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A B S T R A C T

At the near-surface, ozone (O3) is a toxic pollutant which has reached dangerously high concentrations across the 
world and is predicted to continue to rise. O3 reduces the growth, productivity and resilience of trees but the 
extent of O3 damage to forests is uncertain. To develop a high throughput method of monitoring O3 damage to 
forests, we pioneer hyperspectral monitoring of O3 damage in adult oak trees across a range of naturally 
occurring O3 concentrations. Using a machine learning approach, we demonstrate accurate prediction of O3 
exposure of trees from hyperspectral leaf reflectance alone. This method could be used for forest level assess-
ments of O3 damage. Vegetation indices characterising green reflectance and red-edge track O3 induced changes 
in leaf reflectance. Vegetation indices have the potential to scale up O3 damage monitoring across spatial scales. 
As O3 concentrations continue to rise globally, understanding the extent of O3 damage to forests is crucial to 
effectively harness the carbon sequestration potential of forests. We demonstrate the exciting potential of spectral 
monitoring of O3 damage in mature trees under natural conditions.

1. Introduction

O3 is highly oxidising, and direct contact with O3 at the ground level 
is toxic to both plant and animal life (Donzelli and Suarez-Varela, 2024; 
Lefohn et al., 2018). Ground-level or tropospheric O3 is a secondary 
pollutant formed by sunlight induced reactions of nitrogen oxides and 
volatile organic compounds (Monks et al., 2015). Tropospheric O3 
concentrations have been increasing since the 1950s when reliable 
global monitoring began (IPCC, 2023). Despite controls on vehicular 
emissions of nitrogen oxides, background tropospheric O3 concentra-
tions are increasing and are predicted to continue to rise for the rest of 
the century (Christiansen et al., 2022; Cooper et al., 2014; Finch and 
Palmer, 2020; Griffiths et al., 2021).

When O3 enters leaves via the stomata, it causes oxidative stress and 
triggers a range of defence mechanisms (Sandermann, 1996) including 
the hypersensitive response (Kangasjärvi et al., 2005) and antioxidant 
synthesis (Sharma and Davis, 1997). In the short term, O3 exposure in-
duces stomatal closure and a reduction in photosynthetic activity (Hill 
and Littlefield, 1969). Long-term O3 exposure results in altered alloca-
tion of carbon (Andersen, 2003), reduced vegetation productivity 

(Ashmore, 2005; Felzer et al., 2004) and altered ecosystem dynamics 
(Agathokleous et al., 2020; Ryalls et al., 2022).

The carbon sequestration of European forest ecosystems may be 
significantly hindered by O3 exposure, although modelling studies pre-
dict the extent of primary production loss to O3 varies spatially (Proietti 
et al., 2016). In a meta-analysis of the impact of O3 on tree growth, Wittig 
et al showed that the root-to-shoot ratio was significantly reduced by 
elevated O3 across a range of species (Wittig et al., 2007). O3 sensitivity 
varies widely across tree species (Bergmann et al., 2017), associated 
with differences in uptake and leaf-area-index (Feng et al., 2018) and by 
detoxification capacity (Li et al., 2016). O3 exposure may lead to 
changes in community composition and diversity in forests 
(Agathokleous et al., 2020). Plant-soil-microbe interactions in forests 
are affected by O3 exposure and resulting changes to leaf litter, which 
impacts nutrient cycling (Agathokleous et al., 2020). O3 exposure also 
alters the abundance and community composition of insects in forests 
(Hillstrom and Lindroth, 2008), particularly beneficial invertebrates 
(Ryalls et al., 2024). O3 therefore has a range of important effects on 
forest health and productivity.

Article 9 of the European National Emission Ceilings Directive 
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specifies the negative impacts of air pollutants including ozone on nat-
ural and semi-natural vegetation should be monitored “…through a 
cost-effective and risk-based approach, based on a network of moni-
toring sites…” (DIRECTIVE (EU) 2016/2284 OF THE EUROPEAN 
PARLIAMENT AND OF THE COUNCIL on the reduction of national 
emissions of certain atmospheric pollutants, amending Directive 2003/ 
35/EC and repealing Directive 2001/81/EC, 2016). Monitoring of the 
impacts of air pollution based upon this directive continues to apply 
under UK law (The National Emission Ceilings Regulations 2018, 2018). 
O3 induced leaf damage can be identified in vegetation by visible foliar 
injury such as stippling, chlorosis and necrosis (Brace et al., 1999; Sicard 
et al., 2010; Treshow, 1970). Currently, the Convention on Long-range 
Transboundary Air Pollution (CLRTAP) and its International Co- 
operative Programme on Assessment and Monitoring of Air Pollution 
Effects on Forests (ICP Forests) recommends the assessment by visible 
foliar ozone injury and crown defoliation (Schaub et al., 2016). Manual 
leaf inspection is currently the only widescale indicator of O3 impact on 
vegetation (Ferretti et al., 2024; Schaub et al., 2016). Visible foliar 
ozone injury is associated with decreased photosynthetic activity in 
sensitive species, but there is uncertainty in the suitability of visible 
symptoms to predict forest growth reduction (Marzuoli et al., 2019). 
Manual leaf inspection is inherently limited in coverage, accuracy and 
speed (Bussotti et al., 2003). To extend the spatial and temporal 
coverage of assessment of the impact of O3 on forests, a more versatile 
and high throughput method is required that does not rely solely on 
manual leaf inspection. Assessing the extent of O3 damage to forests is 
particularly important in light of ambitious reforestation targets (Abeli 
and Di Giulio, 2023), many of which are planned for O3 exposed sites. 
Projections of carbon sequestration by afforestation, such as the Euro-
pean Commission’s 3 Billion Tree Planting Pledge project, do not ac-
count for inhibition of productivity and growth by O3 exposure 
(COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN 
PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SO-
CIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS New EU 
Forest Strategy for 2030: The 3 Billion Tree Planting Pledge For 2030, 
2021). A comprehensive assessment of O3 damage to forests over large 
spatial scales is a crucial component of both effective afforestation and 
monitoring the health of existing forests.

Vegetation spectroscopy uses the reflectance of light or fluorescence 
from vegetation to assess plant health at a range of spatial scales. 
Hyperspectral reflectance captures a continuous spectrum of reflectance 
across a range of wavelengths, versus multispectral reflectance which is 
confined to discrete bands of wavelengths but is more readily available. 
O3 induced changes to plant health and visible foliar injury have been 
successfully detected using leaf reflectance in a range of species 
including indicator species (Meroni et al., 2008b), crops (Calzone et al., 
2021; Gosselin et al., 2020; Kim et al., 2004; Marchica et al., 2019), and 
some trees (Diem, 2002; Gäb et al., 2006; Kefauver, 2013; Meroni et al., 
2008a). In our previous study we characterised O3 induced changes in 
the hyperspectral reflectance of a range of broadleaf saplings during one 
growth season of controlled O3 exposure (Lee Jones et al., 2024). 
Hyperspectral leaf reflectance was able to differentiate between O3 
treatments and revealed a multivariate signal of O3 damage comprised 
of changes in the green reflectance peak, red-edge, water absorption 
bands, and short wavelength infrared region. To our knowledge, no 
investigations have examined O3 induced changes in the leaf reflectance 
of mature deciduous trees.

Pedunculate oak (Quercus robur) is the second most abundant 
broadleaf species in the UK (accounting for 16 % of broadleaved 
woodland), is the most common principle species, and is the largest 
broadleaf contributor to the UK’s standing stock of timber (Forestry 
Statistics 2023: Chapter 1 − Woodland Area & Planting, 2023). Pedun-
culate oak also occur widely across the temperate biome and their range 
extends from Europe to Iran. Pedunculate oak attracts up to 2,300 
associated species, of which 300 are obligate oak species (Mitchell et al., 
2019). In an examination of 69 European tree species under projected 

climate conditions, Pedunculate oak (alongside Fagus sylvatica and 
Quercus petraea) was one of the only species to have high future potential 
to contribute to timber production, carbon uptake and habitat value 
(Wessely et al., 2024). Additionally Pedunculate oak is highly valued by 
forest managers as an iconic cultural species as well as for its timber 
(O’Brien et al., 2024). Pedunculate oak is therefore an important species 
in temperate regions and predicted to be a crucial species in the future of 
temperate broadleaf forests.

The effect of O3 exposure on Pedunculate oak has been investigated 
under experimental conditions using seedlings and sapling trees 
(Cotrozzi, 2021). O3 exposure increased photoinhibition of photosyn-
thesis in Pedunculate oak saplings (Farage, 1996), and reduced assimi-
lation (Calatayud et al., 2011). O3 exposure decreased chlorophyll 
content in Pedunculate oak (Bussotti et al., 2007), but increased total 
carotenoid content and flavonoids (Pellegrini et al., 2019). O3 exposure 
of Pedunculate oak saplings reduced overall biomass (Hayes et al., 2015; 
Moura et al., 2022), and reduced root biomass compared to shoots 
(Marzuoli et al., 2016). Pedunculate oak is more sensitive to O3 than 
other species of oak (Moura et al., 2022; Pellegrini et al., 2019). To date, 
no studies have studied the effects of elevated O3 on mature Pedunculate 
oak (Cotrozzi, 2021).

Tropospheric O3 has a significant effect on the health and produc-
tivity of forests but widescale assessment of the impact of O3 is limited 
by current monitoring methods. The objectives of this study were to 
investigate the difference in hyperspectral leaf reflectance between a 
low O3 and high O3 site, and to compare O3 induced changes in leaf 
reflectance of mature trees under natural conditions to the spectral 
signature of O3 damage we had experimentally elucidated in our pre-
vious study (Lee Jones et al., 2024). This study represents a crucial step 
in developing a high-throughput and scalable method for O3 damage 
detection in broadleaf trees, by trialling hyperspectral detection in 
mature pedunculate oak trees in natural settings.

2. Methods

2.1. Study sites

Our study sites were two UK broadleaf woodlands with similar land 
use history and climate but differing predicted O3 profiles.

Wytham Woods (UK, 51◦ 46′ N, 1◦ 20′ W) is a 400 ha research 
woodland owned by the University of Oxford. We accessed the canopy 
using the 13 m canopy walkway located in secondary woodland 
(Morecroft et al., 2008) within the Smithosonian Institution ForestGEO 
plot established in 2008 (Butt et al., 2009). The dominant soil of the plot 
is a well-drained Lithomorphic clay soil of Sherbourne series, above the 
Coral Rag limestone (Butt et al., 2009; Taylor et al., 2011). This area of 
Wytham is known to have been woodland since at least the 18th Cen-
tury, and probably much longer (Grayson and Jones, 1956). This region 
of the woods is dominated by sycamore maple (Acer psuedoplatanus) and 
pedunculate oak (Quercus robur), as well as small numbers of common 
beech (Fagus sylvatica) (Butt et al., 2009). Ring counts of fallen trees and 
anecdotal evidence suggest pedunculate oak at this site are between 
150–200 years old (Morecroft and Roberts, 1999). From the canopy 
walkway, 17 oak branches were accessible for measurements originating 
from four mature trees. Oak leaves emerged in early May in 2023. The 
long-term average rainfall of Wytham Woods is 717 mm, and average 
temperature 10 ◦C (1993–2007) (Taylor et al., 2011). Air temperature 
was recorded hourly from the Flux tower located close to our monitoring 
plot. Daily rainfall was taken from the Radcliffe Meteorological Obser-
vatory in Central Oxford due to technical issues in the Wytham Woods 
rainfall monitoring equipment.

Birmingham Institute for Forest Research Free-Air CO2 Enrichment 
facility (‘BIFoR FACE’, UK, 52◦ 47′ N, 2◦ 18′ W) is a 21 ha broadleaf 
woodland. It is semi-natural with over 200 years continuous cover, 
dominated by 180 year old pedunculate oak (Hart et al., 2020). The 
woodland also features sycamore maple, hazel (Corylus avellana), 
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common hawthorn (Cretaegus monogyna) and ash (Fraxinus excelsior). 
The dominant soil is Dystric Cambisol with sandy clay texture, and the 
underlying geology is Helsby Sandstone (Norby et al., 2024). BIFoR 
FACE has 30 m diameter experimental arrays, three of which are dosed 
with elevated CO2, and three of which are controls dosed with ambient 
air (Hart et al., 2020). Our measurements were taken in two of the 
control arrays. In each control array we sampled two mature oak trees 
which were accessible at the canopy level, totalling four trees. Oak 
leaves emerged in early May in 2023. The long-term annual rainfall 
average is 690 mm, and average annual temperature is 9 ◦C (Norby 
et al., 2016). The mean hourly rainfall recorded by 4 rain gauges at the 
bottom of the BIFoR FACE meteorological towers (TR-525 M, Texas 
Electronics, Dallas, Texas) was totalled per day of measurement. Daily 
mean air temperature was averaged across 4 sensors mounted on the 
BIFoR FACE meteorological towers (HMP155RH, Vaisala, Helsinki, 
Finland).

The average accumulated O3 exposure over the threshold of 40 ppb 
(AOT40) from May to July for the closest four 1 km cells in Defra’s 2022 
Pollution Climate Mapping Model were calculated for each site (UK AIR, 
Department for Environment Food & Rural Affairs (DEFRA), 2023). The 
average modelled background O3 AOT40 for the BIFoR site was 4341.75 
μg m− 3 h (for O3 1 ppb = 1.96 µg m− 3). This is below the UK AOT40 
objective for the protection of vegetation from O3 damage (<6000 μg 
m− 3 h) (The Air Quality Limit Values Regulations 2003, n.d.). The 
average modelled background O3 AOT40 for the Wytham site is 6045.5 
μg m− 3 h, this exceeds the protective threshold. Wytham Woods was 
designated as an O3 polluted site based on this data, and BIFoR FACE 
ambient arrays designated as a lower O3 site.

2.2. O3 monitoring

The O3 concentrations of both sites were monitored using Palmes- 
type O3 diffusion tubes (Gradko International) between June and 
October 2023. Diffusion tubes were deployed at canopy level in two 
locations on the canopy walkway at Wytham woods and at canopy level 
in the two ambient arrays at BIFoR FACE. Diffusion tubes consist of a 
fluorinated ethylene polymer tube fitted with an absorbent cap and 
porosity filter to prevent ingress of particulate nitrate. Diffusion tubes 
were exposed on site for 2–4 weeks and then analysed by Gradko In-
ternational via ion chromatography, yielding an average O3 concen-
tration for the exposure period. The measurement uncertainty of this 
analysis was quoted as ±10 % and exposure periods are given in Sup-
plementary Material Table 1.

2.3. Leaf reflectance sampling

We measured reflectance spectra of adaxial leaf surfaces in the 
canopy of each site approximately every two weeks (see sampling dates 
in Supplementary Material, Table 1). Reflectance spectra were taken in 
the range 350–2500 nm with a HR-1024i spectrometer with a leaf clip 
and an active light source (Spectra Vista Corp, USA). The HR-1024i 
spectrometer is comprised of three dispersion grating spectrometers 
with overlapping wavelength ranges:

Very Near Infrared (VNIR), 1.5 nm sampling interval, 350–1000 nm 
range; Short Wavelength Infrared 1 (SWIR1), 3.8 nm sampling interval, 
1000–1890 nm range; SWIR2, 2.5 nm sampling interval, 1890–2500 nm 
range.

The spectrometer was referenced using the incorporated leaf clip 
reflective standard every five minutes during measurements. Dark signal 
baseline correction is applied by the HR-1024i automatically, a dark 
spectrum is taken before each reflectance measurement. In Wytham 
Woods, five leaves per accessible branch were sampled per session, 
totalling 85 leaves from four trees. At BIFoR FACE twenty leaves were 
sampled from each accessible tree per measurement session, totalling 80 
leaves from four trees. All leaves sampled were full developed mature 
leaves, without visible herbivory or mildew from the sun exposed 

canopy.

2.4. Hyperspectral processing

Leaf reflectance spectra were imported and processed as a spectral 
dataset in Python 3 using the SpecDAL package (Lee, 2017). The over-
lapping regions of the three component spectrometers in the HR-1024i 
were stitched. Reflectance measurements were interpolated to corre-
spond to 1.0 nm interval wavelengths. Absolute reflectance was derived 
from the relative reflectance by multiplying by the known reflectance of 
the reference panel.

2.5. Hyperspectral analysis

Further processing of the spectral dataset was carried out in R using 
the ‘Hyperspec’ package (Beleites and Sergo, 2017). We explored the 
hyperspectral dataset by principal component analysis (PCA). Hyper-
spectral data contains many correlated variables (the wavelengths at 
which reflectance was sampled). We examined the clustering of spectra 
by site and measured O3 concentration when plotted against combina-
tions of principle components.

We used Partial Least-Squares Regression (PLSR) analysis as a ma-
chine learning approach to examine the relationship between hyper-
spectral reflectance as the predictor and O3 concentration as the 
response variable. PLSR uses the least squares method to fit a linear 
model using partial least squares components as predictors and prevents 
overfitting when predictor variables are highly correlated, as is the case 
in hyperspectral data. PLSR was performed in R using the PLS package 
(Mevik and Wehrens, 2007). Per measurement session (one session per 
unique site/date combination) the hyperspectral data was split into test 
and train (30:70) and then within the test and train datasets an average 
spectrum was measurement session. PLSR with K-fold cross validation 
was applied to the train dataset and the optimal number of components 
was selected by minimising the root mean square error of prediction 
(RMSEP). This model was then applied to the test dataset and its per-
formance in predicting O3 concentration from hyperspectral leaf 
reflectance was evaluated.

To identify the spectral wavelengths most correlated to O3 concen-
tration, normalised difference spectral indices (NDSI) analysis was used. 

Table 1 
Formula of common vegetation indices used to measure plant health which were 
tested for sensitivity to ozone damage.

Vegetation 
index

Equation Reference

Normalised 
Difference 
Vegetation 
Index

NDVI =
ρ800 − ρ670
ρ800 + ρ670

(Rouse 
et al., 1974)

Modified 
Chlorophyll 
Absorption 
Ratio 
Index

MCARI =

[(ρ700 − ρ670) − 0.2*(ρ700 − ρ550) ]*
(

ρ700
ρ670

)
(Daughtry 
et al., 2000)

Red Edge 
normalised 
Difference 
Vegetation 
Index

RENDVI =
ρ750 − ρ705
ρ750 + ρ705

(Merzlyak 
et al., 1999) 
(Sims and 
Gamon, 
2002)

Photochemical 
Reflectance 
Index

PRI =
ρ570 − ρ530
ρ570 + ρ530

(Gamon 
et al., 1997) 
(Peñuelas 
et al., 1995)

Plant 
Senescence 
Reflectance 
Index

PSRI =
ρ680 − ρ500

ρ750
(Merzlyak 
et al., 1999)

Sapling Ozone 
Damage Index

OzDI =
ρ2204 − ρ2248
ρ2204 + ρ2248

(Lee Jones 
et al., 2024)
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NDSI is defined as: 

NDSI(i, j) =
Ri − Rj

Ri + Rj
(1) 

where Ri is the absolute reflectance of wavelength i, and subscripts are 
wavelengths in nm. The average leaf reflectance spectra per measure-
ment session (unique site/date combination) was calculated and used 
for NDSI analysis. All possible combinations of wavelengths (i and j) 
were used to calculate all NDSI. The linear relationships between the O3 
concentration and NDSIs were examined. A heat map of the absolute 
value of the Pearson correlation coefficient r between O3 concentration 
and NDSI was generated. The heat maps were produced using Python 3 
packages: correlation arrays were created using NumPy (Harris et al., 
2020), and plotted with matplotlib (Hunter, 2007).

The NDSI with the highest correlation to O3 concentration was 
compared to common vegetation indices via correlation analysis. OzDI, 
an infrared vegetation index corresponding to O3 induced leaf injury in 
saplings derived from our previous O3 manipulation experiment was 
included (Lee Jones et al., 2024). The formula of the pre-existing 
vegetation indices used are given in Table 2.

3. Results

3.1. O3 and meteorological monitoring

Mean 24hr O3 concentration over June to October 2023 was 35.54 
ppb at Wytham Woods and 26.89 ppb at BIFoR FACE. The O3 profiles of 
the two sites were significantly different (Mann-Whitney, z = 0, p =
0.002165). At every measurement point throughout the season Wytham 
Woods had higher O3 exposure than BIFoR FACE (Fig. 1), O3 concen-
trations at Wytham were also more variable. Cumulative O3 concen-
tration is also displayed in Fig. 1B. This monitoring data, combined with 
Defra’s AOT40 modelling for 2022 confirms that Wytham Woods is an 
O3 polluted site. The maximum O3 concentration recorded was 53.54 
ppb, the average at Wytham Woods between the 7th and 27th of July 
2023. The lowest O3 concentration recorded was 24.24 ppb at BIFoR 
FACE between 25th July and 10th August 2023. O3 concentration did 
not correlate significantly with date of measurement (rτ = 31, p = 0.84, 
Supplementary Material Fig. 2).

Throughout the measurement period (22/06/2023–06/10/2023), 
the average daily air temperature recorded at BIFoR FACE was 15.88 ◦C, 
and average daily rainfall was 2.14 mm. The total rainfall in the mea-
surement period was 242.3 mm.

At Wytham Woods in the measurement period (27/06/2023–12/10/ 
2023), the average daily air temperature was 16.29 ◦C. The average 
daily rainfall at the Radcliffe Observatory was 2.57 mm, and total 
rainfall in the measurement period was 277.7 mm (Burt and Burt, 2019).

3.2. Visual observations

In Wytham Woods, pinprick white dots (stippling) were observed on 
the adaxial leaf surface of oaks (Supplementary Material, Fig. 1), no 
stippling was observed at BIFoR FACE. Stippling indicates a 

programmed cell death response, which occurs in response to O3 stress 
but may also indicate other stressors. The stippling of oak leaves at 
Wytham Woods avoided the veins and was more prevalent on leaves at 
the ends of branches, which is typical of O3 induced injury. Herbivory 
and mildew on some leaf surfaces were also observed at both sites, leaf 
reflectance measurements were not taken from affected leaves.

3.3. Hyperspectral leaf reflectance

The average hyperspectral reflectance of oak leaves from Wytham 
Woods and BIFoR FACE exhibited a pattern of typical foliar reflectance 
but differed in intensity at key regions of the spectrum (Fig. 2). The 
intensity of the green reflectance peak (~540 nm) was greater in leaves 
from Wytham Woods, as was the triple reflectance peak in the Near 
Infrared (750 – 1300 nm). At the water absorption bands (1400 nm and 
1900 nm), leaves from BIFoR FACE had shallower reflectance troughs 
than leaves from Wytham Woods. Leaves from BIFoR FACE also had 
increased reflectance intensity in the short wavelength infrared peak at 
2200 nm compared to leaves from Wytham Woods.

3.4. Principal component analysis

The first four principal components of the hyperspectral dataset of 
leaf reflectance were cumulatively able to explain 98.8 % of the variance 
in the dataset (PC1 84.78 %, PC2 11.44 %, PC3 1.99 %, PC4 0.6 %). The 
Scree Plot of principle components can be found in the Supplementary 
Material, Fig. 3. The first principal component (PC1) was loaded most 
heavily by wavelengths in the near-infrared (NIR) and infrared (Fig. 3A). 
PC1 captures the generic profile of leaf reflectance spectra, and so 
summarises differences in overall reflectance intensity. The second 
principal component (PC2) was negatively correlated with wavelengths 
in the Red-Edge and NIR, and positively correlated with wavelengths in 
the infrared (Fig. 3A). The third principal component (PC3) was strongly 
loaded by wavelengths in the green peak and red edge, commonly used 
to assess chlorophyll content (Fig. 3A). Principle component four (PC4) 
was loaded heavily by the lower boundary of wavelengths measured by 
the spectrometer (~350 nm), and negatively correlated to the Near 
infrared (Fig. 3A).

Fig. 3B-D shows the clustering of leaf reflectance spectra coloured by 
measurement site against combinations of the first three principal 
components. There is separation of leaf reflectance spectra from BIFoR 
FACE versus Wytham Woods in all three combinations of PCs, but 
components two and three achieve the clearest distinction between sites 
(Fig. 3C). The reflectance spectra of leaves at BIFoR FACE versus 
Wytham Woods can be discriminated by principal components, and 
therefore differ. The difference in reflectance spectra between the two 
sites correlates with cumulative O3 concentration (Fig. 3E), and average 
O3 concentration (Supplementary Material Fig. 4) but not with date of 
measurement (Supplementary Material Fig. 5). Leaf reflectance clus-
tered most clearly by average and cumulative O3 concentration when 
plotted against the first two principal components (Fig. 3E).

The reflectance spectra of leaves from BIFoR FACE versus Wytham 
Woods are therefore distinct and the differences between the sites 
correlate with both average and cumulative O3 concentration. The 
variation in reflectance spectra is best characterised by the overall in-
tensity of leaf reflectance (PC1) combined with the intensity of the green 
peak (PC3), Red-Edge (PC1, 2 and 3) and infrared reflectance peaks.

3.5. Partial least squares regression analysis

We selected a two component PLSR model for our analysis, based on 
minimisation of RMSEP in the train dataset (Fig. 4A). These two latent 
variables explained 89 % of variance in the reflectance data (component 
1: 37 %, component 2: 52 %) and 56 % of variance in O3 concentration. 
Component 1 was strongly positively loaded by reflectance in the green 
peak, NIR, and to a weaker extent negatively loaded in the SWIR 

Table 2 
Results of Pearson correlation analysis of different vegetation indices against 
average O3 concentration. *** indicates P value < 0.001.

vegetation 
index

Correlation Degrees of 
Freedom

T Value P Value

NDVI 0.52 10 1.92 0.0832
MCARI 0.826 10 4.63 0.000933 ***
PRI 0.0273 10 0.0864 0.933
PSRI − 0.563 10 − 2.15 0.0569
Max NDSI 0.839 10 4.88 0.000639 ***
OzDI − 0.301 10 − 0.997 0.342
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(Fig. 4B). Component 2 also featured the Red Edge and was strongly 
negatively loaded in SWIR of the spectra (Fig. 4B). When the PLSR 
model with 2 components was used to predict O3 values from the test 
spectral dataset, it achieved RMSE of 5.33, R2 0.588 and MAE 4.34. 
Fig. 4C shows the capacity of the model to predict O3 concentrations (as 
an indicator of the stress due to ozone) experienced by the leaves based 
on their reflectance spectra alone, which are a close match to observed 
O3 concentrations. The accuracy of prediction of O3 concentration de-
creases at higher concentrations, as shown by the confidence boundaries 
in Fig. 4C. The coefficient of the line of best fit is 0.63, indicating the 
model somewhat underestimates O3 concentration on average.

3.6. Normalised difference spectral indices analysis

The correlation of all possible normalised difference indices to O3 
concentration is displayed as a heatmap in Fig. 5. NDSIs which com-
bined one wavelength Red Edge (740–760 nm) and a wavelength above 
760 nm were highly correlated to O3 concentration (Fig. 5). Combina-
tions of wavelengths between 500–750 nm were also highly correlated 
to O3 concentration, these wavelengths characterise the shape of the 
green reflectance peak and Red Edge. Many other wavelength combi-
nations were strongly correlated to O3 concentration, including 

wavelengths from 1900-2000 nm and combinations of ~ 1500 to 2000 
+ nm. The combination of wavelengths most highly correlated with O3 
concentration were 515 nm and 647 nm, which characterise the width 
and intensity of the green reflectance peak. This index will be referred to 
as “Max NDSI”.

3.7. Vegetation indices

Some pre-existing vegetation indices showed strong relationships 
with average O3 concentration (Fig. 6) and weaker relationships with 
cumulative O3 concentration (Supplementary Material Fig. 6 and 
Table 1). Modified Chlorophyll Absorption Ratio Index (MCARI) was 
significantly correlated with average O3 (Table 3). MCARI combines 
reflectance intensities at 700, 670 and 550 nm (Table 2), and is inversely 
related to chlorophyll content. MCARI showed a strong positive corre-
lation with O3 concentration (r(10) = 0.826, p < 0.001). MCARI was not 
correlated with date of measurement (r(12) = 0.161, p = 0.96), but was 
significantly higher at Wytham Woods than BIFoR FACE (t(13) = -6.42, 
p < 0.001).

Normalised Difference Vegetation Index (NDVI) was weakly posi-
tively correlated to average O3 concentration (Fig. 6A), but this rela-
tionship was not significant (Table 3). NDVI was significantly positively 
correlated with cumulative O3 concentration (Supplementary Material
Fig. 6A, r(10) = 0.690, p = 0.0131). PSRI was negatively correlated with 
average O3 concentration (Fig. 6D), but again this relationship was not 
significant (Table 3). There was no clear relationship between OzDI and 
average O3 concentration (Fig. 6f). OzDI was significantly positively 
correlated with cumulative O3 concentration (Supplementary Material
Fig. 6F, r(10) = 0.661, p = 0.0193), however there was a clear site 
specific difference in the correlation of this relationship.

The Max NDSI calculated from this hyperspectral dataset as 
described above, was positively correlated with average O3 concentra-
tion (Fig. 6E). The strong positive correlation between Max NDSI and 
average O3 concentration was statistically significant (r(10) = 0.839, p 
< 0.001).

4. Discussion

Our O3 monitoring in Wytham Woods demonstrates the site is 
exposed to damaging levels of O3, as predicted by the Defra’s Pollution 
Climate Mapping Model. The meteorological conditions of the two sites 
were similar in terms of rainfall and temperature, however other factors 
such as light availability, humidity, and soil nutrients may also affect 
leaf reflectance (Baltzer and Thomas, 2005). The scope of this study did 
not include the measurement of additional meteorological factors which 
may differ between the two woodlands, meaning hyperspectral features 

Fig. 1. Time series of O3 concentrations at Wytham Woods (blue) and BIFoR FACE facility (red) from July to October 2023. A: Mean hourly O3 concentrations in ppb 
calculated from the preceding measurement period, error bars represent the mean measurement uncertainty at each time point. B: Cumulative O3 dosage in ppb hour 
from 26th June 2023 at BIFoR FACE facility, and from the 27th June 2023 at Wytham woods.

Fig. 2. Average hyperspectral leaf reflectance per site displayed as a solid line 
(BIFoR FACE facility in red, Wytham Woods in blue), with ± standard deviation 
surrounding the mean in shading (BIFoR FACE facility in light red, Wytham 
Woods in light blue).
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Fig. 3. Principal component analysis of hyperspectral leaf reflectance from the two study sites (BIFoR in red, Wytham in blue). A: Loadings of the first four principal 
component (PC) across the spectra of wavelengths measured. B: Leaf reflectance coloured by site against PC1 and PC2. C: leaf reflectance coloured by site against PC2 
and PC3. D: Leaf reflectance coloured by site against PC1 and PC3. E: Leaf reflectance coloured by cumulative ozone concentration in ppb against PC1 and PC2.

Fig. 4. Partial least squares regression (PLSR) model validation and predictions of O3 concentration from hyperspectral leaf reflectance. A: PLSR root mean square 
error prediction (RMSEP) versus number of model components. B: Loadings of the first two PLS components across the range of reflectance wavelengths measured. C: 
Ozone concentrations predicted by the model versus observed ozone concentrations, based on hyperspectral leaf reflectance of the test dataset.
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which correlated with ozone over time and without site specific differ-
ences are more robust such as the PLSR analysis. The canopy in Wytham 
Woods was significantly more O3 exposed than BIFoR FACE, and the 
differences in leaf reflectance between the two sites indicate foliar 
changes induced by O3 damage.

The cumulative exposure of vegetation to O3 determines the 
magnitude of damage (Bastrup-Birk et al., 1997). AOT40 has been 
adopted widely as a metric of “accumulate ozone over threshold 40 ppb” 
intended to capture vegetation damaging levels of ozone exposure for 

compliance monitoring. However, there is developing scientific 
consensus that a stomatal flux-based approach gives a more accurate 
assessment of the risk of O3 damage to vegetation (Mills et al., 2011; 
Proietti et al., 2021; Sicard et al., 2016). Stomatal O3 flux is affected by 
atmospheric and stomatal conductivity (Guderian, 1985). There are a 
range of species specific or vegetation type PODy flux models which 
calculate the cumulative exceedance of critical levels of stomatal O3 
flux, based on O3 concentration, temperature, humidity, light and soil 
moisture (Mills et al., 2017). Hourly monitoring of these parameters was 
beyond the scope of this study, and so we use simple ozone concentra-
tion and cumulative ozone concentration as a proxy for ozone dosage 
which has obvious limitations in terms of understanding the dose of 
ozone received.

The O3 induced change in leaf reflectance we identified is multi-
variate, key regions of the spectra include the green reflectance peak, 
red edge, and NIR. The hyperspectral reflectance profile of oak leaves at 
Wytham Woods, the high O3 site, was increased in the height and width 
of the green reflectance peak (500–––570 nm) and the Near Infrared 
triple peak (750–1300 nm). In the water absorption peaks (1400 nm and 
1900 nm), and infrared peak at 2200 nm the leaf reflectance of the high 

Fig. 5. Heatmap of the Pearson correlation of the normalised difference of 
wavelength combinations to O3 concentration. Lambda, λ, represents wave-
length in nm.

Fig. 6. Vegetation indices plotted against ozone concentration, coloured by site of measurement (BIFoR in red, Wytham Woods in blue).

Table 3 
Results of Pearson correlation analysis of different vegetation indices against 
average O3 concentration.

Vegetation index Correlation Degrees of freedom T value P value

NDVI 0.52 10 1.92 0.0832
MCARI 0.826 10 4.63 0.000933***
PRI 0.0273 10 0.0864 0.933
PSRI − 0.563 10 − 2.15 0.0569
Max NDSI 0.839 10 4.88 0.000639***
OzDI − 0.301 10 − 0.997 0.342

***indicates P value < 0.001.
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and low O3 was more similar, although slightly reduced under high O3. 
Unsupervised variable reduction (PCA) and supervised variable reduc-
tion (PLSR) both highlighted the green reflectance peak and near 
infrared triple peak as key regions for summarising the variability in 
hyperspectral reflectance profiles. The high spectral resolution and 
wavelength range of our measurements allow a more detailed under-
standing of the spectral shifts underpinning changes in vegetation 
indices and the multivariate differences in leaf reflectance between a 
low and high O3 site.

The indices most strongly related to average O3 exposure indepen-
dent of site (max NDSI and MCARI) characterise the intensity and width 
of the green reflectance peak (500–650 nm). Several early experimental 
studies found changes in this region associated with O3 damage in other 
species (Meroni et al., 2009; Ustin and Curtiss, 1990). PRI characterises 
the top of the green reflectance peak at 550 nm but did not respond 
significantly to O3 exposure in neither our field or experimental study, 
whereas max NDSI and MCARI characterise the broader green reflec-
tance peak by inclusion of a wavelength at 640–670 nm. The green 
reflectance peak is influenced by chlorophyll, carotene and anthocyanin 
pigment concentrations in combination (Sims and Gamon, 2002). 
Chlorophyll content decreases during ozone stress (Knudson et al., 
1977), whereas anthocyanins are an anti-oxidant upregulated to in 
response to the oxidative stress caused by high ozone (Chalker-Scott, 
1999). MCARI was developed to estimate chlorophyll A concentration 
(Daughtry et al., 2000), but is also influenced by xanthophyll and 
carotene concentration (Taylor-Zavala et al., 2021). NDVI characterises 
the red edge and is dominated by chlorophyll A concentration but did 
not respond to O3 exposure. In O3 exposed oak saplings, a significant 
increase in total carotenoids (including carotene and xanthophylls) has 
been observed experimentally (Pellegrini et al., 2019). Together these 
results indicate the broader green reflectance peak is a key component of 
the signal of O3 damage in leaf reflectance, likely underpinned by 
changes in the relative concentration of chlorophyll, carotene, and 
xanthophyll pigments.

The effects of O3 on oak species was reviewed by Cotrozzi in a meta- 
analysis which concluded that although oak species are broadly resistant 
to large changes in biomass under elevated O3 damage, they undergo 
significant physiological impairment (Cotrozzi, 2021). O3 exposure 
reduced the maximum rate of carboxylation, electron transport rate, 
conductance parameters and stomatal responsivity in 2 year-old Quercus 
robur (Hoshika et al., 2022). Phenols play a key role in the antioxidant 
response of oak species (Cotrozzi, 2021). These physiological effects 
may relate to the changes we have observed in the green peak leaf 
reflectance peak, but further studies are needed to identify the precise 
leaf level changes underpinning changes in leaf reflectance in response 
to O3. A further limitation of current knowledge of the effects of O3 on 
forests is a lack of studies on mature trees, which we sought to address 
although this limited our study to a ‘natural experiment’ with many 
uncontrolled variables in comparison to the many O3 manipulation 
studies on young trees.

Leaf reflectance is affected by many factors, besides O3 damage, such 
as drought (Sapes et al., 2024), disease (Fallon et al., 2020), and leaf 
traits (Yang et al., 2016). However, the changes in leaf reflectance we 
found corresponded strongly to O3 concentration changes within as well 
as between the two sites. Our machine learning model of hyperspectral 
reflectance was able to accurately predict O3 exposure from reflectance 
data, independent of study site. Furthermore, we also demonstrated that 
MCARI and the Max NDSI responded linearly to O3 concentrations 
across both sites. Date of measurement did not have a significant rela-
tionship with O3 concentration, and did not significantly affect MCARI. 
In our previous experimental study, the MCARI of oak saplings also 
changed significantly under different O3 exposure regimes (Lee Jones 
et al., 2024). The principal components of the hyperspectral dataset 
show similarities between the present field study and our previous 
controlled experiment, suggesting broadly similar regions of variation in 
the leaf reflectance spectra. The width of the green reflectance peak 

(characterised by MCARI and Max NDSI) was important in differenti-
ating between O3 treatments in our previous controlled experiment, as 
well as in the present field study.

Conversely, the short wavelength infrared region (SWIR) which 
varied strongly with foliar O3 damage in our previous controlled 
experiment did not show a relationship with O3 concentration in the 
present field study. There are several possible reasons for this: maximum 
O3 concentrations measured in the field were lower than the highest O3 
treatment in our previous experiment and so changes in the SWIR may 
only be triggered at higher O3 concentrations. Some studies have also 
found that juvenile trees are more sensitive to O3 stress than mature tress 
due to higher stomatal uptake and therefore dosage of O3 (Nunn et al., 
2005). Alternatively, the SWIR region may be affected by O3 in saplings 
but not in mature trees. Stress responses are known to differ between 
saplings and mature trees for example in response to drought in Quercus 
rubra (Cavender-Bares and Bazzaz, 2000), other studies of Quercus and 
deciduous species have found age-related differences in leaf traits and 
gas exchange patterns (Mediavilla and Escudero, 2003; Thomas and 
Winner, 2002). The SWIR region of leaf reflectance is associated with 
foliar cellulose, starch, and sugar content, as well as water content 
(Cheng et al., 2011; Curran, 1989) and so may be affected differently by 
O3 stress in saplings versus mature trees. Conversely, some studies have 
shown similar responses to O3 stress in saplings and mature trees (Braun 
et al., 2014). These two explanations for the difference in SWIR response 
between our two studies (lower O3 exposure/uptake and differences in 
ontogeny) are not mutually exclusive.

We have demonstrated using a machine learning approach that O3 
exposure in mature trees can be detected from hyperspectral leaf 
reflectance (PLSR analysis), which could be used to indicate locally 
damaging O3 concentrations. Tropospheric O3 monitoring is sparse in 
coverage, and focusses on urban versus suburban sites in the UK (Finch 
and Palmer, 2020). The O3 exposure of most forests is unknown, and 
monitoring requires expensive automated gas analysers or regular lab 
analysis of diffusion tubes. Leaf reflectance therefore represents an 
exciting new method of identifying damage inducing O3 concentrations 
in forests, confirmed by air pollution models. We took leaf level reflec-
tance measurements directly from the canopy, but scaling this method 
up to remote measurements taken via unmanned aerial vehicles (UAV, 
or drones) would allow widespread assessment of O3 induced damage in 
forests.

Although this study focussed on oak, our previous O3 exposure 
experiment showed oak reflectance in saplings responded similarly to 
other broadleaf species (beech, birch, alder and crab apple). MCARI 
differed significantly with O3 treatment across beech, birch, crab apple 
as well as oak in our experimental study. Meroni et al reported similar 
changes in the green peak and red edge in Populus nigra (Meroni et al., 
2009). We hypothesize hyperspectral detection of O3 damage using 
analysis of the green peak and red edge in mature trees could be 
expanded beyond oak to other deciduous species. The canopies of nat-
ural or semi natural deciduous forests are often a mixture of different 
species, and so expanding detection of O3 damage to a deciduous species 
mix will be important for developing a remote sensing method of O3 
damage detection.

The spectral method of O3 damage detection we have tested is more 
scalable and consistent than manual inspection of foliar damage. 
Hyperspectral measurements are not subjectively influence by the 
assessor, unlike manual inspection methods. Standardisation training 
for human O3 damage assessors can improve the subjectivity of their 
measurements, but differences remain and training takes significant 
resources (Bussotti et al., 2003). Hyperspectral measurements on the 
other hand are objective, standardised by referencing, and can be taken 
by non-experts. Hyperspectral measurements can also be taken remotely 
via UAV, aircraft and satellite although scaling spectral intensity across 
spatial scales can be challenging (Fawcett et al., 2020). Vegetation 
indices are directly scalable however because by taking the ratio of in-
tensity at different wavelengths, they are not dependant on absolute 
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intensity of reflectance. MCARI has a strong relationship with O3 
exposure and can be calculated from multispectral satellites with global 
coverage over several decades such as Sentinel 2 and Landsat 8. Stan-
dard multispectral satellite bands could not be used to calculate Max 
NDSI but hyperspectral satellite products such as EnMAP could be used 
on a landscape scale to assess O3 damage to vegetation. This study 
demonstrates the potential for specific changes in leaf reflectance to be 
used to monitor O3 damage on larger spatial scales in a new application 
of remote sensing.

5. Conclusions

Our study has shown a clear signal of O3 damage can be detected 
from hyperspectral leaf reflectance in adult oak trees under a range of 
naturally occurring O3 concentrations. Hyperspectral leaf reflectance 
can be used to accurately predict O3 exposure, which could be scaled up 
for forest level assessments of damage inducing O3 exposure. O3 induced 
changes in leaf reflectance can be tracked using vegetation indices such 
as MCARI, which could be used establish remote sensing of O3 damage 
to forests. As O3 concentrations continue to rise globally, understanding 
the extent of O3 damage to forests is crucial to effectively harness the 
carbon sequestration potential of forests. We have demonstrated the 
exciting potential of spectral monitoring of O3 damage in mature trees, 
which now needs to be generalised beyond oak and scaled up to a remote 
sensing methodology.
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Bussotti, F., Schaub, M., Cozzi, A., Kräuchi, N., Ferretti, M., Novak, K., Skelly, J.M. 2003. 
Assessment of ozone visible symptoms in the field: perspectives of quality control. 
Environ. Pollut., Native Plants as Bioindicators of Air Pollutants: Contributed Papers 
to a Symposium held in conjunction with the 34th Air Pollution Workshop 125, 
81–89. https://doi.org/10.1016/S0269-7491(03)00095-2.

Butt, N., Campbell, G., Malhi, Y., Morecroft, M., Fenn, K., Thomas, M., 2009. Initial 
Results from Establishment of a Long-term Broadleaf Monitoring Plot at Wytham 
Woods, Oxford, UK.
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