions; instead, it confirmed that the decision tree architecture 
consistently outperformed tuned neural networks. These results suggest 
that, despite refinements, the EurOtop neural network may not match 
the predictive performance of random forests. Future research should 
investigate the instability of the EurOtop neural network for examining 
overtopping discharges despite its model refinements.

4.3. The challenges of false negatives

The results revealed that the random forest generated false negative 
predictions in a few instances. False negatives occur when the random 
forest reports no overtopping during an observed overtopping event 
(Bold et al., 2022). The random forest false negatives always corre
sponded with very low overtopping frequency (< 4 waves overtopping 
in a 10-min window), and these occur within a narrow threshold range 
of some of the key feature variables like Hs and Rc.

Gupta et al. (2021) recommends adjusting the model’s recall level to 
minimise false negative predictions. This recall adjustment involves 
changing the random forest threshold, specifically decreasing the 
threshold level (Berger and Guda, 2020). This decrease in threshold 
increases the susceptibility of the random forest classifying more false 
positives (Arora et al., 2016). Lowering the threshold causes the random 
forest to classify more instances of overtopping, which inversely in
creases the probability of incorrectly classifying overtopping during 
non-overtopping (false positives) (Arora et al., 2016). If identifying 
wave overtopping is more of a priority of saving human life over the 
economic implications of incorrectly labelling false positives, then this 
approach of increasing the model recall by decreasing the threshold 
would be appropriate. However, in many instances, reporting false 
positives can result in the unnecessary closure of infrastructure and 
could be viewed as unfavourable (Arroita et al., 2017).

By avoiding the unnecessary classification of false positives and false 
negatives without adjusting the model threshold levels, a more practical 
approach would be to either increase the model training dataset or to 

enhance the data sampling to train these random forest models. This 
study trained these models using an 80 % training to 20 % testing ratio; 
however, with a more balanced and larger dataset, a slight increase in 
the training ratio by 5 % could potentially reduce the likelihood of 
reporting false positives, without necessarily increasing the reporting of 
false negatives (Uçar et al., 2020). This practical approach to predict 
hazards and identify key processes leading to hazardous overtopping 
conditions could have significant implications for the field of coastal 
engineering and risk assessment.

The random forest was trained on data from only one storm season 
(2021–2022), primarily capturing high-energy storm events. This lack of 
training across multiple storm seasons may decrease the robustness of 
this random forest to capture inter-annual variability in overtopping, 
particularly during varying storm conditions. Expanding the training 
dataset in various storm seasons (both high and low-energy storm 
events) could enhance the random forest generalisation for predicting 
wave overtopping. Additionally, the water levels at Dawlish were 
measured within a nearby estuary rather than directly at the over
topping measuring location. This setup could introduce discrepancies in 
the water level measurements. Like the wave buoy data, the machine 
learning tools will have learned about the relationship between water 
level at the tide gauge (i.e. within the estuary) and the occurrence of 
overtopping at the seawall. This is not necessarily a problem, as long as 
any predictions made using the machine learning models use an accu
rate prediction of water level within the estuary (e.g. include tidal and 
fluvial components) to drive the predictions.

5. Conclusions

This study investigated the role of AI predicting coastal wave over
topping occurrence and frequency (number of overtopping events per 
10-min intervals) in two locations in southwest England (Dawlish and 
Penzance). The random forest models have the highest predictive per
formance and lowest error metrics for estimating wave overtopping and 
non-overtopping occurrence with a 97 % accuracy. These models have 
also successfully identified variables that are statistically significant for 
influencing wave overtopping and frequency. Moreover, this study in
dicates the importance of U10 and U10 Dir for predicting wave over
topping, which are neglected in most current approaches (e.g., 
EurOtop). The AI models presented here provide a reliable, computa
tionally efficient, predictive tool suitable for hazards forecasting ser
vices. These findings go beyond the existing approach of estimating 
overtopping, which are less accurate and time-consuming, and normally 
rely on processed-based models. The major implication is that this 
approach could be implemented anywhere if field observations of 
overtopping are available.

These AI models can be developed to use nearshore data as an input 
parameter, which are more readily available from operational moni
toring networks and national numerical forecast services. This removes 
the need to accurately parameterise wave shoaling and breaking, across 
varying beach-structure profiles to obtain the wave-water level and 
wave conditions at a structures toe, as required by EurOtop. This makes 
AI models very suitable for early warning of coastal wave overtopping 
events in a changing climate where sea levels are rising and existing 
infrastructure ageing.
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