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Abstract. Compound events (CE), characterized by the combination of climate phenomena that are not necessarily extreme

individually, can result in severe impacts when they occur concurrently or sequentially. Understanding past and potential future

changes in their occurrence is thus crucial. The present study investigates historical changes in the probability of hot and dry

compound events over Europe and North Africa, using ERA5 reanalyses spanning the 1950-2023 period. Two key questions are

addressed: (1) Where and when did the probability of these events emerge from natural variability, and what is the spatial extent5

of this emergence? This is explored through the analysis of “time” and “periods” of emergence, noted ToE and PoE, defined

as the year from which and the moments during which changes in compound event probabilities exceed natural variability.

The new concept of PoE allows for more in-depth signal analysis. (2) What drives the emergence? More specifically, what are

the relative contributions of changes in marginal distributions versus in the dependence structure to the change of compound

events probability? The signal is modelled with bivariate copula, allowing for the decomposition of these contributions. A10

focus on the dependence component is explored to quantify its effect on the signal’s emergence. The results reveal clear spatial

patterns in terms of emergence and contributions. Five areas are studied in greater depth, selected for their contrasted signal

behaviors. In some regions, the frequency of hot and dry events increased, mainly due to a change in the marginals. However,

other regions see a decrease of CE probabilities, mainly driven by a change in the drought index. Although the dependence

component is rarely the main contributor to PoE, it remains necessary to detect signal’s emergence. Without considering the15

dependence component, the date of ToE and the duration of PoE can be overestimated as well as underestimated (even more

than 20 years) depending on the area. These findings provide new insights into the drivers of CE probability changes and open

avenues for advancing attribution studies, ultimately improving assessments of risks associated with past and future climate

change.
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1 Introduction

For several years, Europe faced severe hot and dry events, corresponding to a combination of drought and heatwave. This

climate phenomena, such as during summer 2018, has significantly affected various sectors of society (Rousi et al., 2023). It

impacted biodiversity with an increased fire risk during this period (San-Miguel-Ayanz et al., 2018), agriculture with yields

falling by up to 50% (Toreti et al., 2019), and human health with an increased number of deaths (Pascal et al., 2021). In 2022,25

the continent experienced another unprecedented hot and dry event, particularly severe with respect to previous ones (Tripathy

and Mishra, 2023). This type of event is categorized as a compound event (CE), “a combination of multiple drivers and/or

hazards that contribute to societal or environmental risk” (Zscheischler et al., 2020). Taken individually, the univariate hazards

(e.g., heat wave and drought) are not necessarily extremes but their concurrent or sequential occurrences can cause severe

impacts and damages, higher than if they occur separately. The non linear relationship between the hydro-climatic variables30

(e.g., extreme temperature and lack of precipitation) plays a key role for understanding CE (Hao and Singh, 2016). In Europe,

if hot and dry events are considered independent, the CE occurrence can be underestimated by a factor of up to 8 over the

continent when both variables exceed their 95th percentiles of the reference period (1950-1979) (e.g., Manning et al., 2019).

In Europe, an increase in the frequency and intensity of hot and dry events has been observed since 1950 (Manning et al.,

2019) and this trend is expected to continue in the future (Ridder et al., 2022). This is also the case for other CEs, such35

as compound floodings, due to co-occurring extreme wind and precipitation, that are also becoming more frequent along

the European coasts (Bevacqua et al., 2019). The impact of an absolute change depends on the range of natural variability,

whether the environment is accustomed to such changes. Ecosystems and species adapted to large natural variability, may be

less affected by climate change (Williams et al., 2007). Conversely, species with limited adaptability, such as certain tropical

plants, insects, and reptiles, are more vulnerable to warming and climate changes (Deutsch et al., 2008). It is thus important40

to quantify this CE increase relative to natural variability. To do so, the notion of “emergence” is usually defined as the ratio

between the estimated climate change signal (S) and the noise (N) associated to natural variability. A “Time of Emergence”

(ToE) is then identified as the first year for which the ratio permanently exceeds a threshold, 1, 2 or 3, corresponding to an

“unsusual”, “unfamiliar” or ”unknown” emergence, respectively (Frame et al., 2017). Another popular approach consists in

detecting when a distribution is statistically different from the reference period, based on a statistical test between distributions,45

such as the Kolmogorov-Smirnov test (e.g., Mahlstein et al., 2012; King et al., 2015; Gaetani et al., 2020) or based on distances

between distributions, such as the Hellinger distance (Pohl et al., 2020).

Emergence of multivariate events remains largely underexplored. The great majority of studies analyses the emergence at

a global scale and for univariate variables: mainly temperature (e.g., Diffenbaugh and Scherer, 2011; Mahlstein et al., 2011;

Hawkins and Sutton, 2012)) and precipitation (e.g., Giorgi and Bi, 2009; Fischer and Knutti, 2014; Murphy et al., 2023), but50

also drought index (Ossó et al., 2022), fire weather index (e.g., Abatzoglou et al., 2019), sea level (e.g., Lyu et al., 2014) and

biogeochemical cycle (Keller et al., 2014). Such studies focus either on extreme events (Diffenbaugh and Scherer, 2011) or on

mean climate (Giorgi and Bi, 2009), either with simulated (Abatzoglou et al., 2019; Gampe et al., 2024) or observed (Hawkins

et al., 2020) dataset. However, the understanding of past and future changes of compound events occurrences is of great
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importance for adaptation planning. As compound events contribute to the most damaging impacts, the question of multivariate55

emergence recently arises. Williams et al. (2007) used the standardized Euclidean distance to quantify the differences between

two climates in the 20th and 21th centuries. Mahony et al. (2017) adapted this metric to take the covariance between variables

into account with the Mahalanobis distance. The latter, transformed into percentiles of the chi distributions, is called "sigma

dissimilarity" and has been used to identify multivariate climate departures (e.g., Abatzoglou et al., 2020; Mahony and Cannon,

2018). The dependence between the variables is assumed to be Gaussian, i.e., fully characterized by a covariance matrix. This60

approach is thus not appropriate for compound extremes (Hao and Singh, 2016). That is why, François and Vrac (2023) defined

a time of emergence (ToE) applicable to multivariate events, as the year from which the compound event probability (the signal)

is always out of the natural variability. In this method, the signal is quantified with bivariate copula, which allows a modeling

of a not Gaussian dependence.

Time of emergence provides limited information. Climate system is highly nonlinear and non-monotonic, detecting the65

emergence of a signal using ToE can be limited depending on the climate signal under study. ToE detects a significant change

only if the latter is permanent until the last year of the studied period (Mahlstein et al., 2012). If the variable remains within

the bounds of natural variability, no information is given. As ToE detection only needs the first and the last values of a time

series, we do not know what happened in between. Two signals that do not emerge, i.e., finally come back to the range of

natural variability may have evolved differently, and even oppositely. In the same way, two signals that emerge simultaneously70

may have behaved distinctly. The signal could vary in the opposite direction to the final ToE. For example, the signal could

significantly decrease below the lower bound of natural variability before sharply increase above the upper bound. Abrupt

changes in probability out of natural variability could lead to severe damages if society or human activities are not adapted

to such events. Bevacqua et al. (2024b) found that a year above 1.5°C could very likely announce the beginning of a 20-year

period with an average warming above the same threshold. In the same way, variations of probabilities near the upper bound75

of the natural variability could also help to anticipate ToE. Although not represented through the ToE metric, such variations,

called “Periods of Emergence” (PoE) could be linked to the expected impacts. This new metric can be highly beneficial for

adaptation planning in a lot of fields. For example, the agricultural sector may question whether they are entering a new phase

of unusual compound events and seek to understand if similar situations occurred in the past to better anticipate impacts on

water availability and decide which crops to cultivate. The present study takes advantage of ToE definition from François and80

Vrac (2023) paper and extends it to PoE concept.

From a statistical point of view, the probability of a bivariate compound event relies on three components : the two marginal

(i.e., univariate) distributions and the dependence structure coupling them. Consequently, significant probability changes with

respect to a reference period can be due to either an evolution of the univariate distributions or a change in their inter-

relationship. Studies showed that the change of hot and dry occurrences are mostly due to a change in temperature (Ionita85

and Nagavciuc, 2021) or a shift in precipitation deficit (Manning et al., 2018). On the other side, the strength of the dependence

is crucial for CE analysis (François and Vrac, 2023). If the variables are (falsely) considered independent, the CE occurrence

can be strongly underestimated (e.g., Zscheischler and Seneviratne, 2017). However the dependence change is little studied

(e.g., Wang et al., 2021). In this study we want to analyse all three statistical components forming the CEs in order to quantify
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which one contributes the most to the emergence. A method for disentangling the contributions of the marginals and those90

of dependence to the total change in CE probability will then be proposed, relying on copula theory that allows to model

dependencies in CE variables (e.g., Bevacqua et al., 2019; Manning et al., 2019; Li et al., 2022).

Thanks to the introduced notions (times and period of emergence, copula theory and contribution metrics), the present study

aims to develop a method for detecting and characterizing changes in probabilities of bivariate CEs. The proposed approach

will be applied to hot and dry compounds over Europe from 1950 to 2023, based on reanalysis dataset. The main goals are95

to investigate if we can already see changes in hot and dry CE probabilities within the last few decades; where and when the

signal emerged; if spatial patterns are visible; and which statistical component of the CE contributes the most to a change in

CE probability.

The rest of this article is organized as follows: the data used and the CE emergence method will first be presented in Section

2. The computation of the different contributions and the influence of the change in dependence on the emergence will then be100

given in section 3. Finally, the results for hot and dry events over Europe will be presented in Section 4 before concluding and

providing the main conclusions and some perspectives in Section 5.

2 Data and Method

2.1 Data

The present study uses ERA5 daily reanalysis (Hersbach et al., 2020), the fifth generation from the European Center for105

Medium-Range Weather Forecasts (ECMWF), in Europe and North Africa. The data are available on a regular grid at a 0.25°

× 0.25° spatial resolution (22394 grid points), between 1950 and 2023.

Hot and dry events are usually studied during summer (June-July-August), the probability of occurrence is higher and

the heat stress deadlier during this season (Shan et al., 2023). Mid-latitudes experience greater climate variability in winter,

which reduces the warming-to-variability signals in most regions, despite the overall increase in warming (Mahlstein et al.,110

2011). Thus temperature emerges sooner during summer (Hawkins and Sutton, 2012). The most commonly used variables

for analysing this compound event are temperature and precipitation (e.g., Zscheischler and Seneviratne, 2017; Singh et al.,

2021; Bevacqua et al., 2022). Lack of rainfall usually refers to meteorological drought (Wilhite and Glantz, 1985). Three other

types of drought have major impacts on society: hydrological drought, related to low surface and subsurface water ressources;

agricultural drought, associated with very poor soil moisture; and socio-economic drought characterized by an imbalance115

between water demand and need (Mishra and Singh, 2010). This classification implies the use of several drought indices,

such as: the Palmer Drought Severity Drought Index, PDSI (Palmer, 1965), the Standardised Precipitation Index, SPI (McKee

et al., 1993) and the Standardised Precipitation-Evapotranspiration Index, SPEI (Vicente-Serrano et al., 2010). The latter is

computed as the difference between the amount of precipitation and the evapotranspiration. This indicator, considered as the

best for drought monitoring by (e.g., Ionita and Nagavciuc, 2021; Blauhut et al., 2016), is chosen for the present study as120

it combines the advantages of SPI, with its variety of timescales, and those of PDSI with the consideration of temperature

evolution.
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Hence, in the present study, hot and dry compound events are investigated through the two following variables at grid

point scale over the summer (June, July, August) months: monthly maximum of daily maximum temperature, denoted Tmax,

on the one hand, and the monthly value of the 6-month standardised precipitation-evapotranspiration index (SPEI6) on the125

other hand. The number 6 refers to the number of previous months taken into account in the calculation of SPEI: here, 6 is

chosen to include some winter and/or early spring months in the drought index calculation since a lack of precipitation in the

preceding months promotes summer heatwaves (e.g., Quesada et al., 2012; Russo et al., 2019). For modelling reasons, in the

following, the variable S =−SPEI6 will be used instead of SPEI6. A severe drought (indicated by negative SPEI6 values) will

be characterized by a high positive value of S and wet conditions will be described by low (negative) S values.130

2.2 Signal definition

The signal considered in this study is the CE probability quantified with bivariate copula. The copula function is a statistical tool

that allows to model the dependence between variables, independently of their marginal distributions. It has been introduced by

Sklar (1959), who established that any multivariate joint distribution can be written as a copula function applied to the marginal

distributions. This approach has been applied to various hydroclimatological cases since the early 2000s (e.g., Favre et al., 2004;135

Salvadori and De Michele, 2004). Let us consider two random variables X and Y , with their cumulative distribution functions

(CDF) FX and FY . The joint CDF H can be expressed as follows:

H(x,y) =P(X ≤ x;Y ≤ y)

=C(FX(x),FY (y)) = C(u,v)
(1)

where C is here a bivariate copula function applied to the transformed variables u = FX(x) and v = FY (y) that are uniformly

distributed. The joint exceedance probability (or CE probability) is defined as the probability P(X ≥ xe;Y ≥ ye) that both140

variables X and Y exceed a threshold xe and ye respectively, which corresponds to an "AND" approach (Salvadori and

De Michele, 2004). Sklar’s theorem allows a decomposition of the multivariate distribution into marginal distributions and

copula function. CE probability, p, can be decomposed as follows (Yue and Rasmussen, 2002):

p(xe,ye) =P(X ≥ xe;Y ≥ ye)

=1−FX(xe)−FY (ye) +C(FX(xe),FY (ye)).
(2)

In the following, p will design the temporal series of CE probability p. The latter is estimated per grid point within the study145

area. For a given threshold (xe,ye), it is evaluated on a 20-year period, shifted by one year each time. Each sliding 20-year

period is then associated with the central year of the period for analysis. As we have data from 1950 to 2023, it starts in 1960

and ends in 2014. To compute this probability signal p, marginals FX , FY , and the copula function C are fitted to the data

through maximum likelihood estimators (MLE). The considered families for marginal distributions are Gaussian (e.g., as in

Bevacqua et al., 2022), Generalized Extreme Value (e.g., as in Wang et al., 2021), and log-normal. The considered dependence150

functions are Archimedean copulas (Frank, Joe, Clayton and Gumbel) and the Gaussian Copula. Archimedean copulas are

usually chosen to analyse dependence between hydroclimatic variables (Tootoonchi et al., 2022) and model compound events
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(Zscheischler and Seneviratne, 2017) due to their simple mathematical form and their flexibility needed, e.g., to capture positive

or negative correlation. It requires only one parameter that determines the strength of the relationship. Joe and Gumbel copulas

are characterized by an upper tail dependence, making them suitable for modeling correlated extreme values, whereas Clayton155

copula shows a lower tail dependence. Frank and Gaussian copulas depict a symmetric link without tail dependence. Complete

expression of functions can be found in Nelsen (2006) and Sadegh et al. (2017). As fittings are performed by sliding window,

the selected distributions can be different from a sliding window to another, which can cause artificial discontinuities in the

signal. To address this issue, each grid cell has a unique family for each component (i.e., one for X , one for Y and one for

the dependence), which is the one that obtains the highest number of periods with the minimum Akaike information criterion160

(AIC).

2.3 From ToE to PoE detection

The signal trend can first be characterized by the ratio of probabilities during the first and the last periods, called risk ratio (RR)

(Stott et al., 2016). RR is expressed as :

RR =
pend

pref
(3)165

where pref and pend are the first and last values of the probability signal. This metric measures the intensity of the overall

change, but it gives no information on the date of change. The ToE of hazard probabilities is the time period (year) when a

significant change of probability occurs relative to the probability associated with the estimated natural variability, and persists

until the end of available dataset (François and Vrac, 2023). The signal can emerge either above the upper bound (Bup) or below

the lower bound (Blow) of baseline period’s probability, which leads to two different ToE, ToEup and ToElow, expressed as170

follows:

ToEup = min{te / ∀t > te , pt > Bup} and

ToElow = min{te / ∀t > te , pt < Blow}.
(4)

with t being the years for which the probability signal is calculated, and te the year from which the signal emerges permanently.

The emergence depends on the probabilities associated with the natural variability. To assess whether a probability is signif-

icantly different from that during the reference period, we considered the 68% confidence interval (i.e., one standard deviation175

for a Gaussian distribution) of the CE probability during the baseline period, which is a combination of copula and marginal

parameters uncertainty. The procedure for the interval estimation is detailed in appendix A of François and Vrac (2023) paper.

The obtained confidence interval over the reference period is used in the following as representative of the natural variability

of the CE probability. If, for another period, the CE probability is out of the reference 68% confidence interval, a significant

change is then considered. Note that other levels for the confidence interval can be chosen – such as 95% – in the same way as180

different ratio values can be fixed (e.g., 1, or 2, etc.) in the traditional ToE approach (e.g., Hawkins and Sutton, 2012).

ToE is useful to find out whether a variable is currently outside its natural range, and if so, since when. Although the ToE has

been explored in various papers, this metric has only been analyzed in cases where the signal significantly increases (ToEup),
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and it has its limitations, since it does not provide information on past changes. In order to have a more comprehensive

description of signal variations, i.e. not only at the end of the time series (ToE), the concept of period of emergence (PoE)185

is introduced here as the periods during which the probability signal emerges significantly from the natural variability. This

new metric includes ToE concept but is more general, as it does not refer to permanent changes only, but also temporary ones.

Thus, PoE does not refer to a specific year (like ToE metric), but rather to a set of years associated with emergence. This allows

for more in-depth signal analysis. The number and the duration of PoE can be used to better characterise the signal. The total

duration denotes the sum of all PoE durations. Finally, note that a ToE is the first year of a specific PoE that does not end in190

the available data. In the following, PoEup and PoElow are dissociated such as for ToE concept. They correspond to a set of

consecutive years where p is above Bup or below Blow. PoEup and PoElow are expressed as follows:

PoEup = {tj , tj+1, ..., tj+k / ∀t ∈ [tj , tj+k] pt > Bup and ptj−1 < Bup and ptj+k+1 < Bup} and

PoElow = {tj , tj+1, ..., tj+k / ∀t ∈ [tj , tj+k] pt < Blow and ptj−1 > Blow and ptj+k+1 > Blow}.
(5)

If ptj+k+1 does not exist, a PoE starting with a ToE at tj is detected. Due to inter-annual variability, the signal may fluctuate

from year to year around the upper or lower bound of the natural variability. In such cases, emergence could be detected for195

some single 20-year periods but not for the surrounding ones. This could result in false or too numerous emergence detections.

To avoid getting too many periods that do not reflect a real emergence, PoE and ToE are detected on a smoother probability

signal, computed using a 5-year moving average. From now on, the probability signal p will always refer to the smoothed

signal.

To illustrate the different steps of the methodology, the approach is applied to one grid cell located in Vilnius, the capital of200

Lithuania (35.5°E, 54.75°N), with hot and drought indices presented in section 2.1. The thresholds Tmaxe and Se are the 95th

percentile of the data during the reference period (1950-1969) and correspond respectively to 31.1°C and 1.43 (without unit).

The selected distributions for Tmax, S and the copula are respectively a log-normal, a GEV, and a Joe function. In Fig. 1a,

the probability signal, shown with the black curve, is smoothed using a 5-year window. For the first and last two years, the

smoothing is incomplete due to the lack of sufficient preceding or following values, and are thus represented using individual205

points. The two dashed red lines refer to the estimated natural variability, i.e., the confidence interval for the CE probability

during the reference period. Periods of emergence above and below the natural variability are marked with black and yellow

hatches respectively, and the time of emergence is highlighted with the vertical dotted-dashed black line. In this example,

the probability signal permanently emerged in 2007 (ToEup = 2007). With this single metric, we lose information about the

overall behavior of the signal. Indeed, two PoEs are detected before 2007, one 11-year PoElow between 1972 and 1983, and210

one 9-year PoEup between 1994 and 2003. PoE features (number, length, presence of ToE) allow to better characterise the

evolution of the time series.

3 Marginals and dependence contribution to the emergence

Relying on the copula modelling, the CE probability is a combination of two marginal distributions, and a dependence function

(Eq. 2). Thus, it can vary in time due to a change in margins and/or in the dependence structure. Which component change215
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(marginal FX , marginal FY , copula C) contributes the most to the change in CE probability during an emergence (ToE and/or

PoE)? How does the dependence variation influence PoE features? Thanks to the decomposition of the signal (Eq. (2)), each

component can be modelled separately and the analysis of their respective evolution and contribution can be performed.

3.1 Contribution of changes in marginals and dependence to probability signal

In the copula-based formulation, it is possible to compute the probability of a specific event over a given period by assuming220

that only one component (e.g., FX ) has changed since the reference period, while the two other components (e.g., FY and C)

remain unchanged, as they were in the reference period. Let us denote the CE probability as pX when only FX evolves; pY

when only FY evolves; and pC when only the copula C evolves. All three probabilities can be compared to p of the period

of interest in order to quantify the different contributions. Let us take pXt
, at time t (middle of a specific 20-year period), to

understand in details how it is computed. The exceedance probability pXt , associated solely with changes in FX , is computed225

by fitting the marginal FY and the copula C to the reference period (FYref
and Cref ), while the FX is fitted using the data

from the period of interests (FXt
). Then pXt

can be expressed as :

pXt
= 1−FXt

(xe)−FYref
(ye) +Cref (FXt

(xe),FYref
(ye)). (6)

The probabilities pYt
and pCt

are found in the same way, by changing the functions FX , FY and C.

230

Now, in order to quantify the change in probability between the reference period and a period at time t, let us note Z, one

of the three components (Z ⊂ {X,Y,C}). CE probability changes when all the components evolve or when only Z evolves.

These are noted ∆P and ∆PZ respectively, and expressed as:

∆PZt = pZt
− pref , and

∆Pt = pt− pref .
(7)

We define the “Contribution” metric of the component Z at time t as the percentage of ∆PZt in ∆Pt:235

ContribZt
=

∆PZt

∆Pt
∗ 100. (8)

It allows us to quantify the proportion of change in the CE probability that is attributable to the change in the component Z.

To highlight the contribution of each component during PoEs (i.e., when significant changes are detected), ∆PZ and ∆P

are averaged over years that are part of PoEs. The total duration of PoEup is noted N , and the contribution of Z over these

years, ContribZ,up is expressed as:240

ContribZ,up =
∆PZ

∆P
∗ 100, (9)

with

∆PZ =
1
N

∑

t∈PoEup

pZt − pref and ∆P =
1
N

∑

t∈PoEup

pt− pref . (10)
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The simultaneous change in FX , FY and C also contributes to the overall change of the signal. This contribution, called

“interaction term” or “residual term”, is noted Contribint and is easily calculated as:245

Contribint,up = 100−ContribX,up−ContribY,up−ContribC,up (11)

The metric ContribZ,up sums up the contribution of Z to the signal’s emergence above Bup. If ContribX,up is higher than

50%, the change in FX mainly brings out the CE probability above the natural variability. It is easily transposable for lower-

PoE in order to get ContribZ,low. The contribution metric is illustrated Fig. 1b and d, for the same example as in Fig. 1a.

The evolution of the three probabilities (pC ,pTmax ,pS) is shown in Fig. 1b and their respective contribution is given Fig. 1d.250

The more the signal pZ is close to p, the closer ContribZ will be to 100%. During the lower-PoE, pS follows the signal

p, showing the high contribution of the component S during this period. pTmax
emerged above the natural variability before

p, in 1995, Tmax becomes the main driver during upper-PoE. Concerning the dependence, as the probability associated to

the change of this componen decreases until the lower bound of the natural variability, its contribution during PoEup is even

negative. Indeed, although the sum of the contributions is inherently equal to 100%, individual contributions can be negative255

or exceed 100%. This occurs because, for instance, two components may have opposing contributions of equal magnitude.

Bevacqua et al. (2019) approaches the notion of marginals and dependence contribution between two periods as a relative

change: their metric was a ratio between a difference ∆PZ and a reference value and not a ratio of two differences. It has been

applied either to return periods (Manning et al., 2019) or probabilities (Li et al., 2022) of compound events. If their contribution

was equal to 1, it meant that pZ doubled with respect to pref , but that does not place this variation within the total change,260

whose value we do not know. In our case, if the contribution is equal to 100%, it means that pZ has the same value as the

probability p. An other difference relies on the sign of the contribution. If both signals p and pZ decrease, the Bevacqua et al.

(2019)’s contribution metric would be negative, while our contribution value would be positive as p behaves like pZ .

3.2 PoE features influenced by a dependence change

Our contribution metric characterizes the effect of one component (marginals or dependence) change on the signal intensity265

during an emergence. However it gives no information about its influence on the date and duration of the signal emergences.

The same difference between magnitude and time is retrieved between the metrics RR and ToE. That is why, in this part we

will focus on the influence of a component change on PoE features, more specifically a change in dependence intensity. Indeed,

Wang et al. (2021) highlights the importance of a stronger dependence in the increasing of hot and dry events in several areas

of the world between 1950 and 2017.270

Instead of analysing CE probabilities when a single component changes, only one (the dependence) will be kept constant

and the two others will evolve. The signal p will be compared to p(X,Y ), when the copula is constant, while the marginals of

X and Y change. p(X,Y ) at time t is expressed as:

p(X,Y )t
= 1−FXt(xe)−FYt(ye) +Cref (FXt(xe),FYt(ye)). (12)

The difference between these two probability time series (p and p(X,Y )) allows to quantify the influence of the non-stationarity275

of the dependence in the modelling. Two metrics are used in this section. The first one is defined as the difference between
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two ToE dates, detected on p and on p(X,Y ), noted ∆ToEdate. When this metric is positive, p emerges later than p(X,Y );

considering the dependence change would delay the emergence of the signal p. In the same way, a negative ∆ToEdate means

that dependence variation tends to advance the permanent emergence of the signal. If the evolution of the component is not

taken into account, ToE can be either under or over-estimated. The second metric concerns PoE and is defined as the difference280

between PoE duration identified on p and on p(X,Y ), noted ∆PoElength. When this metric is positive, the signal p emerges

either during a longer period or more frequently than p(X,Y ). A negative ∆PoElength imply that p(X,Y ) is often higher

than p; not considering the dependence change would overestimate CE probability and its emergence. Dependence can either

contribute to increase or decrease the signal, to lengthen or shorten PoE, to advance or delay ToE. The link between these two

metrics and the dependence contribution is summarized in Table 1 for upper-PoE.285

As seen in Fig. 1d, dependence change contributes negatively to upper-PoEs in Vilnius. In Fig. 1c, the probability signal p

(in black) is lower than pTmax,S when the dependence is constant (blue curve). The two vertical dotted-dashed lines show the

shift in ToE when the dependence is considered or not: pTmax,S emerges 13 years sooner than the signal p (∆ToE is positive).

Hence, for Vilnius, not considering the dependence evolution would advance the signal emergence. Blue hatched periods in

Fig. 1c can be compared with black hatched periods in Fig. 1a in order to visualize the metrics ∆PoE. The latter is negative290

and equal to -5 years, meaning that the PoE contains more years when the strength of the dependence is constant.

4 Results

The goal of this part is to shed light on spatial patterns of emergence over Europe and north Africa. To showcase a variety

of mechanisms, five areas will be studied in greater depth. The latter were selected because signals tend to exhibit similar

behaviors within each one. The delimitation is shown in Fig. 2: region MA-IB includes the Iberian Peninsula, the Maghreb,295

and south-west of France, region IT-BALK comprises south-east of France, Italy, and west part of Balkans, region EAST

covers Western Ukraine, Eastern Poland, Eastern Slovakia and Southern Belarus, region NO-BALT consists of the countries

along Northern and Baltic seas, and region LAP is located in northern Lapland.

The univariate thresholds Tmaxe and Se correspond to the 95th percentile of the data during the reference period (Fig.

S1 in Supplementary). A strong gradient along latitude appears for the temperature: Tmaxe values in the countries along300

Mediterranean and Black seas are above 35°C, Tmaxe
values in Great Britain and in Scandinavia are below 30°C, for the rest,

Tmaxe
range between 30°C and 35°C. For drought threshold, the values are closer through Europe during the reference period.

This hot and dry compound event is centennial to millenial depending on the area (Supplementary Fig. S2). The selected

distributions for the two marginals and the copula, needed to compute the probability signal, are displayed in Supplementary

Fig. S3.305

4.1 PoE features over Europe

Spatial patterns of emergence are presented Fig. 3. Hot and dry events occurrences emerged in most part of Europe and North

Africa (78% of gridpoints in Fig. 3a). The soonest ToEup occurred in the region MA-IB, in Scandinavia and in Russia, which
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means that they have been affected by a significant increase of compound hot and dry events for several decades. In the whole

MA-IB area, ToEup is detected very early, even before 1970, in contrast to Scandinavia where CE occurrence do not evolve310

similarly over the region. Grid cells where CE probability has not shown a significant recent rise are marked in white on the

map. In Ireland and in the eastern region (EAST), the probability has even decreased, indicated by coloured pixels in Fig. 3b.

Results of ToE can be compared to risk ratio (RR) values (Fig. S2 in Supplementary). In MA-IB, where ToE is early, RR is

the highest above 30. However in Scandinavia, RR is lower but ToE happened as early.

As expected, maps representing ToEup and PoElength,up (Figs. 3a and c) look similar. The sooner the ToEup, the longer315

the PoEup. The differences between both maps lie in the number of PoEup (Fig. S4 in Supplementary). In North West of

France, in Russia and in Scandinavia, several (between 2 and 4) upper-PoE occurred. Scandinavia looks more homogeneous

in terms of PoE durations compared to ToE date (Figs. 3a and c). In the British Isles, Fig. 3c gives the information that in

the past, the area recorded a significant rise out of the natural variability in CE probability, but from Fig. 3a and b we know

that today the frequency is stabilizing or even decreasing. When a PoElow appears, in 67% of the time, the period lasts more320

than 10 years (Fig. 3d). The EAST region stands out from the others with a very long PoElow, which is also highlighted on

ToElow map (Fig. 3b). Then, this area experienced a temporary (sometimes permanent) change of CE probability lower than

the natural variability.

4.2 Marginals and dependence contribution to PoE over Europe

What drives these emergences? Figs. 4 and 5 show the maps of each component contribution for upper-PoE and lower-PoE325

respectively. In general, marginals contribute mostly to the significant variations of the signal. On one side, Tmax appears

the main driver for upper-PoE (Fig. 4a). This is in line with Manning et al. (2019) and Shan et al. (2023) who found that

the increase in temperature contributes predominately to the growing number of hot and dry compound events over Europe

between 1950 and 2013 and in Belgium between 1901 and 2020. On the other side, the variable S is the primary contributor

during lower-PoE (Fig. 5b). The spatial average of each component’s contribution during lower and upper PoE is summarized330

on table 2.

In 40% of the time, mostly in NO-BALT area, temperature index explains a large part of the increase of CE probability (Fig.

4a). In this area the dependence contributes negatively to upper-PoE (Fig. 4c), which means that pC evolves in the opposite

direction to the signal p. In MA-IB area, Tmax contributes positively around 30% to PoEup, twice the value of the drought

index contribution (Fig. 4b). In this region, values of contribution are again homogeneous, those for dependence are close to335

zero (Fig. 4c) - it means that copulas shows little change during the emergence - whereas those for the interaction term is

the highest (Fig. 4d). The drivers are not the same during lower-PoE (Fig. 5). In 87 % of the time, drought index is mainly

responsible of the signal variation below the natural variability (Fig. 5b). In these areas, mostly located in eastern Europe, the

contribution of the dependence is positive (Fig. 5c). The IT-BALK region stands out in the sense that the drought index change

is the main contributor to upper-PoE (Fig. 4b) while the temperature index plays this role for lower-PoE (Fig. 5a).340

Signals pS and pTmax represent the CE probabilities when only the drought index and the hot index evolves respectively.

Spatial patterns of their ToE and PoE are shown in Figs. S5 and S6 in Supplementary and provide an other overview of the
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contributions. Probability signal pTmax
definitively emerged everywhere except in Italy and in Lapland whereas pS definitively

emerged in less than 50% of the grid cells. To understand in details what happened during a period of emergence, the probability

signal of five points, located in the five areas, are shown in Fig. 6. Their coordinates are represented with a red cross in Fig. 2.345

pC (the green curve) does not change significantly as the probability remains in the range of natural variability, except in

Lapland (Fig. 6e). For the EAST point (Fig. 6a), hot and dry probability is lower than during the reference period, despite

the emergence of pTmax
(orange curve). For the IT-BALK location (Fig. 6b), the probability when only the drought index

evolved, pS (pink curve), emerged around 1990 and contributed in majority to PoEup. Then for the MA-IB grid cell (Fig.

6c), the probability signal emerged in 1986, after the signal pTmax
and before pS . For the NO-BALT point (Fig. 6d), pTmax

350

lies permanently above the natural variability since 1985. In the grid cell located in Lapland (Fig. 6e), the signal p emerges

the soonest, around 1970, although pTmax and pS are almost constant. Contribution evolutions (Fig. S7 in Supplement) allow

to better visualize how and when each component contributes to the variation of the probability signal, and to detect if the

main driver changed from one period to another. The predominant role of Tmax increase in NO-BALT area is highlighted in

Fig. S7d. In the Lapland point (Fig. S7e), the main contributor alternates between margins and dependence change. Two355

more cases, located in Lapland and in Russia (black points in Fig. 2), are presented in Supplement (Fig. S8). In Lapland

(23°E/67°N), the first PoEup is mostly due to a change in the marginals whereas from 1985, dependence change became the

main contributor; the opposite happens in Russia, marginals explain mostly the last PoEup while dependence impacted the

first one.

4.3 Influence of the dependence on PoE features360

Although the dependence change is weaker and contributes less to the emergence than both margins variation, by how much

does it impact the time and duration of the emergences? This section will compare two time series, the probability signal p and

pTmax,S , the CE probability when only both margins evolve, in order to quantify the influence of the dependence change on

PoE features with the two metrics presented section 3, ∆PoElength and ∆ToEdate. We will only focus on upper-PoE cases.

In Fig. 6 these two probability signals p and pTmax,S are represented in black and blue respectively. In Fig. 6c (MA-IB),365

when the signals overlap, both metric ∆PoE and ∆ToE are equal to 0. In Fig. 6d (NO-BALT), pTmax,S is much higher than

the signal p. The dependence between variables tends to decrease exceedance probabilities, since it contributes negatively to

the emergence (as shown in Fig. S7c). As pTmax,S emerges sooner than the signal p, ∆ToEup,date is positive and reaches +15

years. As pTmax,S lies more often above the natural variability, ∆PoElength is negative (equal to -5 years). On the contrary, in

Fig. 6e (LAP), the probability signal p exceeds pTmax,S since p emerged in 1971, 39 years sooner than the ToE of pTmax,S .370

In this case, contributions of the dependence and the margins are close, but ∆ToE is highly negative and ∆PoE reaches +25

years.

This analysis points the diversity of pTmax,S evolution relative to the signal p. The two metrics are applied to each grid

point of Europe and north Africa, ∆ToE and ∆PoE spatial patterns are presented in figure 7. In MA-IB, ∆ToE is close

to 0, and ∆PoE around 2. NO-BALT stands out with high positive ∆ToE. In Brittany and in Russia, the positive influence375
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of the dependence is more pronounced for ∆PoE than ∆ToE, as it corresponds to areas with several PoEup (Fig. S4 in

Supplementary). In Lapland, the dependence influenced more the last PoEup, so ToEup is more impacted.

4.4 A specific event: July 2022

The event studied so far corresponds to the combination of extreme temperature and drought (95th percentile during the

reference period) whose thresholds do not refer to an observed event. That is why we will now focus on an event that happened380

in Europe and whose damage is documented. From now on, the selected bivariate thresholds (Tmaxe
,Se) to compute the

probabilities will correspond to the ERA5 values of a specific event. Hot and dry event in 2022 was particularly disastrous

over Europe (Tripathy and Mishra, 2023). This phenomenon has drawn attention for numerous studies, such as the specific

atmospheric circulation of the event (e.g., Faranda et al., 2023; Herrera-Lormendez et al., 2023), a particular attribution analysis

(Bevacqua et al., 2024a), its impact on forests (Gharun et al., 2024) or on human death (Ballester et al., 2023). Summer 2022385

has also been analysed on one side as an extreme heatwave (Feser et al., 2024) and on the other side as an extreme drought

(Biella et al., 2024). What threshold does this hot and dry compound event correspond to? How likely was it to occur in the

past compared to now? Is this likelihood emerged everywhere?

Regarding the corresponding thresholds (i.e., ERA5 values) for this event (Fig. S9 in Supplementary), Tmaxe reached 45°C

in MA-IB (even higher in Northern Africa) and ranged between 40°C and 45°C over Europe (except Fennoscandia); and390

droughts were severe to extreme (Se > 1.5 or 2) in a large part of the studied area. Their corresponding probability during the

reference period (Figs. S9c and d) is not the same everywhere, this will impact the interpretation of the contribution maps

(Figs. S10 and S11 in Supplementary). For example, in the south of Sweden, Tmaxe
is extremely high, above 30°C, whereas

Se is even below 1. The likelihood of the hot index exceeding Tmaxe
is around 10−4 while the probability of the drought index

exceeding Se is 10−1. Then the joint exceedance probability signal is driven by the variation of Tmax extreme values. It then395

differs to what has been done so far with percentile-based thresholds. Fig. 8 presents the probability of occurrence during the

baseline period and the risk ratio between the first and the last period (1950-1969 and 2004-2023). The event was unlikely to

occur in MA-IB and in western France during the baseline period. There is a positive gradient, from west to east: the probability

was around 10−4 in eastern France and eastern Germany, between 10−3 and 10−2 in central Europe, and 10−1 in Ukraine and

Russia (Fig. 8a). The risk ratio highlights a huge increase in probability even higher than 50 in Central Europe (Fig. 8b).400

The probability associated to this event emerged almost everywhere, except in the EAST area and in the south of Norway

(Fig. 9). This map, representing ToEup, provides information on when the probability has increased significantly. In Ukraine

and in Russia, ToE occurs after 2000, while the soonest ToE happens in Northern Algeria, Western Europe, Western Turkey

ans Southern Scandinavia. However this map has to be interpreted carefully, regarding map of pref (Fig. 8a). Indeed, in Spain

for example, ToE means the moment at which the probability is no longer zero; whereas in Turkey, it refers to the time at which405

the probability is permanently above the estimated natural variability. This point is illustrated through two examples in Figs. 9

b and c, in Northern France and in Poland.
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5 Conclusion and perspectives

5.1 Conclusion

Compound events are the most impactful phenomena. Changes in bivariate compound hot & dry event probability (signal)410

relative to the natural variability (noise) was detected in terms of timing and location. Time of emergence (ToE) is the year

from which the signal goes out from the noise, while the new concept of period of emergence (PoE) refers to the periods during

which the signal leaves the range of natural variability. This study analyses the evolution of the co-occurrence of extreme heat

and drought and highlights the diversity of types of emergence over Europe and north of Africa between 1950 and 2023.

The signal permanently emerged above the natural variability in the majority of the area (78% of the grid points). This415

implies a trend towards warmer and drier compound events. In order to better understand what happened in the past, periods

of emergence were analyzed. In 65% of the time, the signal experienced only one upper-PoE starting with a ToE. In some

cases, the signal experienced an upper-PoE before the time of emergence, like in Scandinavia, Russia and Brittany (between

2 and 4 upper-PoE). In others, a lower-PoE occurred before, like in Italy. It is also interesting to detect areas where the signal

never exceeds the upper bound, like in eastern Europe, or never evolve below the lower bound of the natural variability, like in420

Sweden, in Portugal and western Spain.

Temperature is the main driver for upper-PoE in most of Europe, while the drought index mostly contributes to lower-PoE

(except in Italy). The magnitude of the dependence change is less significant, pC almost never emerged permanently. Even if

the dependence evolution is a low process, a few dependence variations can impact PoE features, either advance or delay ToEs,

either lengthen or shorten PoEs. Sometimes, the main driver (among the three components) can change from one period of425

emergence to another.

Five areas were studied in details, each characterized by their own specificity in terms of ToE, PoE, contributions and

∆PoElength. The frequency of hot and dry events sharply increased in Maghreb and the Iberian peninsula (MA-IB), and this

rise is mainly due to a change in the marginals. Conversely, in eastern Europe (EAST) the signal experienced a long lower-PoE,

that can lead to a lower-ToE, and this decline is mainly driven by a change in the drought index. In northern Italy and western430

Balkan (IT-BALK), S contributes mostly to the emergence above the natural variability, and not below like the rest of Europe.

Finally, the dependence change impacts differently Baltic states and Lapland. It influenced negatively the probability around

the northern and Baltic seas (NO-BALT), which means that the signal is lower when copula parameter evolves, periods of

emergence are shorter and time of emergence later. However, in Lapland (LAP), time of emergence could be delayed by 30

years if the dependence were not taken into account. The study highlights regional contrasts and specificities.435

The study showed that the developed approach can be adapted to the analysis of a specific impactful CE (not only CE event

based on climatology). As an example, July 2022 has been taken as a threshold. Indeed, this methodology can be applied to

any bivariate compound event, with any bivariate threshold, and at any location. An R package has been developed, allowing

to detect upper/lower PoE, upper/lower ToE, to visualize the time series of the probabilities p, pC , pTmax
, pS and p(S,Tmax),

to detect their emergences and to quantify the contribution of the three statistical components. This package is available on440

https://github.com/josephine400/emergence.compound.
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5.2 Limitations and perspectives

In the present study, CE probabilities are modelled by fitting marginal and copula distributions to the data of each sliding

window. Then, a large portion of the same data is used several times from a sliding window to another. The signal modelling

can be improved by considering more properly the non-stationarity, e.g. including physical covariates to condition the joint445

distribution, and by applying other bivariate methods, such as non-parametric approaches or multivariate generalized Pareto

distribution (Legrand et al., 2023).

The methodology developed here uses copula functions to disentangle univariate and dependence contributions during PoEs.

The study is then limited to 2-dimension compound events. But spatial compound events or multivariate hazards described with

more than two variables (like wildfires studied with wind speed, temperature and humidity) are other high-impact phenomena450

and need further multivariate statistics (e.g., Tavakol et al., 2020; Davison et al., 2012). This work would then deserve to

be extended to higher dimensional events. Several approaches have been implemented to tackle this modelling issue. Nested

Archimedean construction for example also called Hierarchical archimedean copula, introduced by Joe (1997) consists in

inserting copula into copula. A tree structure of dependence is built to guide the computation (Ribeiro et al., 2020). Pair Copula

Construction, also proposed by Joe (1997), deals also with more than 2 dimensions, by decomposing a multivariate distribution455

into multiple bivariate copulas (Manning et al., 2018). These methods allow to model more complex dependencies than a

multivariate Archimedean parametric copula that imposes the same parameter for each pair of variables.

The ERA5 reanalysis dataset is analysed for the present case study in order to detect past changes. However the period is

only available from 1950 to 2023. Using simulations from climate models can shed new lights on multivariate detection and

attribution framework. First of all, more data would make internal variability and periods of emergence more robust. Secondly,460

analysing simulations can be used to evaluate CMIP6 models ability to retrieve compound events emergence. If simulations

detect the right frequency of PoE without the right main driver, the reliability of the model may be weakened. In addition to

improve CE detection, models are needed for attributing a phenomenon to anthropogenic activities (e.g., Stott et al., 2016). For

this purpose, compound event probabilities computed in two different periods are compared, either the present with the past

(pre-industrial period) or a factual world with a counterfactual world (without anthropogenic forces) (Zscheischler and Lehner,465

2022). The modelling and method proposed in this study could then be directly used for such a task.

Finally, as compound events are expected to change in the future (Ridder et al., 2022), the methodology presented in this

study could be applied to climate model simulations for projection, in order to anticipate potential future significant CE prob-

ability variations (future PoE and ToE), and be as prepared as possible to these complex and devastating events.

Code availability. The codes developed for this study have been gathered and structured in an R package named "emergence.compound",470

and available at https://github.com/josephine400/emergence.compound.
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Table 1. Summary of the link between three metrics, the contribution of the dependence during upper-PoE ContribC,up, the difference

of PoE duration and ToE date when the dependence is considered or not, noted ∆PoEup,length and ∆ToEup,date respectively: when the

dependence contributes positively to the emergence of the signal, it means that the latter is higher when the dependence is considered, and

tends to emerge sooner (∆ToEup,date < 0) and more frequently (∆PoEup,date > 0). When the dependence contributes negatively to the

emergence, it’s the opposite

∆PoEup,length ∆ToEup,date

ContribC,up > 0 tends to be > 0 (PoE are longer) tends to be < 0 (ToE is sooner)

ContribC,up < 0 tends to be < 0 (PoE are shorter) tends to be > 0 (ToE is later)
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Table 2. Spatial average of each component contribution for upper-PoE and lower-PoE.

PoEup PoElow

ContribTmax 50.8 -4.9

ContribS 19.7 83.4

ContribC 4.3 13.8

Contribint 25.2 7.7

24

https://doi.org/10.5194/egusphere-2025-461
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



𝑃𝑜𝐸!",$ 𝑃𝑜𝐸!",%

𝑃𝑜𝐸!",&!"#$ ,&

∆𝑇𝑜𝐸$% = 𝟐𝟎𝟎𝟕	 − 𝟏𝟗𝟗𝟒= 	+13	𝑦𝑒𝑎𝑟𝑠
∆𝑃𝑜𝐸$% = 𝟏𝟔	 − 𝟐𝟏 = −5	𝑦𝑒𝑎𝑟𝑠

Figure 1. Illustration of the different steps used for characterizing the emergence (PoE, ToE, Contrib, ∆PoE, ∆ToE), through

the example of hot-dry CE in Vilnius. See text for details. (a) Periods of emergence below the lower bound and above the upper bound

of the natural variability, given by the two dotted red lines, are shown with yellow and black hatched rectangles. (b) CE probability signals

when only one component (FTmax , FS , C) changes. The computation of contribution is illustrated with the arrows. The difference between

the signal p in 2000 and the probability during the reference period pref is represented with the black arrow (∆P ). The coloured ones refer

to the differences between each time series pC , pTmax , pS in 2000 and pref . The panel (c) shows in blue the signal pTmaxS when the

dependence is constant, and the associated PoE and ToE. By comparing (a) and (c), the two metrics ∆PoE and ∆ToE can be computed.

(d) Evolution of each component’s contribution to the CE probability change (∆P ). CE probability and contributions associated to a change

in the dependence, in the temperature index Tmax, and in the drought index S are coloured respectively in green, orange and pink. The year

indicated on the x-axis is the middle of the 20y window. All signals are smoothed using a 5-year window; thus the two first and two last years

cannot be used for smoothing, and are plotted with points.
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MA-IB
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EAST

LAP

Figure 2. Presentation of the region under study and the five areas specifically analyzed: MA-IB (Iberian Peninsula, the Maghreb, and

south-west of France), IT-BALK (northern Italy and western Balkan), EAST (western Poland, eastern Ukrain and southern Belarus), NO-

BALT (zones along the north and Baltic seas), and LAP (northern Norwegian and Swedish Lapland). The red (black) crosses are the points

specifically examined for the temporal analysis (in Supplementary).
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Figure 3. Maps of emergence features, when the signal varies below (right panels) or above (left panels) the natural variability. Date

of (a) upper-ToE and (b) lower-ToE. Total duration of (c) upper-PoE and (d) lower-PoE. White color means either (a) no ToEup, (b) no

ToElow, (c) no PoEup, or (d) no PoElow detected.

27

https://doi.org/10.5194/egusphere-2025-461
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 4. Contribution of each statistical component (Tmax and S marginals, and the dependence C) during upper-PoE. Spatial

patterns of (a) ContribTmax,up, (b) ContribS,up, (c) ContribC,up and (d) Contribint,up. The last map corresponds to the residual term

or interaction term. The sum of the four panels is equal to 100.
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Figure 5. Contribution of each statistical component (Tmax and S marginals, and the dependence C) during lower-PoE. Spatial

patterns of (a) ContribTmax,low, (b) ContribS,low, (c) ContribC,low and (d) Contribint,low. The last map corresponds to the residual

term or interaction term. The sum of the four panels is equal to 100.
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Figure 6. Evolution of hot-dry CE probabilities when only one statistical component evolves, for 5 points located in the 5 areas under

study. Locations are given in Fig. 2 by red crosses. The probability associated with changes of dependence, temperature index Tmax, and

drought index S are coloured respectively in green, orange and pink. CE probability when the dependence is constant is shown in blue.
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Figure 7. Influence of the dependence change on PoE features: either (a) on the upper-ToE date or (b) on the upper-PoE durations. When

the dependence is considered, ToE can be advanced (negative ∆ToE) or delayed (positive ∆ToE), PoE can be longer and more frequent

(positive ∆PoE) or shorter and rarer (negative ∆PoE).
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Figure 8. Probability and risk ratio maps of the 7-2022 hot-dry event. (a) Probability of the event during the 1950-1969 period and (b)

risk ratio. White grid cell refers to a null probability during the baseline period.
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∆𝑇𝑜𝐸!"= 0	𝑦𝑒𝑎𝑟𝑠
∆𝑃𝑜𝐸!" = 0	𝑦𝑒𝑎𝑟𝑠

∆𝑇𝑜𝐸!"= 0	𝑦𝑒𝑎𝑟𝑠
∆𝑃𝑜𝐸!" = 0	𝑦𝑒𝑎𝑟𝑠

Figure 9. Upper-ToE for the 7-2022 CE event. (a) Spatial distribution of upper-ToE. (b-c) Evolution of the probabilities for two specific

points, marked by black crosses on map (a). White grid cell means no ToEup.
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