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Abstract 
We present a genome assembly from a male Acronicta alni (Alder 
Moth; Arthropoda; Insecta; Lepidoptera; Noctuidae). The assembly 
contains two haplotypes with total lengths of 470.37 megabases and 
472.86 megabases. Most of haplotype 1 (98.95%) is scaffolded into 31 
chromosomal pseudomolecules, including the Z chromosome. 
Haplotype 2 was assembled to scaffold level. The mitochondrial 
genome has also been assembled and is 15.38 kilobases in length.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;  
Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibu-
lata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota;  
Neoptera; Endopterygota; Amphiesmenoptera; Lepidoptera;  
Glossata; Neolepidoptera; Heteroneura; Ditrysia; Obtectomera; 
Noctuoidea; Noctuidae; Acronictinae; Acronicta; Acronicta alni 
(Linnaeus, 1767) (NCBI:txid987860)

Background
Alder Moth (Acronita alni) is a macromoth in the family  
Noctuidae. It is local and distributed throughout most of  
England, Northern Ireland and Wales and, since 2000, has 
shown a major spread northwards into Scotland (Randle et al.,  
2019). It is distributed throughout most of Europe, with  
sporadic clusters of records across Asia to Japan (GBIF  
Secretariat, 2025).

The adult moth has a forewing length of 16–19 mm and has  
distinctive blackish clouding which extends from the trailing  
edge, through the centre of the forewing around the kidney  
mark, to the forewing. Although distinctive, there is some  
variability in the extent of this clouding. It has a black dagger 
mark from the trailing corner of the wing, which is a common  
feature of other Acronictinae, and gives rise to the common name  
of dagger moths (Waring et al., 2017).

The adult moth is attracted to mercury vapour light during  
its flight season in May and June. The larvae feed on a range 
of broad-leaved trees including birch and alder (Waring  
et al., 2017). The third and fourth larval instars resemble  
bird-droppings and it has been demonstrated that the bent  
resting pose on a leaf increases the effectiveness of the crypsis  
(Suzuki & Sakurai, 2015). However, the final instar is  
aposematic, with striking black and yellow stripes (Henwood 
et al., 2020). It was thought that the change in appearance was 
linked to an increase in toxins in the larvae (Gaitonde et al., 2018).  
However, it has been found that all instars are distasteful  
to birds, and that the change in defensive mechanism is more 
likely because the final instar larva has to move to pupate, which  
would discredit its bird-dropping disguise (Valkonen et al.,  
2014). The caterpillar pupates in rotten wood, where it also  
overwinters (Waring et al., 2017).

The genome of Acronita alni was sequenced as part of the  
Darwin Tree of Life Project, a collaborative effort to sequence 
all named eukaryotic species in the Atlantic Archipelago  
of Britain and Ireland. It will be useful for research into  
larval development and more generally for comparative studies  
across the Lepidoptera. Here we present a chromosomally  
complete genome sequence for Acronita alni based on one male 
specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report
Sequencing data
The genome of a specimen of Acronicta alni (Figure 1) 
was sequenced using Pacific Biosciences single-molecule  
HiFi long reads, generating 52.69 Gb from 5.47 million  

reads. GenomeScope analysis of the PacBio HiFi data  
estimated the haploid genome size at 428.53 Mb, with a  
heterozygosity of 1.31% and repeat content of 18.75%. These 
values provide an initial assessment of genome complexity 
and the challenges anticipated during assembly. Based on this  
estimated genome size, the sequencing data provided  
approximately 113.0x coverage of the genome. Chromo-
some conformation Hi-C sequencing produced 112.46 Gb from  
744.76 million reads. Table 1 summarises the specimen and 
sequencing information, including the BioProject, study name,  
BioSample numbers, and sequencing data for each technology.

Assembly statistics
The genome was assembled into two haplotypes using  
Hi-C phasing. Haplotype 1 was curated to chromosome 
level, while haplotype 2 was assembled to scaffold level. The  
assembly was improved by manual curation, which corrected 
47 misjoins or missing joins. These interventions decreased the  
scaffold count by 5.24%. The final assembly has a total  
length of 470.37 Mb in 252 scaffolds with 87 gaps, and the  
scaffold N50 is16.19 Mb (Table 2).

The snail plot in Figure 2 provides a summary of the assembly 
statistics for haplotype 1, indicating the distribution of scaffold  
lengths and other assembly metrics. Figure 3 shows the distri-
bution of scaffolds by GC proportion and coverage. Figure 4  
presents a cumulative assembly plot, with separate curves  
representing different scaffold subsets assigned to various phyla, 
illustrating the completeness of the assembly.

Most of the assembly sequence (98.95%) was assigned to  
31 chromosomal-level scaffolds. These chromosome-level scaf-
folds, confirmed by Hi-C data, are named according to size  
(Figure 5; Table 3). During curation, chromosome Z was  
assigned by synteny to the genome of Acronicta leporina  
(GCA_947256265.1) (Boyes et al., 2023).

Figure 1. Photograph of the Acronicta alni (ilAcrAlni1) 
specimen used for genome sequencing.
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Table 1. Specimen and sequencing data for Acronicta alni.

Project information

Study title Acronicta alni (alder moth)

Umbrella BioProject PRJEB74577

Species Acronicta alni

BioSpecimen SAMEA10979164

NCBI taxonomy ID 987860

Specimen information

Technology ToLID BioSample 
accession

Organism part

PacBio long read sequencing ilAcrAlni1 SAMEA10979593 head and thorax

Hi-C sequencing ilAcrAlni1 SAMEA10979593 head and thorax

Sequencing information

Platform Run 
accession

Read count Base count (Gb)

Hi-C Illumina NovaSeq 6000 ERR12861065 7.45e+08 112.46

PacBio Revio ERR12875138 4.80e+06 44.6

PacBio Sequel IIe ERR12875139 6.63e+05 8.09

The mitochondrial genome was also assembled. This sequence 
is included as a contig in the multifasta file of the genome  
submission and as a standalone record in GenBank.

Assembly quality metrics
The estimated Quality Value (QV) and k-mer completeness  
metrics, along with BUSCO completeness scores, were calculated  
for each haplotype and the combined assembly. The QV 
reflects the base-level accuracy of the assembly, while k-mer  
completeness indicates the proportion of expected k-mers  
identified in the assembly. BUSCO scores provide a measure 
of completeness based on benchmarking universal single-copy  
orthologues.

For haplotype 1, the estimated QV is 64.9, and for haplotype 2, 
the QV is 65.2. When the two haplotypes are combined, the  
assembly achieves an estimated QV of 65.1. The k-mer  
completeness for haplotype 1 is 77.75%, and for haplotype 
2 it is 77.90%. When the two haplotypes are combined, the  
assembly achieves a k-mer completeness of 99.82%. BUSCO  
5.5.0 analysis using the lepidoptera_odb10 reference set  
(n = 5,286) achieved a completeness score of 98.8%  
(single = 98.0%, duplicated = 0.8%) for haplotype 1.

Table 2 provides assembly metric benchmarks adapted  
from Rhie et al. (2021) and the Earth BioGenome Project 
Report on Assembly Standards September 2024. The assembly  
achieves the EBP reference standard of 6.C.64.

Methods
Sample acquisition and DNA barcoding
An adult male Acronicta alni (specimen ID Ox001902,  
ToLID ilAcrAlni1) was collected from Wytham Woods,  
Oxfordshire, United Kingdom (latitude 51.77, longitude –1.34) 
on 2021-06-16, using a light trap. The specimen was collected 
and identified by Douglas Boyes (University of Oxford) and  
preserved on dry ice.

The initial identification was verified by an additional DNA 
barcoding process according to the framework developed  
by Twyford et al. (2024). A small sample was dissected from 
the specimen and stored in ethanol, while the remaining  
parts were shipped on dry ice to the Wellcome Sanger  
Institute (WSI). The tissue was lysed, the COI marker region 
was amplified by PCR, and amplicons were sequenced and  
compared to the BOLD database, confirming the species  
identification (Crowley et al., 2023). Following whole genome 
sequence generation, the relevant DNA barcode region was 
also used alongside the initial barcoding data for sample  
tracking at the WSI (Twyford et al., 2024). The standard  
operating procedures for Darwin Tree of Life barcoding have  
been deposited on protocols.io (Beasley et al., 2023).

Metadata collection for samples adhered to the Darwin Tree  
of Life project standards described by Lawniczak et al. (2022).
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Table 2. Genome assembly data for Acronicta alni.

Genome assembly Haplotype 1 Haplotype 2

Assembly name ilAcrAlni1.hap1.1 ilAcrAlni1.
hap2.1

Assembly accession GCA_964056405.1 GCA_
964056265.1

Assembly level chromosome scaffold

Span (Mb) 470.37 472.86

Number of contigs 339 221

Number of scaffolds 252 131

Longest scaffold (Mb) 25.91 None

Assembly metrics 
(benchmark)

Haplotype 1 Haplotype 2

Contig N50 length 
(≥ 1 Mb)

6.54 Mb 7.05 Mb

Scaffold N50 length  
(= chromosome N50)

16.19 Mb 16.16 Mb

Consensus quality (QV) 
(≥ 40)

64.9 65.2

k-mer completeness 77.75% 77.90%

Combined k-mer 
completeness (≥ 95%)

99.82%

BUSCO* 
(S > 90%; D < 5%)

C:98.8%[S:98.0%,D:0.8%],
F:0.1%,M:1.1%,n:5286

-

Percentage of assembly 
mapped to chromosomes 
(≥ 90%)

98.95% -

Sex chromosomes 
(localised homologous 
pairs)

Z -

Organelles  
(one complete allele)

Mitochondrial genome: 
15.38 kb

-

* BUSCO scores based on the lepidoptera_odb10 BUSCO set using version 5.5.0. 
C = complete [S = single copy, D = duplicated], F = fragmented, M = missing,  
n = number of orthologues in comparison.

Nucleic acid extraction
The workflow for high molecular weight (HMW) DNA  
extraction at the Wellcome Sanger Institute (WSI) Tree of  
Life Core Laboratory includes a sequence of procedures: 
sample preparation and homogenisation, DNA extraction,  
fragmentation and purification. Detailed protocols are available 
on protocols.io (Denton et al., 2023b). The ilAcrAlni1 sample  
was prepared for DNA extraction by weighing and  
dissecting it on dry ice (Jay et al., 2023). Tissue from the head 
and thorax was homogenised using a PowerMasher II tissue  
disruptor (Denton et al., 2023a).

HMW DNA was extracted using the Automated MagAttract v1 
protocol (Sheerin et al., 2023). DNA was sheared into an average  
fragment size of 12–20 kb in a Megaruptor 3 system  
(Todorovic et al., 2023). Sheared DNA was purified by solid-
phase reversible immobilisation, using AMPure PB beads to  
eliminate shorter fragments and concentrate the DNA  
(Strickland et al., 2023). The concentration of the sheared and 
purified DNA was assessed using a Nanodrop spectrophotometer  
and a Qubit Fluorometer using the Qubit dsDNA High  
Sensitivity Assay kit. The fragment size distribution was evaluated 
by running the sample on the FemtoPulse system.
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Figure 2. Genome assembly of Acronicta alni, ilAcrAlni1.hap1.1: metrics. The BlobToolKit snail plot provides an overview of assembly 
metrics and BUSCO gene completeness. The circumference represents the length of the whole genome sequence, and the main plot is 
divided into 1,000 bins around the circumference. The outermost blue tracks display the distribution of GC, AT, and N percentages across 
the bins. Scaffolds are arranged clockwise from longest to shortest and are depicted in dark grey. The longest scaffold is indicated by the red 
arc, and the deeper orange and pale orange arcs represent the N50 and N90 lengths. A light grey spiral at the centre shows the cumulative 
scaffold count on a logarithmic scale. A summary of complete, fragmented, duplicated, and missing BUSCO genes in the set is presented at 
the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_964056405.1/snail.

For ULI PacBio sequencing, DNA was fragmented using the  
Covaris g-TUBE method (Oatley et al., 2023).

Hi-C sample preparation
Tissue from the head and thorax of the ilAcrAlni1 sample  
was processed for Hi-C sequencing at the WSI Scientific  
Operations core, using the Arima-HiC v2 kit. In brief,  
20–50 mg of frozen tissue (stored at –80 °C) was fixed, and the 
DNA crosslinked using a TC buffer with 22% formaldehyde 
concentration. After crosslinking, the tissue was homogenised  
using the Diagnocine Power Masher-II and BioMasher-II tubes 
and pestles. Following the Arima-HiC v2 kit manufacturer’s  
instructions, crosslinked DNA was digested using a restriction  

enzyme master mix. The 5’-overhangs were filled in and 
labelled with biotinylated nucleotides and proximally ligated. 
An overnight incubation was carried out for enzymes to 
digest remaining proteins and for crosslinks to reverse.  
A clean up was performed with SPRIselect beads prior to 
library preparation. Additionally, the biotinylation percentage  
was estimated using the Qubit Fluorometer v4.0 (Thermo  
Fisher Scientific) and Qubit HS Assay Kit and Arima-HiC v2  
QC beads.

Library preparation and sequencing
Library preparation and sequencing were performed at the  
WSI Scientific Operations core.
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Figure 3. Genome assembly of Acronicta alni, ilAcrAlni1.hap1.1: BlobToolKit GC-coverage plot. Blob plot showing sequence coverage 
(vertical axis) and GC content (horizontal axis). The circles represent scaffolds, with the size proportional to scaffold length and the colour 
representing phylum membership. The histograms along the axes display the total length of sequences distributed across different levels 
of coverage and GC content. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_964056405.1/
dataset/GCA_964056405.1/snail.

PacBio HiFi
At a minimum, samples were required to have an average  
fragment size exceeding 8 kb and a total mass over 400 ng 
to proceed to the low input SMRTbell Prep Kit 3.0 protocol  
(Pacific Biosciences, California, USA), depending on genome 
size and sequencing depth required. Libraries were prepared  
using the SMRTbell Prep Kit 3.0 (Pacific Biosciences,  
California, USA) as per the manufacturer’s instructions. The 
kit includes the reagents required for end repair/A-tailing,  
adapter ligation, post-ligation SMRTbell bead cleanup, and  
nuclease treatment. Following the manufacturer’s instructions, 
size selection and clean up was carried out using diluted AMPure  
PB beads (Pacific Biosciences, California, USA). DNA con-
centration was quantified using the Qubit Fluorometer v4.0  
(Thermo Fisher Scientific) with Qubit 1X dsDNA HS assay 
kit and the final library fragment size analysis was carried 
out using the Agilent Femto Pulse Automated Pulsed Field 
CE Instrument (Agilent Technologies) and gDNA 55kb BAC  
analysis kit.

A second library preparation step was done for ULI sequencing.  
The sample requires Covaris g-TUBE shearing to approxi-
mately 10 kb prior to library preparation. Ultra-low input 
libraries were prepared using PacBio SMRTbell® Express  
Template Prep Kit 2.0 and PacBio SMRTbell® gDNA  
Sample Amplification Kit. To begin, samples were normalised  
to 20 ng of DNA. Initial removal of single-strand overhangs, 
DNA damage repair, and end repair/A-tailing were performed  
per manufacturer’s instructions. From the SMRTbell® gDNA 
Sample Amplification Kit, amplification adapters were then  
ligated. A 0.85X pre-PCR clean-up was performed with  
Promega ProNex beads and the sample was then divided  
into two for a dual PCR. PCR reactions A and B each followed 
the PCR programs as described in the manufacturer’s protocol.  
A 0.85X post-PCR clean-up was performed with ProNex 
beads for PCR reactions A and B and DNA concentration was 
quantified using the Qubit Fluorometer v4.0 (Thermo Fisher  
Scientific) and Qubit HS Assay Kit and fragment size analysis  
was carried out using the Agilent Femto Pulse Automated  
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Figure 4. Genome assembly of Acronicta alni ilAcrAlni1.hap1.1: BlobToolKit cumulative sequence plot. The grey line shows 
cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes 
taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/GCA_964056405.1/dataset/GCA_
964056405.1/cumulative.

Pulsed Field CE Instrument (Agilent Technologies) and gDNA 
55kb BAC analysis kit. PCR reactions A and B were then  
pooled, ensuring the total mass was ≥500 ng in 47.4 μl. The  
pooled sample then repeated the process for DNA damage  
repair, end repair/A-tailing and additional hairpin adapter 
ligation. A 1X clean-up was performed with ProNex beads  
and DNA concentration was quantified using the Qubit and frag-
ment size analysis was carried out using the Agilent Femto 
Pulse Automated Pulsed Field CE Instrument (Agilent Tech-
nologies). Size selection was performed using Sage Sciences’  
PippinHT system with target fragment size determined  
by analysis from the Femto Pulse, usually a value between 
4000 and 9000 bp. Size selected libraries were then cleaned-up  

using 1.0X ProNex beads and normalised to 2 nM before  
proceeding to sequencing.

The sample was sequenced using the Sequel IIe system  
(Pacific Biosciences, California, USA). The concentration  
of the library loaded onto the Sequel IIe was in the range  
40–135 pM. The SMRT link software, a PacBio web-based  
end-to-end workflow manager, was used to set-up and monitor 
the run, as well as perform primary and secondary analysis of the  
data upon completion.

Additional data was acquired by sequencing on a Revio  
instrument (Pacific Biosciences, California, USA). Prepared  
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Table 3. Chromosomal pseudomolecules 
in the genome assembly of Acronicta alni, 
ilAcrAlni1.

INSDC 
accession

Name Length 
(Mb)

GC%

OZ043914.1 1 19.09 36.5

OZ043915.1 2 18.73 36.5

OZ043916.1 3 18.56 36.5

OZ043917.1 4 18.26 36

OZ043918.1 5 18.19 36.5

OZ043919.1 6 17.72 36.5

OZ043920.1 7 17.1 36.5

OZ043921.1 8 16.93 36.5

OZ043922.1 9 16.79 36

OZ043923.1 10 16.69 36

OZ043924.1 11 16.68 36

OZ043925.1 12 16.19 36.5

OZ043926.1 13 15.95 36.5

OZ043927.1 14 15.74 36.5

OZ043928.1 15 15.48 36.5

INSDC 
accession

Name Length 
(Mb)

GC%

OZ043929.1 16 15.31 36.5

OZ043930.1 17 15.21 37

OZ043931.1 18 15.05 37

OZ043932.1 19 14.92 37

OZ043933.1 20 14.43 37

OZ043934.1 21 14.31 36.5

OZ043935.1 22 13.02 38.5

OZ043936.1 23 12.65 37.5

OZ043937.1 24 12.24 37

OZ043938.1 25 11.01 37

OZ043939.1 26 10.18 37

OZ043940.1 27 8.93 38

OZ043941.1 28 8.81 39

OZ043942.1 29 8.39 38

OZ043943.1 30 6.97 38

OZ043913.1 Z 25.91 36.5

OZ043944.1 MT 0.02 21

Figure 5. Genome assembly of Acronicta alni ilAcrAlni1.hap1.1: Hi-C contact map of the ilAcrAlni1.hap1.1 assembly, visualised 
using HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be 
viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=EOv-3spJTaqBS29fMC4ssA.
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libraries were normalised to 2 nM, and 15 μL was used for 
making complexes. Primers were annealed and polymerases 
were hybridised to create circularised complexes according to  
manufacturer’s instructions. The complexes were purified 
with the 1.2X clean up with SMRTbell beads. The purified  
complexes were then diluted to the Revio loading concentration 
(in the range 200–300 pM), and spiked with a Revio sequencing  
internal control. Samples were sequenced on Revio 25M 
SMRT cells (Pacific Biosciences, California, USA). The SMRT  
link software, a PacBio web-based end-to-end workflow manager,  
was used to set-up and monitor the run, as well as perform  
primary and secondary analysis of the data upon completion.

Hi-C
For Hi-C library preparation, DNA was fragmented using 
the Covaris E220 sonicator (Covaris) and size selected using  
SPRISelect beads to 400 to 600 bp. The DNA was then 
enriched using the Arima-HiC v2 kit Enrichment beads.  
Using the NEBNext Ultra II DNA Library Prep Kit (New  
England Biolabs) for end repair, a-tailing, and adapter ligation.  
This uses a custom protocol which resembles the standard  
NEBNext Ultra II DNA Library Prep protocol but where library 
preparation occurs while DNA is bound to the Enrichment  
beads. For library amplification, 10 to 16 PCR cycles were  
required, determined by the sample biotinylation percentage.  
The Hi-C sequencing was performed using paired-end  
sequencing with a read length of 150 bp on an Illumina  
NovaSeq 6000 instrument.

Genome assembly, curation and evaluation
Assembly
Prior to assembly of the PacBio HiFi reads, a database of  
k-mer counts (k = 31) was generated from the filtered reads 
using FastK. GenomeScope2 (Ranallo-Benavidez et al., 2020)  
was used to analyse the k-mer frequency distributions,  
providing estimates of genome size, heterozygosity, and repeat  
content.

The HiFi reads were assembled using Hifiasm in Hi-C  
phasing mode (Cheng et al., 2021; Cheng et al., 2022),  
resulting in a pair of haplotype-resolved assemblies. The  
Hi-C reads were mapped to the primary contigs using  
bwa-mem2 (Vasimuddin et al., 2019). The contigs were further  
scaffolded using the provided Hi-C data (Rao et al.,  
2014) in YaHS (Zhou et al., 2023) using the --break option  
for handling potential misassemblies. The scaffolded assem-
blies were evaluated using Gfastats (Formenti et al., 2022),  
BUSCO (Manni et al., 2021) and MERQURY.FK (Rhie et al., 
2020).

The mitochondrial genome was assembled using MitoHiFi  
(Uliano-Silva et al., 2023), which runs MitoFinder (Allio  
et al., 2020) and uses these annotations to select the final  
mitochondrial contig and to ensure the general quality of the 
sequence.

Assembly curation
The assembly was decontaminated using the Assembly Screen 
for Cobionts and Contaminants (ASCC) pipeline (article in  

preparation). Flat files and maps used in curation were generated  
in TreeVal (Pointon et al., 2023). Manual curation was  
primarily conducted using PretextView (Harry, 2022), with 
additional insights provided by JBrowse2 (Diesh et al.,  
2023) and HiGlass (Kerpedjiev et al., 2018). Scaffolds  
were visually inspected and corrected as described by Howe 
et al. (2021). Any identified contamination, missed joins, and 
mis-joins were corrected, and duplicate sequences were tagged  
and removed. Sex chromosomes were identified by synteny  
analysis. The curation process is documented at https://gitlab.com/
wtsi-grit/rapid-curation (article in preparation).

Assembly quality assessment
The Merqury.FK tool (Rhie et al., 2020), run in a Singular-
ity container (Kurtzer et al., 2017), was used to evaluate  
k-mer completeness and assembly quality for the primary 
and alternate haplotypes using the k-mer databases (k = 31)  
that were computed prior to genome assembly. The analysis  
outputs included assembly QV scores and completeness statistics.

A Hi-C contact map was produced for the final version of the  
assembly. The Hi-C reads were aligned using bwa-mem2  
(Vasimuddin et al., 2019) and the alignment files were  
combined using SAMtools (Danecek et al., 2021). The  
Hi-C alignments were converted into a contact map using 
BEDTools (Quinlan & Hall, 2010) and the Cooler tool suite  
(Abdennur & Mirny, 2020). The contact map is visualised  
in HiGlass (Kerpedjiev et al., 2018).

The blobtoolkit pipeline is a Nextflow port of the previous  
Snakemake Blobtoolkit pipeline (Challis et al., 2020).  
It aligns the PacBio reads in SAMtools and minimap2 (Li, 
2018) and generates coverage tracks for regions of fixed size.  
In parallel, it queries the GoaT database (Challis et al., 2023) 
to identify all matching BUSCO lineages to run BUSCO  
(Manni et al., 2021). For the three domain-level BUSCO  
lineages, the pipeline aligns the BUSCO genes to the  
UniProt Reference Proteomes database (Bateman et al., 2023) 
with DIAMOND blastp (Buchfink et al., 2021). The genome  
is also divided into chunks according to the density of the  
BUSCO genes from the closest taxonomic lineage, and each 
chunk is aligned to the UniProt Reference Proteomes database  
using DIAMOND blastx. Genome sequences without a hit 
are chunked using seqtk and aligned to the NT database with 
blastn (Altschul et al., 1990). The blobtools suite combines all  
these outputs into a blobdir for visualisation.

The blobtoolkit pipeline was developed using nf-core  
tooling (Ewels et al., 2020) and MultiQC (Ewels et al., 
2016), relying on the Conda package manager, the Bioconda  
initiative (Grüning et al., 2018), the Biocontainers infrastructure  
(da Veiga Leprevost et al., 2017), as well as the Docker  
(Merkel, 2014) and Singularity (Kurtzer et al., 2017)  
containerisation solutions.

Table 4 contains a list of relevant software tool versions  
and sources.
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Table 4. Software tools: versions and sources.

Software 
tool

Version Source

BEDTools 2.30.0 https://github.com/arq5x/bedtools2

BLAST 2.14.0 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

BlobToolKit 4.3.9 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.5.0 https://gitlab.com/ezlab/busco

bwa-mem2 2.2.1 https://github.com/bwa-mem2/bwa-mem2

Cooler 0.8.11 https://github.com/open2c/cooler

DIAMOND 2.1.8 https://github.com/bbuchfink/diamond

fasta_
windows

0.2.4 https://github.com/tolkit/fasta_windows

FastK 427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c https://github.com/thegenemyers/FASTK

Gfastats 1.3.6 https://github.com/vgl-hub/gfastats

GoaT CLI 0.2.5 https://github.com/genomehubs/goat-cli

Hifiasm 0.19.8-r603 https://github.com/chhylp123/hifiasm

HiGlass 44086069ee7d4d3f6f3f0012569789ec138f42b84
aa44357826c0b6753eb28de

https://github.com/higlass/higlass

MerquryFK d00d98157618f4e8d1a9190026b19b471055b22e https://github.com/thegenemyers/MERQURY.FK

Minimap2 2.24-r1122 https://github.com/lh3/minimap2

MitoHiFi 3 https://github.com/marcelauliano/MitoHiFi

MultiQC 1.14, 1.17, and 1.18 https://github.com/MultiQC/MultiQC

NCBI 
Datasets

15.12.0 https://github.com/ncbi/datasets

Nextflow 23.10.0 https://github.com/nextflow-io/nextflow

PretextView 0.2.5 https://github.com/sanger-tol/PretextView

purge_
dups

None https://github.com/dfguan/purge_dups

samtools 1.19.2 https://github.com/samtools/samtools

sanger-tol/
ascc

- https://github.com/sanger-tol/ascc

sanger-tol/
blobtoolkit

0.5.1 https://github.com/sanger-tol/blobtoolkit

Seqtk 1.3 https://github.com/lh3/seqtk

Singularity 3.9.0 https://github.com/sylabs/singularity

TreeVal 1.2.0 https://github.com/sanger-tol/treeval

YaHS 1.2a.2 https://github.com/c-zhou/yahs

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note  
have been supplied by a Darwin Tree of Life Partner. The  
submission of materials by a Darwin Tree of Life Partner is  
subject to the ‘Darwin Tree of Life Project Sampling  
Code of Practice’, which can be found in full on the Darwin 
Tree of Life website here. By agreeing with and signing up to 
the Sampling Code of Practice, the Darwin Tree of Life Partner  

agrees they will meet the legal and ethical requirements  
and standards set out within this document in respect of all  
samples acquired for, and supplied to, the Darwin Tree of Life 
Project.

Further, the Wellcome Sanger Institute employs a process  
whereby due diligence is carried out proportionate to the nature 
of the materials themselves, and the circumstances under 

Page 11 of 16

Wellcome Open Research 2025, 10:68 Last updated: 06 MAR 2025

https://github.com/arq5x/bedtools2
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://github.com/blobtoolkit/blobtoolkit
https://gitlab.com/ezlab/busco
https://github.com/bwa-mem2/bwa-mem2
https://github.com/open2c/cooler
https://github.com/bbuchfink/diamond
https://github.com/tolkit/fasta_windows
https://github.com/thegenemyers/FASTK
https://github.com/vgl-hub/gfastats
https://github.com/genomehubs/goat-cli
https://github.com/chhylp123/hifiasm
https://github.com/higlass/higlass
https://github.com/thegenemyers/MERQURY.FK
https://github.com/lh3/minimap2
https://github.com/marcelauliano/MitoHiFi
https://github.com/MultiQC/MultiQC
https://github.com/ncbi/datasets
https://github.com/nextflow-io/nextflow
https://github.com/sanger-tol/PretextView
https://github.com/dfguan/purge_dups
https://github.com/samtools/samtools
https://github.com/sanger-tol/ascc
https://github.com/sanger-tol/blobtoolkit
https://github.com/lh3/seqtk
https://github.com/sylabs/singularity
https://github.com/sanger-tol/treeval
https://github.com/c-zhou/yahs
https://www.darwintreeoflife.org/project-resources/


which they have been/are to be collected and provided for use.  
The purpose of this is to address and mitigate any poten-
tial legal and/or ethical implications of receipt and use of the  
materials as part of the research project, and to ensure that in 
doing so we align with best practice wherever possible. The  
overarching areas of consideration are:

•     Ethical review of provenance and sourcing of the material

•      Legality of collection, transfer and use (national and  
international)

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer  
Agreement entered into by the Darwin Tree of Life Partner,  
Genome Research Limited (operating as the Wellcome Sanger 
Institute), and in some circumstances other Darwin Tree  
of Life collaborators.

Data availability
European Nucleotide Archive: Acronicta alni (alder moth).  
Accession number PRJEB74577; https://identifiers.org/ena.embl/ 
PRJEB74577. The genome sequence is released openly for  
reuse. The Acronicta alni genome sequencing initiative is 
part of the Darwin Tree of Life (DToL) project and Project  
Psyche. All raw sequence data and the assembly have been  
deposited in INSDC databases. The genome will be anno-
tated using available RNA-Seq data and presented through the  

Ensembl pipeline at the European Bioinformatics Institute.  
Raw data and assembly accession identifiers are reported  
in Table 1 and Table 2.
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The chromosome-level genome assembly of Alder moth, Acronicta alni (Linnaeus, 1767) was done 
by the authors. They scaffolded 31 chromosomes from the genome sequence. This 
comprehensive date will be useful for the genomic analysis of the moths. 
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In the Genome sequence report first paragraph the first sentence can be written as “The genome 
of A. alni (Figure 1) was sequenced using………………….. 
  
Authors have sequenced the genome’s total length of 160.15 Gb using three different sequencing 
platforms. After the assembly they received 470.37 Mb in size. But authors haven’t observed the 
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The authors present the first assemblies of the Alder Moth, Acronicta alni. 
The methods are standard, the results are of high quality. 
 
It is unclear how hap2 was scaffolded. This should be explained. 
It is also strange not to have the same chromosome order and orientation for both haplotypes. 
This would ease their integration in a pangenome, for example.  
 
The material and methods look a bit like a cut and paste of a previous article in which primary and 
alternate assemblies were produced. "primary contigs" should be replaced by "haplotype 1 
contigs".
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