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Abstract: Plant phenology is an important driver of inter-annual variability in peatland
carbon uptake. However, the use of traditional phenology datasets (e.g., manual surveys,
satellite remote sensing) to quantify this link is hampered by their limited spatial and
temporal coverage. This study examined the use of phenology cameras (phenocams) and
uncrewed aerial vehicles (UAVs) for monitoring phenology in a Scottish temperate peatland.
Data were collected at the site over multiple growing seasons using a UAV platform fitted
with a multispectral Parrot Sequoia camera. We found that greenness indices calculated
using data from both platforms were in strong agreement with each other, and exhibited
strong correlations with rates of gross primary production (GPP) at the site. Greenness
maps generated with the UAV data were combined with fine-scale vegetation classifications,
and highlighted the variable sensitivity of different plant species to dry spells over the
study period. While a lack of suitable weather conditions for surveying limited the UAV
data temporally, the phenocam provided a near-continuous record of phenology. The latter
revealed substantial temporal variability in the relationship between canopy greenness
and peatland GPP, which although strong over the growing season as a whole (rs = 0.88,
p < 0.01), was statistically insignificant during the peak growing season.

Keywords: peatland; GPP; phenology; drought response

1. Introduction
1.1. Vegetation Drives Seasonal Carbon Dynamics

Terrestrial ecosystems and their vegetation are key components of the global carbon
cycle and an important control on its dynamics [1]. Indeed, the seasonal greening of
vegetation in the northern hemisphere and its photosynthesis are large enough to be
observed in global atmospheric carbon-dioxide (CO2) concentrations [2,3]. This plant
phenology describes the timing of lifecycle events, including spring green-up, flowering,
and autumn senescence [4]. These events are regulated by internal biological mechanisms
and tightly coupled to a range of environmental drivers, which makes them sensitive to
change [5]. Global shifts in phenology have been observed since the mid-20th Century in
response to climate change [6–10], with earlier spring growth and later senescence [11,12]
leading to a longer growing season [8,13,14]. That said, predicted future increases in the
frequency and severity of extreme weather events (e.g., drought) [15] may limit the length
of the vegetation period [16,17]. In either case, future phenological shifts are expected to
have large implications for the global carbon cycle [5,18,19].
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1.2. Carbon Fluxes in Northern Peatlands and Responses to Climate Change

Northern peatlands are particularly vulnerable to change. These ecosystems constitute
a globally significant carbon sink of around 400–600 Pg C [20,21], and have experienced
favourable environmental conditions since the Holocene (e.g., a cool, wet climate and
high water-table), inhibiting the decomposition of organic matter [22,23]. Under scenarios
of future climate change, however, northern latitudes are expected to experience above-
average rates of warming, alongside more frequent and extreme weather events [15,24,25].
Such changes risk destabilising peatland carbon stocks by accelerating rates of decomposi-
tion [26]. Although an earlier start to the growing season in response to rising temperature
would (in principle) increase the number of days where an ecosystem can assimilate car-
bon by photosynthesis [27–29], the complex feedbacks between weather, phenology, and
ecosystem functioning make it difficult to predict the overall impact of phenological shifts
on peatland carbon cycle dynamics [5,19,30,31].

The Net Ecosystem Exchange of CO2 (NEE) in a peatland is the difference between
the amount of CO2 released by ecosystem respiration (Reco) and that assimilated by photo-
synthesis (i.e., Gross Primary Production, GPP). Over short (daily, seasonal, inter-annual)
timescales, peatlands display a strong variability in carbon uptake, and a number of sites
have demonstrated the ability to switch from functioning as a net sink for CO2, to a net
source between years. This variability has often been attributed to weather events such
as heatwaves and altered precipitation patterns [17,32,33], which can affect both plant
physiology (e.g., by drought-induced stress) and phenology (e.g., if drought stress induces
early senescence). Such research, however, has to date been limited and is hampered by a
lack of high-quality, long-term phenology datasets.

1.3. Phenological Monitoring
1.3.1. Manual Surveys and Remote Sensing

In terms of monitoring, the inaccessible and remote nature of many peatland sites
means that traditional, manual observations of phenology are rare. As an alternative,
studies often examine (near) remote-sensing phenology; either using data from automated
camera setups (i.e., phenocams [34–36]), or from satellite imagery [37–39]. While pheno-
cams provide near-continuous ‘true-colour’ imagery over a fixed field of view in the red,
green, and blue bands (RGB), satellites can exploit data from multispectral (containing as
few as 3–4 bands) or hyperspectral sensors (containing hundreds of sampled bands) and
provide spectrally rich, calibrated data.

Remote sensing studies commonly employ vegetation indices (VIs) as a proxy for
plant phenology and physiology. These are combinations of bands known to relate to
vegetation structure (e.g., biomass, leaf area), vegetation biogeochemistry (e.g., water
content, pigments, chlorophyll), and physiological status (e.g., light use efficiency, stress
marked by changes in pigmentation) [40]. VI time-series can be used to estimate the
timing of phenological events (e.g., leaf out, flowering date, senescence) (e.g., ref. [41]).
Furthermore, at sites with available greenhouse gas measurements, these time-series data
can be used to examine: (i) the response of vegetation to weather events (e.g., ref. [42]);
and (ii) the impact of phenology on ecosystem functioning and land–atmosphere exchange
(termed flux hereafter) of CO2 [38,43,44].

1.3.2. Limitations of Current Remote Sensing Approaches

Phenology metrics derived using remote sensing are sensitive to the resolution of data
employed [45–48], which is an inherent problem [49,50]. At the ground level, phenology is
strongly heterogeneous, both spatially and temporally. Field measurements in a deciduous
forest, for example, found that the onset of greening varied by as much as 2 weeks over
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distances <500 m, despite stands having similar composition, age and structural characteris-
tics [51]. Such fine-scale heterogeneity (e.g., differences due to micro-topography or species
type) is not captured by the relative coarseness of satellite data pixels, which commonly
employ spatial resolutions > 30 m. This ‘coarse’ spatial resolution can be problematic as it
masks a large amount of heterogeneity and pixels contain mixed spectral signals [47]. As
such, satellite data are often not comparable with the plot scale (0.1–1 m2) at which many
flux measurements are conducted, which makes it difficult to directly compare datasets.
The temporal coverage of phenology datasets is also important. For example, differences in
the temporal resolution of satellite data products (e.g., comparing the MODIS 8 day and
twice daily vegetation index timeseries) were found to cause a discrepancy of over 30 days
in the timing of inferred phenological stages in a deciduous forest [52].

Phenocam data, although advantageous in their high temporal resolution, are spatially
limited. The majority of peatland phenocam studies examine greenness averaged across a
single region of interest (ROI), spanning multiple species with varying phenology; whereas
few have examined phenology at the community or plot level, and related this to photo-
synthetic uptake of CO2 [53,54]. Furthermore, phenocams are consumer-grade cameras,
and hence the acquired images are neither spatially referenced nor spectrally calibrated. As
such, phenocam-derived phenology metrics are hard to scale and compare, for example
with satellite data.

1.3.3. State of the Art: UAVs for Phenological Monitoring

An alternative and more novel approach for monitoring phenology involves the use of
Uncrewed Aerial Vehicles (UAVs). UAVs equipped with RGB, multispectral, or hyperspec-
tral sensors can be used to collect data across a range of spatial and temporal scales, and
have much potential in studies examining the heterogeneity of peatland environments and
their phenology [55–57]. UAV data can be spectrally calibrated and geo-referenced over a
defined survey area, which facilitates their comparison with measurements at the plot- and
ecosystem scale (100–106 m2), as well as with satellite data. Furthermore, UAV platforms
can collect data at an ultra-high spatial resolution, with ground sampling distances (GSDs,
i.e., the distance on the ground covered by each image pixel) in the order of centimetres. As
such, UAVs have become a valuable tool for tracking fine-scale heterogeneity in greening,
e.g., of individual tree crowns [56,58,59] and agricultural crops [60]. However, detailed
time-series of UAV data in peatland environments are rare due to their structural com-
plexity and pronounced spatial heterogeneity. In a recent study of a Finnish peatland,
Räsänen et al. [61] examined a combination of hyperspectral UAV data and ground-based
measurements for detecting patterns in vegetation. The authors demonstrated the poten-
tial of UAVs for detecting seasonal trends and fine-scale spatial variability in structural
characteristics such as leaf area and biomass. Assmann et al. [62] used a multispectral UAV
platform to examine changes in greenness in a tundra environment, finding that a GSD
of 0.5 m was able to capture the variability in dominant vegetation types. By spatially
aggregating UAV image pixels (5-cm GSD), the authors reported that as much as 60% of
seasonal variability in greenness was lost at the spatial resolution of the employed satellite
datasets (e.g., Landsat, 30 m; Sentinel-2, 10 m), highlighting the benefits of UAV-based
monitoring over satellite data.

Inter-comparison studies employing data across multiple spatial and temporal scales
are key to improving our understanding of vegetation phenology and its impact on CO2

exchange [56,63–65]. In boreal peatland ecosystems, for example, Linkosalmi et al. [53],
found a strong agreement between phenocam- and satellite-derived VIs. The authors found
that while seasonal changes in greenness were closely correlated with peatland GPP, short-
term variability in GPP could only be explained by phenocam-derived greenness during



Remote Sens. 2025, 17, 526 4 of 26

certain periods. Multi-scale comparison studies incorporating UAV data are rare, although
a study by Berra et al. [56] compared ground-, UAV-, and satellite-based observations of
phenology at a mixed woodland. They found that fine-scale UAV data were able to track
canopy phenology of individual trees, whereas satellite-derived datasets were related to
phenological dynamics at the ecosystem scale.

1.4. Research Outline and Aims

Our study aims to improve understanding of the role of phenology on CO2 flux across
a range of spatial and temporal scales. For this purpose, we examined the use of phenocam
imagery and multispectral UAV data to track vegetation phenology over multiple growing
seasons in a temperate Scottish peatland. We examined the use of both phenocam- and UAV-
derived greenness metrics as a proxy for photosynthetic CO2 uptake. Finally, in a unique
approach, we combined centimetre-resolution UAV data with a vegetation classification
map to examine species-level changes in greenness in response to weather anomalies
experienced at the site.

2. Materials and Methods
2.1. Study Area

Auchencorth Moss is a low-lying ombrotrophic peatland, located in southeast Scotland
(55◦47′33 N, 3◦14′37 W; 267 m a.s.l.). Shown in Figure 1, the site covers an area of around
1000 ha, with extensive homogeneous fetch over blanket bog to the south, west, and north.
A series of regular, parallel ditches indicate the area was historically drained (>100 years
ago), although these are now overgrown with vegetation. The peatland has naturally
returned to a rewetted state and is currently used for low-density sheep grazing (<1 ha−1).
The main soil types in the catchment area are histosols (85%), followed by gleysols (9%),
humic gleysols (3%) and cambisols (3%), although the presence of these soil types is mainly
limited towards the catchment edge [66].

The site experiences a temperate maritime climate (Köppen–Geiger classification,
Ref. [67]), consisting of mild winters with infrequent snowfall, and warm temperatures
during the summer months. Mean annual air temperature and total annual precipitation
at the site are 7.7 ± 0.6 ◦C and 963 ± 176 mm, respectively (all values for the period
2002–2017 unless otherwise stated). The site is generally wet, with average daily water
table depth (WTD) close to the surface (WTD = 0.9 ± 2.6 cm since recording started in 2007,
where positive values indicate a water-table below the surface). WTD displays seasonal
variability, and daily values over the long-term measurement record range from −8.5 to
50 cm, reaching their lowest during summer months. The site has mostly functioned as a
net sink for CO2 since 2002, with an average annual uptake of −1.16 ± 0.8 mol CO2 m−2 y−1

(for 2002–2023; range: −9.88 ± 2.9 mol CO2 m−2 y−1 to 6.14 ± 2.5 mol CO2 m−2 y−1).
A regular hummock-hollow micro-topography characterises Auchencorth Moss, typi-

cal of many peatlands. Raised hummocks (ca. 40 cm diameter, 30 cm tall) are dominated by
a mixture of pleurocarpous mosses (e.g., Pleurozium schreberi, Rhytidiadelphus squarrosus,
Hylocomium splendens) and vascular vegetation (e.g., Eriophorum vaginatum, Deschampsia flex-
uosa, Juncus effusus), whereas hollow microsites (due to their lower elevation) are generally
wetter, dominated by mosses (e.g., Sphagnum spp., Polytrichum commune) and some grasses.

2.2. UAV Data
2.2.1. Data Collection

UAV surveys were conducted over the 2018, 2019 and 2021 growing seasons (April to
October) using a custom-built hexacopter developed by the Airborne Research and Innova-
tion facility (University of Edinburgh), based around the Tarot T680 Pro airframe (Wenzhou



Remote Sens. 2025, 17, 526 5 of 26

Tarot Aviation Technology Co., Wenzhou, China) and a 3DR Pixhawk flight controller
running ArduPilot firmware (http://www.ardupilot.org, accessed on 15 October 2017).
Due to the global pandemic, no sampling was conducted during 2020. Repeat surveys were
flown over a 0.05 km2 area (see Figure 1), following a fixed flight path with 80% front- and
side-lap, programmed using the Mission Planner software (v1.3.5, ArduPilot). Analysis of
historical data identified this as the dominant source area for CO2 fluxes measured at the
site, allowing for a comparison of greenness and flux data.

Surveying was limited to days with specific meteorological conditions in an attempt
to collect the best-quality imagery [68,69]. These were days with: (i) low wind-speeds
(<10 m s−1) to reduce blur and limit movement of the vegetation canopy; and (ii) stable
meteorological conditions (e.g., consistent clear skies or overcast conditions) to reduce
effects of variable scene illumination. Furthermore, all UAV surveys were conducted within
2 h of solar noon to limit the impact of shadow on the collected imagery.
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Figure 1. Study site overview. Panel (a) shows an aerial image of Auchencorth Moss alongside the
UAV survey area (yellow box), with the location of the meteorological measurement mast (star),
flux measurement tower and phenocam (circle) as well as its field of view (dotted lines) shown for
reference. Panel (b) shows the employed species-level classification of the UAV survey area (see [70]).
Map tile (a) by the Microsoft® Bing™ Maps Platform API (Microsoft Corporation, Redmond, WA,
USA), under General Rights and Restrictions for Prints. Data by OpenStreetMap, under ODbL.

Multispectral data were collected using a Parrot Sequoia camera (Parrot Drones SAS,
Paris, France) mounted on the UAV to acquire images in the green, red, red-edge, and
near infra-red (NIR) bands (see Table 1). This camera consists of two components: (i) a
downward-facing lens, which captures imagery of the surveyed scene; and (ii) a skyward-
facing incident light sensor (Parrot Sequoia Sunshine Sensor), which automatically corrects
measured reflectance by recording changes in incoming irradiance. Before and after each
flight, spectral calibration data were collected by taking an image over a panel of known
reflectance (50%, SphereOptics GmbH, Herrsching, Germany).

http://www.ardupilot.org
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Table 1. Spectral information for the four Parrot Sequoia bands.

Band Name Central Band Wavelength ± Width (nm)
Green 550 ± 40
Red 660 ± 40

Red-Edge 735 ± 10
Near Infra-Red 790 ± 40

Prior to conducting the first survey in 2018, a series of permanent markers were placed
within the chosen survey area. These consisted of 10 Ground Control Points (GCPs) to
allow captured imagery to be geo-referenced, and five Check Points (CPs) to calculate the
geolocation accuracy of produced maps. The exact location of each marker was measured
using a high-precision Global Navigation Satellite System (GNSS; GPS500, Leica Geosys-
tems AG, St. Gallen, Switzerland) to an accuracy of <2 cm. All markers were regularly
monitored throughout the growing season and cleared of overgrowing vegetation.

2.2.2. Data Processing

Images from each flight were processed using the ‘Ag Multispectral’ template in
thePix4D software (v4.4.12, Pix4D S.A., Prilly, Switzerland). First, key-points in the images
were matched based on the programmed flight path. This model was then geo-referenced
based on the known GCP coordinates and manual image verification before radiometric
calibration was conducted. The resulting output was a separate reflectance map for each of
the four bands, with an average GSD of 2.8 ± 0.1 cm (mean ± standard deviation). Map
geolocation accuracy was assessed by calculating the Root Mean Square Error (RMSE)
of the five CPs in the imagery. RMSE values were 1.25 cm, and 1.37 cm in the x- and
y-direction, respectively. Due to a fault with the sunshine sensor, processed imagery for
the period June to September 2018 was omitted from further analysis, leaving a total of
26 image sets.

2.2.3. Classification Map

We employed a vegetation classification map of the study area (see [70]) to examine
differences in phenology of the dominant species at Auchencorth Moss. This classification
is presented in Figure 1b, and maps the areal distribution and cover of individual species
at the site with a GSD of 2.8 cm and overall classification accuracy of 69%. In the present
study, we restricted our examination to 9 of the 11 mapped classes (see Table 2). These
classes had a patch size over twice the GSD of the UAV imagery, and hence their phenology
was more likely to be captured by the multispectral surveys.

Table 2. Dominant species at the site which were included for analysis.

Plant Functional Type Dominant Species

Shrub Calluna vulgaris
Vaccinium spp. (V. myrtillus, V. oxycoccus)

Bryophyte (moss)
Polytrichum commune

Sphagnum spp.
Pleurozium schreberi

Grasses Deschampsia flexuosa
Molinia caerulea

Rush Juncus effusus
Sedge Eriophorum vaginatum
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2.2.4. Extraction of Species-Level VIs

Combining the processed UAV imagery for each survey date and vegetation classi-
fication map, a selection of VIs were calculated (see Table 3) for: (i) the survey area as
a whole (i.e., an average of all image pixels); and (ii) each individual species inside the
survey area (i.e., an average of pixels belonging to each mapped class). These data were
employed as a proxy of the phenology and physiological status of the vegetation canopy.
Finally, the impact of shadow on the calculated VIs was examined, defined using a fixed
threshold in a green-red pan band (one standard deviation below the mean). A comparison
of VIs calculated using all pixels (shadow, mixed, illuminated) and those calculated with
illuminated pixels only identified no significant difference in VIs calculated using these
two approaches (two-sample t-test, equal variances, p < 0.05). As such, VIs used in our
subsequent analysis span shadow, mixed, and illuminated pixels.

Table 3. Overview of the vegetation indices (VIs) calculated from the multispectral Parrot Sequoia
data. The notation, ρ, denotes reflectance in each band and an asterisk (*) indicates where a given VI
ranges from −1 to +1.

Vegetation Index (VI) Abbreviation Equation Description

Red-Edge Chlorophyll REChl ρNIR
ρRedEdge

− 1 Indicator of photosynthetic activity of
vegetation canopy

Green Chlorophyll gChl ρNIR
ρgreen

− 1 Used to estimate leaf chlorophyll content

Red Chlorophyll rChl ρNIR
ρred

− 1 Used to identify senescence and areas of
yellowing vegetation

Normalised Difference NDVI * ρNIR−ρred
ρNIR+ρred

Sensitive to structural and physiological
properties. Used to estimate leaf area index

Normalised Difference
Red-Edge reNDVI1 * ρNIR−ρRedEdge

ρNIR+ρRedEdge

Modification of the NDVI utilising the
red-edge band

Normalised Difference
Red-Edge/red reNDVI2 * ρRedEdge−ρred

ρRedEdge+ρred

Modification of the NDVI utilising the
red-edge and red bands

Green Normalised
Difference gNDVI * ρNIR−ρgreen

ρNIR+ρgreen

Sensitive to chlorophyll content and has a
higher point of saturation than the NDVI

Normalised Green/Red
Difference NGRDI * ρgreen−ρred

ρgreen+ρred

Modification of the NDVI employing only
reflectance in the visible (green and red) bands

2.3. Phenocam Imagery

Data from a Stardot camera (CAM-SEC5IR, Stardot Technologies, Buena Park, CA,
USA) were employed as a near-continuous time-series of green-leaf phenology from its
installation in July 2018 until the end of 2021. This phenocam was mounted next to the
flux measurement tower (see Figure 1a) at a 3.29 m height, pointing northward (343◦ N)
and inclined downward at a 10◦ angle. Camera settings adhere to the ICOS phenocam
protocol [71], with automatic exposure and a fixed white balance, which is known to
improve consistency in the brightness of images taken under variable illumination con-
ditions [72]. Captured RGB images were 5 megapixels in size (2592 × 1944 pixels) and
stored as 24-bit JPEG files. We restricted our analysis to imagery collected at midday
(12:00 UTC), as this coincided with the average time of the UAV image acquisition. Techni-
cal problems with the phenocam setup resulted in some periods of missing data, the largest
being in July 2019 (15 days: 10 June–25 June 2019) and August–September 2019 (29 days:
13 August–11 September 2019).

The phenocam imagery was screened for quality. Hereby, images were visually
assessed to identify: (i) water condensation on the camera housing; (ii) grazing sheep
in the ROI; (iii) snow-cover; or (iv) images with poor illumination conditions (foggy,
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cloud shadows, sun glint; see Figure 2). All images captured by the above screening were
removed from subsequent analysis. RGB images were then processed using the open-source
R package, Phenopix [73].
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Figure 2. Example phenocam imagery from Auchencorth Moss captured at 12:00 UTC. The selected
region of interest (ROI) selected for this study is outlined in yellow. The left-hand side from top to
bottom shows imagery taken during the 2019 green-up (subplot (a)), peak season (b), and green-
down (c). Displayed on the right-hand side are images that did not pass quality control screening
(i.e., raindrops on the camera housing (subplot (d)), variable scene illumination (e) and fog (f)). Note:
(i) the bottom half of the image below the ROI is inside the fenced measurement compound, and
hence not considered representative of the natural vegetation; and (ii) that the camera viewing angle
in combination with a strong micro-topography and presence of tall grasses means it is not possible
to see hollow microsites, although hummocks are clearly visible.

We selected a single region of interest (ROI) outside of the flux measurement com-
pound (see Figure 2) for which colour information in each band was extracted. In each
image, the Green Chromatic Coordinate (Gcc) was calculated as the average ‘greenness’
normalised to the total brightness across all bands:

Gcc =
GDN

(RDN + GDN + BDN)
(1)

where R, G, and B refer to the red, green and blue bands, respectively, and DN denotes the
average digital number (i.e., brightness) of pixels inside the ROI for each band. The Gcc was
used as a proxy of phenological development and physiological status of the vegetation
canopy. For gaps in the phenocam dataset ≤ 5 days, the data were smoothed using the 90th
percentile of Gcc values over three-day moving windows to reduce the impact of variable
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illumination conditions on the time-series [74]. For the present analysis, gaps > 5 days were
not filled, as doing so led to misleading trends at phenological breakpoints, particularly for
the large gaps present in the 2019 time-series.

A double logistic model was fitted to the smoothed Gcc time-series to estimate pheno-
logical development of the vegetation canopy. Goodness of fit from a selection of models
was examined based on their Root Mean Square Error (RMSE; see [73]), and the double
logistic model of Gu et al. [75] was employed as this had the lowest RMSE. Finally, changes
in slope of the Gcc time-series were used to estimate transition dates of green-leaf phenology,
e.g., green-up, peak season, and green-down. This study adopts the phenophase method of
Gu et al. [75], in which transition dates for green-up, peak growing season, and green-down
are determined by using local extremes of the first-order derivative.

2.4. CO2 Flux Measurements and Supporting Meteorological Data
2.4.1. Instrumentation

Fluxes of CO2 were measured continuously using the eddy-covariance (EC) technique
and reported for 30-min averaging intervals [76–78]. The EC system at Auchencorth Moss
has been in operation since 2002 [79], and currently consists of: (i) a closed-path infrared
gas analyser (LI-COR 7000, LI-COR Environmental, Inc., Lincoln, NE, USA) measuring
water vapour and CO2 concentrations at 10 Hz (effective height 3.5 m, 20-m long inlet tube,
outside diameter 1/4′′); and (ii) a 3D ultrasonic anemometer (WindMaster Pro installed
at a 3.6-m height was used until June 2019, and then replaced by a HS-50 installed at a
4.1-m height (both Gill Instruments, Lymington, UK)) operating at 20 Hz. Both setups
have the same separation (30 cm vertical; 20 cm horizontal) from the inlet of the sampling
line and all data were logged to a PC using an in-house LabViewTM program (National
Instruments, Austin, TX, USA). In addition to EC measurements, the site is supported by
an adjacent meteorological station (see Figure 1; ref. [80]), providing a comprehensive suite
of meteorological observations. These measurements include temperature (fine wire type-E
thermocouple), water-table depth (WTD, Druck PDCR 1830, Druck Ltd, Leicester, UK),
photosynthetically active radiation (PAR, SKP215, Skye Instruments Ltd., Llandrindod, UK)
and rainfall (tipping bucket rain gauge). Reference in the text to average meteorological
conditions describes long-term values for the period 2002–2017 for all variables except
WTD, for which recording began in 2007. Finally, multiple dry spells were observed over
the study period, defined here as periods longer than 7 days with WTD > 5 cm below
the surface.

2.4.2. Flux Calculation and Quality Screening

Standard EC quality control (Vickers and Mahrt [81]) was applied to CO2 and H2O
concentrations and wind/turbulence data, as summarised in Table 4. Fluxes were then
calculated using the EddyPro software (v7.0.6, LI-COR Biosciences, Inc., Lincoln, NE, USA)
and screened to check they were within realistic range for the site. Finally, processed fluxes
were quality flagged as part of a 3-point scale [82], where ‘0’ indicates the best-quality
fluxes, and ‘2’ indicates the lowest-quality estimates. The latter were discarded from all
further analyses.

Table 4. Outline of EC quality control criteria used in this study.

(1) Data completeness
Check the number of raw data points (N) per 30-min flux averaging period ≥90% of the
possible total (i.e., N ≥ 1620 for 10 Hz data)
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Table 4. Cont.

(2) Raw data spikes
Data excluded if spikes (i.e., values > ± 2 standard deviations from the mean) in vertical
wind velocity, CO2 mole fraction, or water-vapour (H2O) mole fraction > 1% total
number of data points per 30-min flux averaging period (i.e., ≥18 for 10 Hz data)
(3) Sufficient turbulence
Discard measurements with insufficient turbulence, defined by a friction velocity (u*)
threshold [83]
(4) Stationarity
Check that the time-series is in steady state [84]
(5) Flux within sensible range for site
Discard half-hourly CO2 fluxes which fall outside the range ± 30 µ mol CO2 m−2 s−1

2.4.3. Flux Partitioning and Gapfilling

The online tool (available at https://bgc.iwww.mpg.de/5622399/REddyProc, ac-
cessed on 21 May 2022) developed at the Max Plank Institute for Biogeochemistry (Jena,
Germany [85,86]) was used to partition half-hourly NEE fluxes and to fill data gaps result-
ing from: (i) equipment failure; and (ii) data that did not fulfil the quality requirements in
Table 4. Gapfilled data were used to calculate the annual cumulative NEE budgets (as the
sum of all half-hourly periods) only, and their associated uncertainty was calculated as the
root sum of squares of random uncertainty estimated from the gapfilling analysis for each
half-hour period [87].

For the flux partitioning, daytime and missing night-time Reco were modelled based
on the temperature response of night-time CO2 flux data, because these do not contain
a photosynthetic uptake component [85,88]. Half-hourly GPP was then calculated as the
difference between NEE and Reco. The 90th percentile of daily GPP (GPP90) was used as an
indicator of the maximum daily photosynthetic uptake of CO2 rather than daily averages
or totals for example, to reduce the impact of gaps in the dataset. For example, half-hourly
periods of missing data (particularly if occurring during daytime) could otherwise bias
daily averages of GPP (especially if they are not randomly distributed), or result in lower
daily sums of GPP as an artefact of these data gaps

2.5. Statistical Analysis

Statistical analysis was used to examine the strength of the relationship between
phenology and GPP over different phenological stages and measurement years. As the
data were generally not normally distributed, a Spearman’s rank order correlation (rs) was
employed for all correlation analyses. This exploration of the data involved correlation
analysis between single potential predictor variables (Gcc, UAV-derived VIs) and GPP90.

3. Results
3.1. Overview of the Study Period (Hydrometeorological Conditions and CO2 Balance)

The four years examined were characterized by a number of weather events, which
affected both vegetation phenology and physiology, as well as ecosystem functioning.
The year 2018 was the most unusual year with respect to the long-term record. Cold
conditions and late snowfall during spring led to a delayed start to the growing season, and
were followed by a European-wide summer heat and drought event [89,90]. Monthly air
temperatures in June and July were consistently above the long-term average, and the site
experienced a dry spell (defined as a period longer than 7 days with WTD more than 5 cm
below the surface) of over two months. During this period WTD remained below 10 cm
for 77 days (28 June to 12 September 2018), and reached a minimum of 47 cm (Figure 3).

https://bgc.iwww.mpg.de/5622399/REddyProc
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From visual field observation, this dry spell resulted in the desiccation of vegetation and
early senescence. This year was also unique in terms of its CO2 budget. Coinciding with
the warm, dry conditions, the year 2018 had a positive NEE (7.92 ± 0.5 mol CO2 m−2 y−1),
which is in contrast to the long-term sink function observed at the site [79,91]. Unusually,
daily cumulative NEE did not cross the zero line at any point during this year, and instead
remained consistently positive.
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Figure 3. Overview of hydrometeorological conditions over the study period: 2018, 2019, 2020 and
2021 (from top to bottom). Shown are: daily cumulative precipitation (bars); daily water-table depth
(WTD, lines; positive values indicate a water table below the ground surface); and ‘dry spells’ (yellow
shaded areas, defined as periods > 1 week with WTD > 5 cm below the surface).

The year 2019 was characterised by more normal conditions with respect to the long-
term (2002–2017) average. This year experienced a warm start, with monthly Tair in
February 2019 being almost twice the average, and daily mean Tair was consistently above
zero from early February (day of year (DOY) 35). It follows that the growing season also
commenced early during this year, with green-up in late April (see Table 5). All months
were wetter than average from April onwards, although there were a few dry spells, the
most notable of which occurred on DOY 105–128 (23 days, mid-April to early May; Figure 3).
Summer WTD was closer to the surface than in 2018, with mean WTD in July for example
being close to average (WTD anomaly for July 2019 = + 3.7 cm, vs. + 30.7 cm for July 2018;
both with respect to the 2007–2017 average), and Tair for the rest of the year was within
average range for the site. Zero-crossing of cumulative NEE (i.e., when cumulative NEE
first became negative), occurred on DOY 166, and over this year the peatland functioned as
a net sink of atmospheric CO2 (annual budget = −2.73 ± 0.6 mol CO2 m−2 y−1).

The year 2020 had a dry start to the growing season and was affected by the longest dry
spell in the study period (84 days: 7 April–29 June 2020; Figure 3). This year also exhibited
the shortest growing season, characterised by a prolonged green-up period (>20 days
longer than estimated for the other years) and a short peak (ca. 60% shorter than for other
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years; see Table 5). The ecosystem functioned as a net source of CO2 to the atmosphere
(annual NEE = 4.04 ± 0.5 mol CO2 m−2 y−1) and there was a delay in the zero-crossing
date of cumulative NEE, which did not occur until the end of July (for 2019 and 2021, this
occurred in mid-June).

Finally, the year 2021 experienced a cooler than average spring (1.4 ◦C below the
long-term average, March–May), and was affected by multiple dry spells during summer
and autumn (Figure 3). In terms of phenological development, 2021 was notably different
to the rest of the study period. This year displayed an asymmetrical greenness curve,
characterized by a delayed, but rapid greening; and a more gradual, prolonged senescence
period (Figure 4, Table 5). Greenness values peaked shortly after the transition to the peak
growing season, before declining towards the end of the growing season in tandem with
frequent dry spells. The annual CO2 budget for this year was close to, and not statistically
different from, zero (NEE = 0.03 ± 0.6 mol CO2 m−2 y−1).

Table 5. Phenological stages for the study years estimated using the phenocam data. Shown are the
estimated start and end DOY for green-up, peak growing season, green-down, and the complete
growing season (i.e., start of green-up to end of green-down). The overall length of each period is
shown in brackets. Note: no estimation of phenological breakpoints was conducted for the year
2018, because the time series of images available after camera installation (July 2018) was too short to
estimate greenness trajectory over the growing season.

Year Green-Up Peak Growing
Season Green-Down Complete

Growing Season

2018 - - - -

2019 DOY 119–156
(37 days)

DOY 156–269
(113 days)

DOY 269–321
(52 days)

DOY 119–321
(202 days)

2020 DOY 127–186
(59 days)

DOY 186–253
(67 days)

DOY 253–317
(64 days)

DOY 127–317
(190 days)

2021 DOY 135–171
(36 days)

DOY 171–254
(83 days)

DOY 254–329
(75 days)

DOY 135–329
(194 days)
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Figure 4. Time-series of daily phenocam-Gcc (black line and circles) averaged over the ROI, and
UAV-derived VIs for the flight survey area (coloured markers). Displayed on the x-axis are the
calendar months for each measurement year; note that the seasonal amplitude of UAV-derived VIs
has been normalised between 0 and 1 to facilitate comparison of their temporal trends.
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3.2. Monitoring Vegetation Phenology

The two phenology datasets (phenocam, UAV) differed considerably in their spatial,
temporal, and spectral resolution, and are described in detail below. Note that the term
‘greenness’ is used to describe both the UAV-derived VIs (Table 3) and phenocam-derived
Gcc (Equation (1)).

3.2.1. Phenocam Data

The phenocam data provide a near-continuous time-series of vegetation phenology
from mid-2018 until the end of 2021. Although the Gcc is a simple index and not spectrally
calibrated, it was able to capture a clear seasonal trend in greenness at the site (see Figure 4).
Four phenological phases were identified: (1) green-up, characterised by a steep rise in
greenness during spring as the vegetation canopy begins to develop; (2) a peak growing
season, where greenness values plateau during the summer once the vegetation canopy is
fully developed; (3) green-down, characterised by a rapid reduction in greenness as the
canopy starts to senesce; and (4) a dormant phase, represented by relatively stable, low
greenness values either side of the growing season. Day-to-day variability was observed
in the time-series, particularly when seasonal changes in greenness were low (e.g., during
the shoulder seasons). Here, noise in the dataset was observed to exceed temporal trends
in greenness.

3.2.2. UAV Data

The spectrally calibrated UAV data, despite their coarser temporal resolution (bi-
weekly to monthly), were able to capture trends in vegetation phenology. Time-series
of UAV-derived VIs averaged over the study area were generally consistent with the
phenocam data (Figure 4), and a strong correlation was identified between phenocam- and
UAV-derived greenness for all calculated VIs (see Figure 5, rs = 0.77–0.86, p < 0.01). However,
peak greenness values in 2019 and 2021 were notably different. Here the UAV-derived VIs
indicated a similar greenness over the two years, whereas phenocam-derived Gcc indicated
a greater peak greenness during the 2021 growing season (maximum Gcc = 0.44, Figure 4).
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Figure 5. Correlation between UAV-derived VIs averaged across the scene, and daily phenocam-
derived greenness (Gcc) averaged across the ROI. Shown at the top of each of the displayed subplots
is the Spearman’s rank correlation coefficient, rs, and its associated statistical significance. ** indicates
p < 0.01, and n = 26 (i.e., the number of days on which UAV imagery was collected) for all of the eight
subplots displayed.



Remote Sens. 2025, 17, 526 14 of 26

3.2.3. Capturing Spatial and Temporal Variability Within the Growing Season

Phenocam-derived Gcc was calculated as an average for the entire ROI, hence smooth-
ing out the spatial variability observed in the imagery (Figure 2). In contrast, the spatially
referenced UAV-derived VIs revealed a strong heterogeneity in greening across the sur-
vey area. This heterogeneity can be seen in Figure 6, which maps the pixel-wise change
in greenness between surveys conducted in the early (14 May 2021) and peak growing
season (3 August 2021). Although, greening was observed across the scene, the area to the
northeast exhibited a more pronounced greening than the rest of the survey area. These
pixels correspond to areas with a dominant vegetation cover of the deciduous grass species,
M. caerulea.
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Figure 6. UAV-derived reNDVI1 difference map. Shown is the percentage difference in reNDVI1 from
14 May to 3 August 2021. Negative values indicate a reduction in greenness from May to August,
whereas positive values indicate an increase in greenness.

We extracted VIs for each species by overlaying the UAV survey data and species-
level classification map (see Figure 1). Overall, we found that the shrubs C. vulgaris and
Vaccinium spp. and the grass, M. caerulea, displayed the largest seasonal amplitude (i.e.,
growing season peak to trough, see Figure 7) in greenness for the calculated VIs. In contrast,
mosses (P. schreberi, Sphagnum spp.) and the rush, J. effusus, exhibited the smallest seasonal
amplitude and lowest peak greenness values of all species examined. Towards the start
and end of the growing season, we observed that variability in the VIs at the species-level
was relatively small (Figure 7). However, heterogeneity in greenness across the individual
species increased substantially over the summer months once the canopy had developed.
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Figure 7. Time-series of species-level reNDVI1 over the growing season from the UAV surveys
conducted in 2021. Shown are dry spells (yellow shaded areas), daily GPP90 from the EC data (grey),
and reNDVI1 for each of the dominant species in the survey area (coloured lines and markers).

3.2.4. Sensitivity of the Phenological Datasets to Drought

Changes in greenness captured by UAV surveys in 2021 were examined over two dry
spells. The first of these dry spells, ‘Dryspell-1’, occurred during green-up, extending from
DOY 158–193; and the second, ‘Dryspell-2’, occurred during the peak growing season from
DOY 200–223 (see Figure 7). We identified differences in: (i) the sensitivity of the various
UAV-derived VIs; and (ii) the species-level response to the dry conditions.

As shown in Figure 8, for Dryspell-1 no reduction in greenness for any species was
apparent when examining the VIs gNDVI and reNDVI2 (Figure 8, upper row). In contrast,
we observed a substantial reduction in greenness for the VIs REChl and reNDVI1. For these
indices, the maximum observed reduction in greenness for individual species was ca. 13%
of their seasonal cycle, except for M. caerulea which displayed a slight greening throughout
the dry spell. In contrast, during Dryspell-2 all indices displayed more sensitivity to
drought, with a reduction in greenness observed in all cases except for M. caerulea and
Vaccinium spp. when using the gNDVI (Figure 8, bottom row). For the indices REChl
and reNDVI1, reductions in the greenness of pixels containing J. effusus, P. schreberi, and
C. vulgaris were substantial (ca. 40% of their seasonal amplitude). In contrast, gNDVI and
reNDVI2 were less sensitive, with maximum reductions in greenness observed for pixels
dominated by Sphagnum spp. (ca. 9% and 15% of seasonal amplitude for the gNDVI and
reNDVI2, respectively).
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Figure 8. Change in selected VIs over Dryspell-1 and Dryspell-2 for each dominant species. Shown is
the percentage change with respect to the seasonal amplitude for each VI (i.e., the maximum- minus
the minimum species-averaged value during the year). Positive values (green) indicate an increase in
greenness, whereas negative values (yellow) denote a reduction in greenness. Dryspell-1 plots (upper
row) show change in species-level VIs from the flights on DOY 168–153; Dryspell-2 plots (bottom
row) show VI change from flights on DOY 215–204.

3.3. Seasonal and Inter-Annual Variability in the Relationship Between GPP and Phenology

Both the phenocam- and UAV-derived VIs were found to exhibit a strong correlation
with GPP90. Correlation coefficients were >0.70 (rs, p < 0.01) for all indices except the
NGRDI, for which correlation was moderate (rs = 0.57, p < 0.05). Variability in the strength
of the relationship between species-level VIs and GPP90 was low. Using the index reNDVI1
as an example, correlation between GPP90 and reNDVI1 for the survey area was 0.78 (rs,
p < 0.01) and species values ranged from rs = 0.72 (Sphagnum spp.) to rs = 0.78 (C. vulgaris;
p < 0.01 for all).

The phenocam dataset, with its high temporal coverage, facilitated examination of
the above relationships in more detail. For the complete time-series (all years combined),
changes in canopy greenness were observed to follow the same seasonal cycle as daily
GPP90, and these two variables displayed a strong correlation (rs = 0.88, p < 0.01). This bulk
analysis, however, masks a large amount of seasonal variability, as illustrated in Figure 9.
For example, during the peak growing season when the canopy was fully developed, the
relationship between daily GPP90 and Gcc was not statistically significant for any year. The
strongest relationships between greenness and GPP90 were observed during green-down
and green-up (Figure 9). One discrepancy was the weak correlation between GPP90 and
Gcc observed in the 2019 green-up (rs = 0.39, p < 0.05). These results indicate an inter-annual
and seasonal variability in the relationship between observed vegetation greenness and
GPP at Auchencorth Moss.
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Figure 9. Correlation between daily phenocam Gcc and GPP90 for the years 2019, 2020 and 2021
(top to bottom). Plots from left to right show data for: the complete growing season; green-up;
peak growing season; and green-down. Shown at the bottom of each plot is the Spearman’s rank
correlation coefficient, rs (Gcc, GPP90) and its statistical significance: ** indicates p < 0.01; * indicates
p < 0.05; else p ≥ 0.05.

4. Discussion
4.1. Monitoring Vegetation Phenology

Monitoring vegetation remotely (e.g., satellite, phenocam, UAV) is key to understand-
ing phenological controls on carbon fluxes. The two phenological datasets employed in this
study contrasted in their spatial, temporal, and spectral resolutions. The main strengths
and weaknesses of each are outlined below, alongside a discussion of some key problems
to consider when comparing across phenology datasets.

4.1.1. Phenocam Data

The phenocam imagery at Auchencorth Moss had a number of limitations for mon-
itoring phenology. Firstly, the combined effect of camera inclination, the patchy nature
of vegetation, and the strong micro-topography at the site made it difficult to examine
greenness trajectories of the individual species. Although not conducted with imagery
from our instrument setup, pixel-level analysis of phenocam imagery is possible and has
been performed across a range of ecosystems to highlight spatial variability in vegetation
phenology [42,53,73]. Secondly, the phenocam imagery used in the present study was not
spectrally calibrated as the UAV data were. Brightness values for each band were variable
across images and influenced by weather conditions during image capture. In our study,
we conducted a visual inspection to screen poor-quality images from analysis (i.e., those
affected by sun-glint, lens flare, variable scene illumination conditions, see Figure 2). This
level of quality control is however rare in phenocam studies, where quality filtering is
not standardised and a range of approaches are used [72,92,93]. Despite the adoption of
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the recommended ‘fixed white balance’ camera setting and the 90th percentile of 3-day
Gcc values [74], the lack of spectral calibration and limited quality control of phenocam
data mean that the calculated index (i.e., Gcc) has poor accuracy and cannot be reliably
compared across sites or between discrete points in time. This limits analysis to broad phe-
nological trends over periods of weeks, rather than direct comparison between days, where
differences in illumination and meteorology during image capture likely exceed changes
in greenness. Here. it is important that protocols (e.g., the use of reference panels; [72,93])
are developed surrounding the calibration of phenocam imagery and that a standardised,
robust approach for quality filtering the collected imagery is developed.

Despite these caveats, phenocams are valuable tools for monitoring peatland phenol-
ogy. In this study, phenocam-derived Gcc: (i) captured the seasonal trend in greenness at
the site; and (ii) displayed a strong correlation with spectrally calibrated UAV data. The
near-continuous temporal coverage and automated monitoring facilitated by phenocams
allow for large amounts of data collection, which are particularly valuable for estimating
the timing of phenological stages and monitoring change [34,35]. Furthermore, phenocams
are often installed alongside EC setups [43], and as such, can provide important datasets
to study the impact of phenology on inter-annual variability in CO2 flux (e.g., ref. [94]).
Improving the understanding of changes in phenology on peatland carbon balance will be
key to predicting the long-term response of these ecosystems to climate change.

4.1.2. UAV Data

A high temporal resolution can be challenging to achieve with UAV surveys due to
weather constraints. However, UAV data, when calibrated correctly and following a robust
workflow, do provide spatially geo-referenced data of high spectral resolution and quality.
The multispectral Parrot Sequoia camera setup employed in the present study acquired
data in both the Red-Edge and NIR bands, which are more sensitive to physiological
changes than bands in the visible spectrum. Analysis found that UAV-derived VIs centred
on these bands (e.g., reNDVI1) were more sensitive to the impacts of abiotic change on the
canopy. During dry spells, we observed reductions in UAV-derived VIs equating to around
40% of the seasonal amplitude in greenness, which were not visible in the phenocam data.
Incorporating data from the short-wave infrared (SWIR) region may improve our ability
to study the impact of drought events on vegetation, and such VIs have been successfully
used to detect moisture stress in peatland environments, both as a whole and in particular
species such as Sphagnum [95,96]. The use of additional VIs may improve the correlation
between phenology and flux datasets, although this could not be tested with our presented
setup. Finally, the future use of UAVs in peatland phenology research at a range of sites
could improve understanding of the impact of short- (e.g., response to weather events) and
long-term environmental change (e.g., response to climate change) on peatland vegetation.

4.1.3. Problems Comparing Phenological Datasets

Studies utilising phenological data from multiple sensors (e.g., comparing phenocam
with UAV or satellite data) face a number of challenges. Firstly, the accurate comparison
of datasets relies on the assumption that all sensors are observing the same vegetation
phenology [56,97,98]. The two camera systems employed in the present study (pheno-
cam, multispectral) had different and non-overlapping fields of view. The phenocam was
mounted next to the EC tower (Figure 1a) and viewed vegetation to the north (oriented
in line with phenocam protocol; [71]). In contrast, the multispectral sensor on the UAV
acquired data over the predominant flux footprint area south-west of the EC tower. Despite
these differences, based on expert knowledge of vegetation at the site, including extensive
quadrat surveys for ICOS and other long-term monitoring activities [99], vegetation com-
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position captured by the phenocam was assumed to be representative of the UAV survey
area. Although treated with caution, the similar temporal trends in greenness of the two
datasets suggest that vegetation communities monitored by both setups were comparable
(see Figure 4).

Secondly, as vegetation canopies are non-Lambertian surfaces, viewing geometry has
a strong impact on the signal measured by the sensor and any calculated VIs [100–102]. In
the present study, the phenocam had an oblique viewing angle, whereas the UAV imagery
was collected at nadir. The size of this impact on calculated VIs can be large. A study by
Epiphanio and Huete [101], for example, found that NDVI calculated from measurements
conducted with a viewing angle (as opposed to nadir) differed from their counterparts
by as much as 50%. Studies comparing phenocam and remote sensing data also find that
differences in viewing geometry lead to disparity in calculated phenological transition
dates [98,103]. Phenocams, for example, may observe a more rapid senescence of vegetation
than satellite data, as their oblique viewing angle enables them to better capture senescing
flowers and grass stems compared to the nadir view of aerial imagery [104]. Although the
present study did not compare phenological transition dates from the two datasets, this is
an important aspect to consider in future work.

Finally, monitoring vegetation phenology from above (i.e., from nadir with the UAV,
or from a viewing angle as with the phenocam) in ecosystems with complex multi storey
canopies (e.g., peatlands, grasslands) can be problematic, for example because of shading,
and the fact that a number of species (e.g., Nardus stricta, M. caerulea) green structurally
from the bottom up. These structural differences can create a time lag between flux- and
remotely sensed phenology datasets, as the latter will only register greening of the upper
canopy. In an alpine grassland ecosystem, Migliavacca et al. [105] estimated the size of this
lag to be around one week. Although in the present study, we observed strong correlations
between GPP and phenocam-derived Gcc, viewing geometry has an important influence on
the relationship between VIs and CO2 fluxes, particularly during the green-up stage.

4.2. Links Between Vegetation Greenness and Ecosystem Functioning

Using four years of phenocam imagery and UAV data at the site, peatland vegetation
phenology was found to be a strong predictor of GPP. Both phenocam-derived Gcc and UAV-
derived VIs (particularly those employing the red-edge band, e.g., the reNDVI1) displayed
strong correlations with GPP estimates, despite notable differences in the quality of the
two phenological datasets. This strong relationship between GPP and phenocam-derived
greenness is in agreement with observations from a number of studies [53,94,106–108].

In the present study, phenocam-derived greenness displayed the strongest correla-
tion with GPP during green-up and green-down. In contrast, during the peak growing
season when the vegetation canopy was fully developed, the relationship between Gcc and
GPP was not statistically significant (p > 0.05). This finding indicates that meteorological
conditions, rather than vegetation greenness likely control GPP during the peak growing
season. Such strong seasonal variability in the drivers of CO2 flux has been observed at
a number of peatland sites [53,94,109]. Although phenology acts as a dominant control
over peatland carbon dynamics during the transition seasons (i.e., when the vegetation
canopy is developing), abiotic conditions such as temperature and WTD play a key role
in regulating CO2 exchange during the peak growing season [53,94,109]. Interactions be-
tween peatland phenology, weather and GPP are, however, complex. In a regional study
of European peatlands, for example, Koebsch et al. [94] identified phenology as a key
predictor of variability in photosynthetic CO2 uptake at the seasonal level, and showed
that temperature and radiation affected GPP indirectly, by influencing plant phenology.
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Such regional studies provide valuable insights that can be used to better characterise the
role of vegetation phenology in terrestrial ecosystem models (e.g., ref. [110]).

4.3. Impact of Dry Spells

The present study highlighted the strong impact of weather anomalies on peatland
vegetation and ecosystem functioning. We observed that years with prolonged or frequent
dry spells functioned as a net source of CO2 to the atmosphere, which is in contrast with the
long-term net uptake measured at the site [79,91]. Numerous studies have linked drought
conditions to a short-term reduction in peatland C uptake [17,33,79]. The associated
lowering of WTD, which is a key control on GPP [91,111], can induce vegetation stress and
limit CO2 uptake by canopy photosynthesis (e.g., due to stomatal closure). In particular,
our results have highlighted the importance of the timing and duration of dry spells. When
dry conditions occurred during green-up (as in the year 2020), we observed a slower
development of the vegetation canopy, which causes a substantial delay in cumulative
NEE zero-crossing date. Consequently, the peak growing season begins later and is shorter
than normal, meaning we observe a reduced period of optimum canopy development and
maximum rates of photosynthesis. Changes in the timing and duration of plant canopy
development likely made a substantial contribution to the positive annual NEE budget
recorded during our study in the year 2020 (i.e., net loss of CO2). In contrast, the favourable
hydrometeorological conditions during green-up 2021 allowed the canopy to green strongly
and rapidly, meaning that the vegetation canopy was fully developed earlier, with a high
photosynthetic capacity. Here, we hypothesise that the frequent dry spells experienced
during the summer and autumn of this year induced early senescence. The importance of
timing on the impact of drought events has been reported previously by Lund et al. [17] for
a temperate Swedish peatland. The authors found that a short, severe drought during the
peak growing season, when the vegetation canopy was fully developed, had no significant
impact on GPP. However, a longer drought period during spring green-up (when the
canopy was developing), resulted in a reduction in GPP rates. Studies suggest that during
this stage of canopy development, GPP shows the strongest sensitivity and is the least
resilient to drought [17,32]. Similar results have been found in response to heatwaves,
with delayed greening observed in an alpine grassland and a 40% reduction in phenocam
canopy greenness [42]; which is of similar magnitude to what the present study observed
with the UAV data for Dryspell-2.

Finally, the community-level response to drought in peatland ecosystems is influenced
by species composition (e.g., refs. [112,113]). Vascular plants, with their developed root
systems, are generally more tolerant to the effects of periodic drought than Sphagnum spp.,
for example, which have no root systems (e.g., ref. [114]). In the present study, we employed
the spatially referenced UAV data to highlight the differing response of the mapped species
to dry conditions (Figures 7 and 8). We found that M. caerulea and E. vaginatum with their
deep root systems [115,116] appeared less sensitive (i.e., exhibited a smaller or no reduction
in greenness) to the dry conditions compared to species with shallow (e.g., J. effusus [117]) or
no roots (e.g., Sphagnum spp., P. commune). Although not possible with our employed setup,
pixel-level analysis can also be conducted on phenocam imagery, and used to examine
variability across plant functional types (e.g., Ref. [42]). These two monitoring approaches
hence allow fine-scale heterogeneity in species response to drought to be quantified, and
can be used to detect changes in ecosystem functioning not possible with the coarser
resolution of satellite data. Such research is key for monitoring the response of peatland
ecosystems to future change.
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5. Conclusions
Vegetation phenology plays a strong role in the inter-annual variability of the peatland

carbon balance [108,109,118], and will be affected by both long-term climate change and an
associated increase in the frequency of extreme weather events [30]. As such, phenological
monitoring is key to improving predictions of the future fate of peatland carbon stocks
under climate change. However, the remoteness of many peatland ecosystems means
that traditional phenological datasets are limited. Furthermore, due to the pronounced
spatial heterogeneity of peatlands, satellite data products are unable to accurately capture
variability in their phenology [62].

The present study examined the use of phenocam imagery and the novel approach
of multi-temporal UAV surveying to monitor the phenology of peatland vegetation over
a number of growing seasons. Both methods were suitable for characterising peatland
phenology, although they differed in terms of their relative merits and weaknesses. The high
temporal resolution of phenocam data (daily) was invaluable for identifying the different
stages of phenological development. Such high temporal coverage was not feasible with
manual UAV surveys, although these provided us with discrete time points of rich data to
supplement the limited spatial and spectral resolution provided by phenocam imagery. We
found that collection of spectral data in the red-edge and NIR bands was advantageous,
in that VIs employing these bands were more sensitive to dry spells. Furthermore, we
demonstrated the potential of UAV surveys for monitoring spatial heterogeneity in the
phenology of peatland vegetation, which can be difficult to achieve with phenocam data
(e.g., depending on site characteristics, camera viewing angle). Both datasets displayed a
strong correlation with peatland GPP. For the UAV data, we found that VIs utilising the
red-edge band (e.g., the reNDVI1) were best able to predict GPP at the site, partly because
these indices were most sensitive to physiological changes such as drought. However,
analysis of the high temporal resolution phenocam dataset was able to highlight a large
amount of inter-annual and seasonal variability in the strength of this relationship.

The years examined in the present study were unusual with respect to the long-term
measurement record at the site, with frequent dry spells and a tendency for the peatland to
function as a net source of CO2. Our findings suggest that the seasonal timing of future
weather anomalies will be a key factor determining their impact on the peatland carbon
balance. Continued long-term monitoring of peatland ecosystems and their vegetation is
crucial to improving our understanding of the current drivers of peatland CO2 dynamics
and how these may change in the future.
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