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A B S T R A C T

Changes in climate and human behaviour impact catchment hydrology and the export of nutrients including
dissolved organic carbon (DOC), with consequences for drinking water supply. In this study, we projected future
river discharge and DOC dynamics under three Shared Socioeconomic Pathways (i.e., different futures of climatic
conditions, socio-economic development and adaptation to climate change) and quantified change relative to a
baseline for two contrasting catchments: one in Sweden and one in Ireland. For this, we used the Generalised
Watershed Loading Functions Model (GWLF) with an integrated DOC module (GWLF-DOC) and drove it with
data from an ensemble of global climate models, taking into account variability derived from multiple model
parameter sets. We assessed the relative contribution of each of these two factors (climate input data and model
parameterisation) to the total uncertainty in predictions. Projections for river discharge differed between the two
sites in magnitude, variability and direction of change depending on the future scenario and time period. In
contrast, DOC was always projected to show increases in concentration throughout the annual cycle and over
time, with the highest levels by the end of the century, for scenarios with greater warming and low mitigation
efforts. Future climate data provided the dominant source of uncertainty in all of our projections. However, the
DOC model parameters, which respond to temperature and soil moisture conditions, became more influential in
scenarios of higher climatic variability. Our approach highlights the benefits of incorporating often ignored
parameter uncertainty in climate change impact assessments for both interpreting outputs and communicating
results to water managers.

1. Introduction

Terrestrially sourced dissolved organic matter (DOM) entering
freshwaters has many impacts on aquatic ecology (Rodríguez-Cardona
et al., 2022) and on water use and supply (Johnes et al., 2023). High
concentrations are associated with water browning (Kritzberg et al.,
2020), a condition that affects both ecosystem function (Evans et al.,
2005) and drinking water quality (Riyadh and Peleato, 2024). Concen-
trations of DOM (operationally quantified using dissolved organic

carbon (DOC)) must be reduced during drinking water treatment prior
to any chlorination (Köhler et al., 2016; Piai et al., 2024), as it is a
precursor to the formation of disinfection by-products (DBPs) (Srivastav
et al., 2020; Franklin et al., 2021). The presence of DBPs in drinking
water, although unintended, remains a critical safety issue due to the
adverse effects of DBPs such as trihalomethanes (THMs) on human
health (Diana et al., 2019; Kumari and Gupta, 2022). The formation of
these contaminants has raised concern in many regions (Villanueva
et al., 2023), especially those where DOC drains from terrestrial soil
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stores that are rich in organic carbon (e.g., from peatlands and other
organic soils) (Xu et al., 2020; Fenner et al., 2021).

The production and transport of DOC in catchments result from in-
teractions between landscape, land use and climate, including atmo-
spheric deposition factors (Jennings et al., 2010; Adler et al., 2021).
Temperature, water availability and acid deposition (e.g., sulphur
deposition) influence physicochemical and biological mechanisms that
regulate soil decomposition and hence DOC production, while hydro-
logical processes control its transport (Evans et al., 2006; Clark et al.,
2009; Wit et al., 2021). All of these factors have been reported as drivers
of long-term DOC increases in recent decades across the northern
hemisphere, although the importance of any factor can vary from site to
site (Evans et al., 2005; de Wit et al., 2007; Oulehle and Hruška, 2009;
SanClements et al., 2012; Anderson et al., 2023). However, with acid
deposition gradually levelling off (Garmo et al., 2014; Wit et al., 2021),
the interactions between the other climatic factors and catchment hy-
drology will likely be more relevant in future DOC dynamics (Clark
et al., 2010; Anderson et al., 2023; Wu and Yao, 2024).

Increasingly variable temperature and precipitation patterns,
including those related to global warming (Wang et al., 2017; van der
Wiel and Bintanja, 2021), can induce important changes in the magni-
tude and seasonality of DOC export. For instance, dry periods (e.g.,
hotter, drier summers), wet periods (e.g., wetter winters), prolonged dry
conditions, drought-rewetting cycles, lower water tables, and flooding,
can all lead to higher variability in catchment DOC concentrations and
fluxes (Blaurock et al., 2021; Dong et al., 2021; Wu and Yao, 2022; Wu
et al., 2023a, 2023b) that can, in turn, result in higher DBP levels
following treatment (Warner and Saros, 2019; Fenner et al., 2021).
Increased variability in source water DOC levels can also make water
treatment more difficult to manage (Köhler et al., 2016; Piai et al.,
2024). It is important, therefore, to quantify the response of both
catchment hydrology and DOC dynamics to future climatic conditions.
By determining this, drinking water managers may better anticipate
future DOC levels, assess risk for supplies, and prepare basin and/or
treatment scale mitigation actions accordingly (Ritson et al., 2014; Xu
et al., 2020; Klante et al., 2022).

Catchment modelling exercises allow us to quantify change between
past and future water quantity and quality, including DOC concentra-
tions and flux. However, all modelling is associated with differing de-
grees of uncertainty, that are related to a range of sources (Hattermann
et al., 2018; Her et al., 2019a). While uncertainty related to projecting
future climate (by using ensembles of global climate models [GCMs])
and to human behaviour (by use of multiple scenarios for population
behaviour) are now generally incorporated into climate change impact
assessments (Kundzewicz et al., 2018; Schürz et al., 2019), other sources
are generally not. These include variability related to climate bias
correction methods, model structure and model parameterisation i.e.,
the model state variables, governing equations and parameter selection.
Model parameterisation, in particular, can be a complex source of un-
certainty since differing sets of parameters can produce equally good
simulations of key model variables during calibration (i.e., model
parameter equifinality) (Beven and Binley, 1992, 2014), but produce
differing results in future scenarios. This uncertainty has been quantified
in some studies of changes in DOC dynamics (e.g., O’Driscoll et al.,
2018a; Xu et al., 2020), but to date, has not been incorporated into
climate change impact simulations. Moreover, the relative contribution
of both GCM uncertainty and parameter uncertainty to these future
projections has not been explored. Accounting for such uncertainty in
future projections will produce more robust outputs (Her et al., 2019a;
Marshall et al., 2021), and therefore provide more appropriate infor-
mation to assist decision making at a catchment management level
(Teweldebrhan et al., 2018; Cui et al., 2021).

In this study, we used a previously described DOC model (Naden
et al., 2010) that is coupled with the Generalised Watershed Loading
Functions Model (GWLF) (Schneiderman et al., 2010) to calibrate and
simulate future discharge, DOC concentration and DOC flux under

climate change scenarios in one Irish and one Swedish catchment. These
sites were selected as they are contrasting in size, climate and hydrology,
with high organic soils, and represent systems in countries where
drinking water is affected by increases in DOC (O’Driscoll et al., 2018b;
Kritzberg et al., 2020), leading to issues in treatment and supply. After
years of continuous THM exceedances in several supplies, Ireland has
recently been ruled against by the Court of Justice of the European
Union (25 January 2024; Case C-481/22) for failure to fulfil obligations
on the quality of water intended for human consumption. Similarly, the
formation of DBPs has been a persistent problem in Sweden, affecting
many drinking water schemes (Kritzberg et al., 2020) including the
supply to its capital Stockholm (Köhler et al., 2016).

Within this context, we aimed to: (1) quantify the future change in
catchment discharge, DOC concentration and DOC flux between a his-
torical baseline and three future scenarios; (2) determine the periods in
the annual cycle when any future changes will be most relevant; and (3)
quantify the relative contribution from future climate conditions and
model parametrisation to the total uncertainty in these predictions. We
capture and summarise the modelling outputs in a way that would be
usable by catchment and source water managers. Lastly, we discuss how
these results could assist the drinking water sector.

2. Materials and methods

2.1. Study sites

The Glenamong and Vattholma catchments are located in western
Ireland (53◦ 57′ N, 9◦ 35′ W) and southeastern Sweden (60◦ 10′ N, 17◦ 50′
E), respectively (Fig. 1). Both catchments export relatively large quan-
tities of carbon from terrestrial stores to downstream lakes (Ryder et al.,
2014; Doyle et al., 2021; Lindqvist, 2022), reflecting their peatland and
forest dominated land covers (Coordination of Information on the
Environment—CORINE—classification) (Büttner et al., 2017) (Table 1).
The Glenamong River is one of the two main inflows to Lough Feeagh
and Vattholma flows into Lake Mälaren, the drinking water source for
two million people, including the city of Stockholm. While the Glena-
mong and Feeagh are not used as a source of potable water, they are
intensively monitored sites that are representative of similar rivers and
small lakes used as drinking water supplies in the region.

The study sites have contrasting characteristics. The Glenamong is
small (18 km2) and unpopulated, characterised by a relatively high
variability in daily river discharge due to high precipitation levels and a
steep landscape (Doyle et al., 2019; Jennings et al., 2020). Vattholma, in
contrast, hosts several communities in a much larger area (261 km2) and
features more gradual variations in daily discharge reflecting a much
flatter terrain, longer river network, lower precipitation levels and
cooler air temperatures. Vattholma is also drier than Glenamong, only
registering measurable rainfall on 37 % of days within a calendar year
versus 84 % at the Irish site. While the average DOC concentration
recorded at Vattholma is over twice that of the Glenamong, the annual
DOC flux on an areal basis is four times lower for the Swedish site due to
its much larger basin area (Fig. 1; Table 1).

2.1.1. Data availability
Observed climate data for Vattholma were obtained from the Euro-

pean Climate Assessment & Dataset E-OBS repository (0.1◦grid, www.
ecad.eu). Daily discharge data at the river outlet (1980–2022) were
obtained from the Swedish Meteorological and Hydrological Institute
monitoring services (www.smhi.se). Monthly measurements of total
organic carbon (TOC) (mg TOC L− 1) concentrations at the outlet
(1991–2022) were obtained from the Swedish Agricultural University
monitoring services (www.slu.se) and were used as a direct proxy for
DOC (mg DOC L− 1) in line with previous studies for this and other
Swedish catchments (e.g., Ledesma et al., 2012; Lindqvist, 2022); TOC =

0.95 DOC + 1.4, r2 = 0.93, n = 47. In Glenamong, climate observations
from local meteorological stations and daily river discharge data (2013
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to 2023) were obtained from the Marine Institute monitoring services
(https://www.marine.ie). Weekly water colour measurements
(expressed as mg PtCo L− 1) were also available (2016–2023), based on
absorption measurements performed with a HACH Dr 2000 spectro-
photometer at 455 nm (wavelength accuracy of ±2 nm) on water
filtered through Whatman GF/C filters (1.2 µm pore size). These were
used as a proxy for DOC (Doyle et al., 2019), converted via a linear
regression relationship with DOC laboratory measurements (samples
filtered through 0.45 µm pore size); DOC = 0.067 water colour + 2.69, r2

= 0.88, n = 551. Observed daily DOC fluxes (kg C km− 2 day− 1) for both
sites were computed as the product of DOC concentrations and mean

daily measured discharge and normalised to the watershed area.

2.2. The model

The Generalised Watershed Loading Functions Model (GWLF) is a
lumped parameter hydrological and water quality model introduced by
Haith and Shoemaker (1987). It simulates water balance, water partition
among the different flow pathways, sediment loading and nutrient
export in a daily time step. The model input requirements include daily
time series of precipitation and air temperature as well as land cover,
land use, and soil characterisation. In this study, we used the GLWF
version developed by the New York City Department of Environmental
Protection (NYC DEP) (Schneiderman et al., 2002) that was further
developed (Naden et al., 2010; Schneiderman et al., 2010) to include a
process-based module for DOC. This model has been previously applied
to several catchments to quantify changes in DOC export, including in
the Lough Feeagh and Mälaren catchments (Naden et al., 2010;
Lindqvist, 2022). Three changes were made to the model configuration
in the current study, with the aim of improving DOC simulation capacity
and better reflect DOC dynamics. These changes did not increase model
complexity and do not require additional input data. Below, we describe
key features of the base model and the changes we have implemented.

2.2.1. Hydrology module
GWLF simulates discharge from both surface runoff and from sub-

surface baseflow based on interactions between climate and the catch-
ment land cover characteristics. Surface runoff is calculated using the
USDA SCS curve number method (Boughton, 1989), and varies as a
function of land uses and soil characteristics. In the current study, curve
numbers associated with watershed CORINE land use areas were
extracted from the GCN 250 dataset (Jaafar et al., 2019) and a value was
calculated for each land cover area based as an area-weighted mean.
Baseflow is calculated as a lumped contribution from the entire water-
shed as both slow- and fast-moving groundwater flows (see Schneider-
man et al., 2010) from three subsurface lumped reservoirs (i.e., averaged
over the whole catchment): (1) the unsaturated zone (subjected to
evapotranspiration), (2) a saturated zone (not subjected to

Fig. 1. Location of the study catchments including river network and topographic elevation.

Table 1
Main characteristics of the study catchments. Units for altitude are meters above
sea level (m.a.s.l.).

Catchment Glenamong (IE) Vattholma (SE)

Area (km2) 18 261
Altitude range (m.a.s.l.) 8–710 5–83
Main soil type Blanket peat Silty clay
Land cover
Peatland 69 % 5 %
Agriculture 0 % 17 %
Grassland 4 % 15 %
Urban 0 % 2 %
Forest 26 % 58 %
Watercourse 1 % 3 %
Climate and hydrology 2013–2023 1980–2022
Mean air temperature (◦C) 10.8 6.0
Annual precipitation range (mm yr− 1) 1660–2570 460–875
Mean annual precipitation (mm yr− 1) 2050 610
Main watercourse length (km) 4.8 39.1
Median river discharge (m3 s− 1) 0.4 1.1
Mean river discharge (m3 s− 1) 0.8 1.7
Q5 river discharge (m3 s− 1) 2.8 5.3
DOC 2016–2023 1992–2022
DOC concentration range (mg L− 1) 2.8–18.0 8.2–36.9
Mean DOC concentration (mg L− 1) 8.7 19.6
Mean annual DOC flux (tC km− 2 yr− 1) 16.2 4.0
Mean monthly DOC flux (tC km− 2 month− 1) 1.4 0.3
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evapotranspiration), and (3) a deep saturated zone with sustained low
flow discharge. Evapotranspiration is calculated within the model using
the Hamon temperature index equation as default (Hamon, 1961). The
original hydrology model included seven adjustable parameters to
regulate the different hydrological states: (1) precipitation correction
factor, (2) melt coefficient, (3) runoff curve number adjustment, (4) soil
water capacity, (5) recess coefficient, (6) slow recess coefficient and (7)
baseflow capacity (Schneiderman et al., 2010). We incorporated one
additional parameter: (8) a river channel flow coefficient (change 1). The
latter partitions surface runoff into two separate pathways: a direct
runoff pathway and a river channel stored discharge pathway. With this,
we aimed to represent better the timing of water flow and DOC in basins
of large size and/or regulated river networks, in which water (and the
DOC contained therein) is stored in the channel at times exceeding the
daily time step. This stored water was subjected to evapotranspiration. A
description of the model parameters for hydrology and a conceptual
diagram depicting change 1 in the model structure can be found in Supp.
Mat. A1.

2.2.2. DOC module
GWLF follows a two-phase process for simulating DOC concentra-

tions at the catchment outlet: (1) DOC production and (2) DOC washout.
DOC production is regulated by two processes: temperature-dependent
decomposition (DT) and moisture-dependent decomposition (DS) of
soil organic matter. In the model described by Naden et al. (2010), three
adjustable parameters controlled production: (1) activation energy (Ea)
and (2) anaerobic decomposition rate (a) controlled DT , while (3) the
aerobic decomposition rate (b) controlled DS. Here, we assigned an inde-
pendent DT for surface land covers we defined as wetland areas (e.g.,
peatlands, inland marshes) for which a new separate (4) anaerobic
decomposition rate (aw) only was used (change 2). The aim was to ac-
count for the difference in DOC production between areas that would be
subject to continual fluctuations in water level and areas which would
remain water-logged, and therefore not be subjected to the same
decomposition rates (Mozafari et al., 2023; Arsenault et al., 2024).
Furthermore, the calculation of DS is based on simulated soil water
storage which is a basin lumped variable and which would not be
representative of the conditions in water-logged areas. A description of
the parameters for DOC production and a conceptual diagram depicting
change 2 in the model structure can be found in Supp. Mat. A2.

The DOC produced in the original model was stored in a single car-
bon catchment pool and made available for washout via all runoff and
groundwater flows, regulated by three parameters (Naden et al., 2010).
Here, instead of using a single pool, we defined pools that mirrored the
main hydrological stores (i.e., the surface soils of the catchment, the
unsaturated zone, and the deeper saturated zones), and accounting for
the available carbon resulting from wetlands production as well. With
this change, we aimed to track more closely how the different hydro-
logical states drive DOC production and transport in the model. Four
main pools were defined as lumped carbon reservoirs (change 3): (1)
DOC produced by surface wetland-like areas, (2) DOC produced by
DOC-producing surface areas that are not wetlands (see Naden et al.,
2010), (3) DOC produced in the catchment unsaturated zone, and (4)
DOC produced in the catchment saturated zones. Consistent with the
model hydrology, DOC from surface pools 1 and 2 is available for
washout via runoff flows (direct runoff and channel stored discharge),
while DOC from pools 3 and 4 is available for washout via baseflow
(slow- and fast- moving groundwater flows). As a result, the number of
parameters to regulate the DOC transport increased from three to five:
(1) surface carbon loss coefficient, (2) surface flow cap, (3) baseflow ratio,
(4) fast groundwater flow carbon loss coefficient and (5) slow groundwater
flow carbon loss coefficient (see Supp. Mat. A3 for more details).
Streamflow DOC concentrations and fluxes were calculated as in the
original model, from the sum of all DOC contributions (kg C day− 1) and
using the total discharge (m3 day− 1) (Naden et al., 2010).

2.3. Model calibration

For calibration of the hydrology, the measured discharge datasets
were divided into two periods. The first was used for calibration and the
second for validation: Vattholma (1980–2011, 2012–2022) and Glena-
mong (2013–2018, 2019–2023). For DOC, due to lower data availabil-
ity, a single period was used for calibration only: Vattholma
(1992–2022) and Glenamong (2016–2023). Model performance was
evaluated based on the Nash-Sutcliffe coefficient (NSE) and the coeffi-
cient of determination (r2) (Krause et al., 2005) between daily measured
and simulated discharge, DOC concentration and DOC flux.

We adopted multistep script-based calibrations to adjust the model
parameters. In line with Schneiderman et al. (2010) and Naden et al.
(2010), on each calibration step, target functions were defined and the
Powell search-optimisation method (Zhong and Cai, 2015) within
VENSIM software (Ventana Systems Inc.) was used to calibrate param-
eters between pre-determined ranges. The range limits were set based on
previous modelling studies and relevant literature (e.g., Evans et al.,
2006; Karhu et al., 2010; Naden et al., 2010; Klimek et al., 2020;
Lindqvist, 2022). The target functions for hydrology included checks for
daily water balance and payoffs between simulated and measured
discharge, runoff and baseflow (measured runoff and baseflow based on
the Arnold et al. (1995) hydrograph separation method; see Schnei-
derman et al., 2010). For DOC, a payoff between daily measured and
simulated DOC concentration was used as the target function on each
step. Model spin-up periods of four and two years were used for Vat-
tholma and Glenamong, respectively. Details on the range for each
parameter, optimisation target functions, and a summary description of
the calibration scripts can be found in Supp. Mat. A4.

2.4. Model uncertainty and sensitivity

We employed the Generalised Likelihood Uncertainty Estimation
(GLUE) method (Beven and Binley, 1992, 2014) to quantify model
parameter uncertainty. GLUE allows the exploration of parameter un-
certainty by sampling from the parameter space and evaluating model
performance against observed data. First, a Monte Carlo simulation
round (30,000 model runs) was performed for each catchment, varying
the parameters within calibration ranges. Second, an NSE threshold of
0.60 was defined for hydrology (simulated vs measured discharge) and
of 0.30 for DOC (simulated vs measured DOC concentration) respec-
tively, as a likelihood measure to constrain parameter variability space
(i.e., to further constrain the parameter ranges so that more simulations
with an acceptable NSE value above the selected thresholds are output)
(Pianosi et al., 2016). A second simulation round (30,000 runs) was then
performed using these constrained ranges. From all parameter sets
above the likelihood measure thresholds (i.e., behavioural parameter
sets), the 100 best-performing sets were used to compute 5 % to 95 %
range GLUE uncertainty bounds (Beven, 2009). Model equifinality (i.e.,
how sensitive the model is to different parameter sets that produce
acceptable simulations of observed behaviour) (Beven and Freer, 2001)
was assessed individually for hydrology and DOC, relative to the
selected likelihood measure (i.e., the NSE metric) and using all behav-
ioural parameter sets.

2.5. Future projections

Future climate projections for the meteorological input variables
were derived from the 5-member GCM ensemble provided by the open-
access Inter-Sectoral Impact Model Intercomparison Project (0.5◦ ISIMIP
3b simulation round; data.isimip.org) (Lange and Büchner, 2021).
Grid-cell daily values of future precipitation and mean air temperature
from 2021 to 2100 were extracted for each study catchment for three
Shared Socioeconomic Pathways (SSP): SSP126, SSP370 and SSP585.
These represent three different futures of greenhouse gas (GHG) emis-
sion levels, societal development, and adaptation to climate change
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(IPCC, 2023). Ranging from a more to a less optimistic scenario, SSP126
reflects rapid efforts to mitigate GHG emissions while promoting envi-
ronmental and economic sustainability, SSP370 adopts intermediate
efforts for both adaptation and mitigation, and SSP585 assumes
increasing trends in fossil-fuelled development i.e., a high level of
human-induced global warming. In addition, a 30-year baseline period
from 1985 to 2014 was defined, for which daily input data for each
catchment were extracted from the historical period of the same ISI-
MIP3b GCMs. All ISIMIP3b data have been subject to robust statistical
downscaling and bias adjustment (see Supp. Mat. A5 for more details).

2.5.1. Data processing and analysis
For each scenario simulation (baseline, SSP126, SSP370 and

SSP585), one meteorological dataset for each GCM was used to drive
GWLF-DOC for each of the 100 top behavioural parameter sets (see
Section 2.4) so that the uncertainty associated with the different GCMs
and that associated with model parameters were estimated. A daily,
monthly, and annual ensemble mean of the resulting 500 simulations for
each scenario (5 GCMs x 100 behavioural parameter sets) was calculated
for each SSP scenario. The model outputs for the SSPs were collated for
two decadal periods: 2050–2059 (P1) and 2090–2099 (P2), which were
used to compare against outputs for the baseline period. Furthermore,
we computed future anomalies at the annual scale (Du and Deng, 2022)
from 2030 to 2100 for discharge and DOC concentration between each
future scenario and the baseline. The uncertainty in the predictions was
calculated as the standard deviation of the ensemble. We also displayed
the likelihood that each scenario would exceed 95th percentile baseline
levels for DOC concentration and flux (as metrics of current extreme
conditions) in future meteorological seasons. Seasonal analyses were
based on the typical three-month periods relevant for management:
spring (March to May), summer (June to August), autumn (September to

November) and winter (December to February). Lastly, the relative
contribution of (1) future climate input data and (2) model parameter-
isation to the total uncertainty in predictions was assessed based on a
variance partitioning procedure (Watling et al., 2015; Lofton et al.,
2022). For this, the model was run with all five GCMs but using only the
calibrated set of model parameters (see Section 2.3). Then, it was run
using all 100 best-performing model parameter sets with each GCM
dataset. A normalised difference of the variances in the simulation re-
sults was then computed to estimate individual relative uncertainty
contributions (Lofton et al., 2022). The same calculations were followed
for each of the two catchments.

3. Results

3.1. Model performance and uncertainty

The results from the optimisation procedure for catchment hydrol-
ogy indicated a good fit at both sites. The NSE values for average
monthly and daily discharge based on the best optimised simulation
ranged from 0.73 to 0.79 for Vattholma, and from 0.60 to 0.78 for
Glenamong (Figs. 2a and B1a). Similarly, r2 values ranged from 0.76 to
0.80 for Vattholma, and from 0.60 to 0.78 for Glenamong (Figs. 2b and
B1b). For DOC, the metrics for the best optimised simulation were
higher for DOC fluxes than for DOC concentrations at both sites. For
Vattholma, the NSE and r2 values for the daily DOC flux were 0.73 and
0.74 respectively, while those for daily DOC concentration were 0.39
and 0.39 (Fig. 3a and c). For Glenamong, the NSE and r2 values for daily
DOC flux were 0.60 and 0.62, while those for daily DOC concentration
were 0.45 and 0.47 respectively (Fig. 3b and d). Simulated DOC flux for
each study site reflected site-specific dynamics and intra-annual varia-
tions (Fig. B2a and b). Baseflow was a major contributor to both

Fig. 2. Observed and simulated monthly river discharge for Vattholma (a) and Glenamong (b) catchments during model calibration and validation. NSE and r2 values
are indicated for the calibrated parameter set (best optimised simulation). The grey area denotes the 5–95 % range GLUE uncertainty bounds for river discharge
based on the 100 best-performing parameter sets.
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discharge (Fig. B2c–f) and carbon export in Vattholma, while there was a
more balanced ratio between baseflow and surface runoff for
Glenamong.

The set of calibrated model parameters obtained for the best opti-
misation run reflected the differences between the study sites
(Table B1). Except for the precipitation correction factor and soil water
capacity, the optimised values for the hydrological parameters were
generally higher for Glenamong than for Vattholma, particularly the
river channel flow coefficient. For DOC production, the optimisation
resulted in a higher activation energy (Ea = 6.4) and aerobic decom-
position rate (b = 7.4) for Vattholma, indicating a greater sensitivity to
changes in soil temperature and moisture levels at this site than for
Glenamong (Ea = 3.0 and b = 1.0). In contrast, the values for both
anaerobic decomposition rates were an order of magnitude greater at
the Glenamong, reflecting the importance of saturation of the deep Irish
peat soils. In terms of DOC transport, the optimised values for the Gle-
namong reflected a larger contribution of surface runoff at that site, with
higher values for the runoff carbon loss coefficient and surface flow cap
than for Vattholma. Subsurface carbon transport through fast ground-
water flow was favoured over slow groundwater flow at both sites, with
both optimisations also indicating relatively low groundwater carbon
loss coefficients.

The GLUE uncertainty bounds captured a similar level of variation in
measured discharge and DOC concentration to that captured by the
optimisation process, but allowed for a range of parameter values rather
than a single optimised set (Table B1). For discharge, 73 % and 60 % of
the measured monthly observations and 65 % and 50 % of the daily
observations were captured by the uncertainty bounds for Vattholma
(Figs. 2a and B1a) and Glenamong (Figs. 2b and B1b) respectively, while
the values for DOC concentration were 45 % and 38 % (Fig. 3c and d).
Furthermore, sensitivity plots showed that the DOC model was typically
more sensitive to parameter variation than the hydrology model
(Figs. B3–B6). Discharge was sensitive to the value of the precipitation
correction factor for both sites, and insensitive to the value used for
baseflow capacity and soil water capacity (i.e., acceptable model per-
formance occurred over the entire parameter range). Parameters related
to flow attenuation (recess coefficient, slow recess coefficient and melt
coefficient) were sensitive only at Vattholma. In contrast, parameters
more related to catchment surface water retention (runoff curve number

adjustment and river channel flow coefficient) were more sensitive for
Glenamong. Parameters related to DOC production were sensitive for
both catchments except for activation energy at Vattholma, where a
wide range of values produced an equally good fit. Similarly, parameters
related to DOC transport were sensitive at both sites, although the sur-
face flow cap displayed less sensitivity (i.e., acceptable performance
over a large extent of its parameter range).

3.2. Future climate impacts

The GCM ensemble for all three future SSP scenarios projected
changes in climatic conditions for each site relative to their baseline
periods (Table 2; Fig. 4a–d) (Tables B2–B13 show conditions projected
by each GCM ensemble member). Large air temperature increases were
projected for Vattholma, ranging from +1.5 ◦C (+24 %; SSP126) to +6.0
◦C (+95 %; SSP585) across the scenarios. However, SSP126, the sce-
nario that incorporates some mitigation effects, was the only scenario
for which temperature first increased in P1 (2050–2059) (+2.1 ◦C; +33
%) and then decreased in P2 (2090–2099) (+1.5 ◦C; +24 %). For the
Glenamong, there was only a slight increase in air temperature for
projections based on SSP126 in both P1 (+0.4 ◦C; +4 %) and P2 (+0.2
◦C; +2 %). In contrast, the ensemble mean for SSP370 and SSP585
indicated much warmer conditions during both P1 (up to +12 %) and P2
(up to +33 %). Under SSP585, it was of note that, although similar
annual air temperatures were projected for both sites in the final decade
of the century (Vattholma: 12.3 ◦C; Glenamong: 12.2 ◦C), this repre-
sented a more extreme increase at the Swedish site (+6.0 ◦C; +95 %)
than at the Irish site (+3.0 ◦C; +33 %).

Annual precipitation was also projected to increase in Vattholma
under all scenarios during both P1 and P2 (Table 2). However, the in-
creases were, in relative terms, less extreme than those for temperature.
They ranged by up to +10 % in P1 and +15 % in P2. The largest increase
in that latter period was actually projected for SSP370 (+108 mm yr− 1).
Smaller relative increases in annual precipitation were projected for
Glenamong, up to +2 % in P1 and +8 % in P2. In fact, for Glenamong,
where annual precipitation was already over twice that at Vattholma for
the baseline period (1710 mm yr− 1 versus 712 mm yr− 1, respectively),
all projections were similar to the baseline with the exception for
SSP585 in P2 (+136 mm yr− 1). There was, however, a pronounced

Fig. 3. Observed and simulated daily DOC flux and DOC concentrations for Vattholma (a and c) and Glenamong (b and d) catchments during model calibration. NSE
and r2 values are indicated for the calibrated parameter set (best optimised simulation). The grey area denotes the 5–95 % range GLUE uncertainty bounds for DOC
flux and DOC concentrations based on the 100 best-performing parameter sets.
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seasonal shift in precipitation at the Irish site, with generally drier
conditions than the baseline period between April and September, and
wetter conditions between October and March (Fig. 4a and b). At Vat-
tholma, future precipitation was clearly elevated in the autumn and
winter from October to March, but the direction of change projected by
the different CGMs varied in other months. The variability in future
climate, indicated by the standard deviation, increased by the end of the
century at both sites and was highest under SSP585 (Table 2).

The future changes in evapotranspiration reflected the changes in
both air temperature and precipitation (Fig. 4e and f). In general, higher
monthly actual evapotranspiration was projected from October to May
at both sites, followed by decreases from June to September, although

the changes were greater at Vattholma.

3.3. Future change in discharge

There were pronounced changes in seasonal discharge patterns,
especially for Vattholma during the first six calendar months (Fig. 5a).
Most noticeable was that, except for SSP126 in P1, the peak month for
discharge shifted to earlier in the year, with increased discharge from
January to March particularly in P2 (+63 %; SSP585). These increases
were followed by decreases in discharge from April to June under all
three scenarios, with the lowest levels in P2 as well (up to − 38 %;
SSP585). There was a slight upward shift in daily discharge magnitudes

Fig. 4. ISIMIP3b GCM-ensemble average monthly precipitation (a and b), ISIMIP3b GCM-ensemble mean air temperature (c and d), average modelled monthly
actual evapotranspiration (e and f), average modelled unsaturated zone deficit (g and h) and average modelled soil temperature (i and j) for the baseline period and
for the SSP126, SS370 and SSP585 scenarios during P1 and P2. Note the different scaling in panels a and b. Vattholma: a, c, e, g, i; Glenamong: b, d, f, h, j.
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for SSP126 during the last decade of the century, while values for
SSP370 and SSP585 were similar to those during P1 but with more
variability (Fig. 5b). In the Glenamong, the projections indicated that
discharge would be relatively unchanged under SSP126 (Fig. 5d). In
contrast to the Swedish site, it was projected to decrease from April to
September followed by increased levels from October to March under
SSP370 and SSP585. The decreases were greatest for July in P1 (up to
− 25 %; SSP370) and the largest increases in discharge were for January
in P2 (up to +30 %; SSP585). There was little change in the magnitude of
discharge at the daily timescale for the Glenamong in both P1 and P2
under all three scenarios, although SSP585 had a greater range of values
(Fig. 5e).

Ensemble mean annual discharge anomalies for Vattholma some-
times contrasted between future scenarios, but were all similar in
magnitude: up to ±1.1 m3 s− 1 under SSP126, up to ±1.3 m3 s− 1 under
SSP370, and up to ±1.1 m3 s− 1 under SSP585 relative to a baseline
average of 2.4 m3 s− 1 (Fig. 5c). For Glenamong, discharge anomalies
were lower in magnitude than for the Swedish site but greatest for
SSP585 (up to ±0.2 m3 s− 1) than for SSP126 and SSP370 (up to ±0.1 m3

s− 1) relative to a baseline average of 0.6 m3 s− 1 (Fig. 5f). At each of the
study sites, all three future projections displayed a similar uncertainty
range throughout the simulation, which slightly increased towards the
end of the century (Fig. 5c and f).

3.4. Future change in DOC concentrations and flux

The variables that drive carbon decomposition in the model also
showed large changes in the future, with increases projected in soil
temperatures (reflecting higher air temperature), and a drier soil matrix
in summer (reflecting both increases in evapotranspiration and lower
precipitation in summer) (Fig. 4g–j). Conditions that would be expected
to increase decomposition and ultimately stream DOC concentration.

The simulations indicated that DOC concentrations would increase
for Vattholma throughout the calendar year under all three SSPs
(Fig. 6a). In P1, these increases ranged from +4 mg L− 1 (SSP370) to +6
mg L− 1 (SSP585) (baseline average of 13.7 mg L− 1). In P2, even larger
increases were projected, particularly for SSP370 and SSP585,
exceeding baseline levels by up to +9 mg L− 1. However, it is of note that
the increases projected for SSP126 were lower in P2 (up to +3 mg L− 1)
than those for all scenarios in P1. A clear general upward shift in the
magnitude and minimum DOC concentration was indicated for all three
scenarios (Fig. 6b). Again, the levels projected using SSP126 were closer
to the baseline by the end of the century. DOC variability was also
projected to increase, especially in P2 under SSP370 and SSP585.
Ensemble mean annual DOC concentration anomalies for Vattholma
were always positive, that is they were always higher than the historical
baseline, in the order of ≃ +3, +4 and +5 mg L− 1 for SSP126, SSP370
and SSP585, respectively (Fig. 6c). The anomalies continued to increase
until the end of the century under both SSP370 and SSP585, while those
for SSP126 decreased after 2060. The output for SSP126 also had the

lowest uncertainty range, while that for SSP585 was the largest,
particularly during P2, projecting futures with extremely high annual
DOC concentrations of up to +13 mg L− 1 above the baseline mean.

DOC concentrations were also projected to increase for Glenamong
in all months under all three SSPs (Fig. 6d). The lowest increases were
for SSP126, and were similar in P1 and in P2 (≃ +1 mg L− 1) (baseline
average of 9.2 mg L− 1). The concentrations projected under SSP370 and
SSP585 were larger, particularly from July to November in P2,
exceeding baseline levels by ≃ +4 mg L− 1. A small upward shift in the
magnitudes and variability of DOC concentrations relative to the base-
line was projected in P1 under all three scenarios (Fig. 6e). In P2, the
magnitude and variability increased more under SSP370 and SSP585
but, as with Vattholma, decreased under SSP126. Ensemble mean
annual DOC concentration anomalies were also consistently positive for
Glenamong in the order of ≃ +0.6, +1.0 and +1.3 mg L− 1 for SSP126,
SSP370 and SSP585, respectively (Fig. 6f). The anomalies increased over
time under SSP370 and SSP585, while SSP126 anomalies decreased
after 2070. Uncertainty increased with time under all three scenarios,
with SSP126 displaying the narrowest range. SSP585 projections were
the most uncertain, with anomalies of up to +5 mg L− 1 over the last
decade.

The probabilities of exceeding the 95th percentile baseline DOC
concentration level (a metric of current extreme conditions) were much
higher for Vattholma during each season than for Glenamong under all
three future climate scenarios (Fig. 7). In line with other results, extreme
DOC concentrations for Vattholma were lowest for SSP126 than for the
other two scenarios, and therefore the probabilities of exceeding the
historical 95th percentile threshold concentration of 15 mg L− 1 were
also lower across seasons (Fig. 7a). In particular, increases in the like-
lihood of occurrence for extreme concentrations were projected for all
seasons under SSP370 and SSP585, while spring and winter were the
most affected under SSP126. For Glenamong, in contrast, the probability
of exceeding the baseline 95th percentile DOC concentration threshold
of 13 mg L− 1 were zero during the spring and winter under all three
scenarios (Fig. 7b). However, there was an increased probability for
exceeding this threshold in the summer and even higher probability of
exceedance for the autumn under all three scenarios but higher under
SSP370 and SSP585.

Furthermore, extreme DOC concentrations for Vattholma were pro-
jected to be accompanied by an increasing likeliness of extreme DOC
flux in spring and winter under all three scenarios, while the summer
and autumn were not affected (Fig. B7a). For Glenamong, the likelihood
of occurrence for extreme DOC flux was virtually zero across seasons
under all three SSPs (Fig. B7b).

3.5. Uncertainty partitioning

In all projections for both river discharge and DOC concentration, the
uncertainty (indicated by the standard deviation) typically increased
with time and the relative contribution of the future climate driving data

Table 2
ISIMIP3b GCM ensemble-mean future annual precipitation and mean air temperature values for the historical period (baseline) and for the SSP126, SSP370 and
SSP585 scenarios during P1 (2050–2060) and P2 (2090–2100), for each study catchment. The standard deviation is indicated in parentheses.

Vattholma (SE) Glenamong (IE)

Period Mean air temperature (◦C) Precipitation (mm yr− 1) Mean air temperature (◦C) Precipitation (mm yr− 1)

Baseline (1985–2014) 6.3 (±1.1) 712 (±100) 9.2 (±0.5) 1710 (±171)
SSP 126
P1 (2050–2059) 8.4 (±1.0) 730 (±116) 9.6 (±0.7) 1728 (±162)
P2 (2090–2099) 7.8 (±1.6) 764 (±142) 9.4 (±1.2) 1715 (±182)
SSP 370
P1 (2050–2059) 9.1 (±1.3) 782 (±116) 10.2 (±0.7) 1749 (±204)
P2 (2090–2099) 11.3 (±2.2) 820 (±136) 11.4 (±1.6) 1763 (±184)
SSP 585
P1 (2050–2059) 9.3 (±1.4) 764 (±109) 10.3 (±0.9) 1737 (±227)
P2 (2090–2099) 12.3 (±2.5) 812 (±145) 12.2 (±1.9) 1846 (±224)
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Fig. 5. Average calendar month discharge (a and d); boxplot distributions of average daily discharge for the baseline period, and for the SSP126, SS370 and SSP585
scenarios during P1 and P2 (b and e); annual anomalies for discharge under SSP126, SS370 and SSP585 scenarios from 2030 to 2100 (c and f). Uncertainty in the
discharge anomaly panels is indicated by the standard deviation (±SD) and delimited by SSP126, SS370 and SSP585 legend colour dotted lines respectively. Vat-
tholma: a, b, c; Glenamong: d, e, f.

R. Paíz et al. Water Research 276 (2025) 123238 

9 



Fig. 6. Average calendar month DOC concentration (a and d); boxplot distributions of average daily DOC concentrations for the baseline period, and for the SSP126,
SS370 and SSP585 scenarios during P1 and P2 (b and e); annual anomalies for DOC concentration under SSP126, SS370 and SSP585 scenarios from 2030 to 2100 (c
and f). Uncertainty in the DOC concentration anomaly panels is indicated by the standard deviation (±SD) and delimited by SSP126, SS370 and SSP585 legend colour
dotted lines respectively. Vattholma: a, b, c; Glenamong: d, e, f.
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(i.e., for the five GCMs) to total uncertainty was generally much larger
than the contribution of model parameterisation (i.e., for the 100
behavioural parameter sets) (Figs. 8 and B8). Variation between GCMs
made the greatest contributions (up to 85 %) to total uncertainty for all
discharge simulations, although the hydrological model parameters
accounted for a greater percentage of variation in simulation for Vat-
tholma than for Glenamong (Fig. B8). For DOC concentrations, future
climate data were also the most important source of uncertainty, but of
note were the higher contributions from the DOC model parameters for
the Swedish site (Fig. 8). These were relatively large, particularly under
SSP370 and SSP585, and at times contributed up to 50 %. In contrast,
the DOC model parameters contributed much less to the uncertainty in
DOC projections for the Glenamong, especially under SSP585.

4. Discussion

Implementing adaptive management in response to the impacts of
global warming is becoming more and more critical as records of

climatic extremes continue to be exceeded (Ripple et al., 2023; Esper
et al., 2024). These changes are having profound impacts on water
quantity and quality (van Vliet et al., 2023), including on the DOC
concentration in drinking source waters and therefore potentially on the
formation of DBPs (Absalan et al., 2024). In order to respond and adapt,
water managers require robust estimates of future change from the
modelling community. Our projections for two contrasting catchments,
in regions were DBP formation is already an issue, show that DOC
concentrations are projected to show large increases, with the highest
levels related to scenarios where mitigation is not addressed. They also
highlight the importance of incorporating model parameter uncertainty
into the future projections, a source of uncertainty that is often omitted.
This is especially important for model parameters such as those related
to carbon decomposition and transport in organic soils, that will respond
directly to variations in temperature and water availability.

Our results relative to many recent studies (e.g., Futter et al., 2011;
Son et al., 2019; Xu et al., 2020) have a similarly good or better model
performance, especially for modelling DOC concentration. The future

Fig. 7. Tercile plots displaying the probability of exceeding the 95th percentile baseline DOC concentration (mg L− 1) for each typical meteorological season (spring,
summer, autumn and winter) in the future (every 5 years) under SSP126, SSP370 and SSP585 scenarios for Vattholma (a) and Glenamong (b). The shading of each
square represents the probability of exceedance based on the categorised colour bar legend. The ensemble size was comprised of 500 members for each scenario.
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changes quantified for river discharge and DOC concentration in this
study also lie in a similar order of magnitude to those projected in other
research for these sites (e.g., Naden et al., 2010; Lindqvist, 2022). That
is, discharge projections indicate both decreasing and increasing levels
under different scenarios depending on the time scale, season and
context. In terms of DOC, the overall picture is for an increase in con-
centration and flux with different magnitudes depending on the study
site and scenario. It is important to be aware, however, that these results
should not be compared directly to the work of others without
acknowledging the differences in modelling approach. These include
changes in model structure, driver data type (e.g., stationary projections
compared to transient GCM-driven projections), future scenario condi-
tions, and the examination here of effects related to model
parameterisation.

Although accounting for model parameterisation can result in sim-
ulations with larger uncertainty (Schürz et al., 2019), this is generally
outweighed by producing a more accurate range of variability for the
modelled variables (Her et al., 2019b; Marshall et al., 2021). Further-
more, by partitioning the total uncertainty of the predictions, we have
quantified the impacts of this parameterisation on long-term projections
for river discharge and DOC concentration (Figs. 8 and B8). While the
GCM ensemble was the dominant source of uncertainty, a finding in line
with many other climate change impact assessments (Hattermann et al.,
2018; Kundzewicz et al., 2018), the variability in DOC model parame-
terisation was also important for some of our simulations. This was the
case for the Vattholma catchment in Sweden under all three SSPs. An
important contributing factor to this was that the behavioural ranges of
key soil decomposition parameters (i.e., activation energy (Ea) and
aerobic decomposition rate (b)) were higher in magnitude for this site
than for the Irish site. This led to the parameters showing larger

responses to increasing temperatures and changes in soil moisture levels
in the Swedish catchment, and in turn to larger uncertainty contribu-
tions, particularly under SSP370 and SSP585. This also led to such large
increases projected for DOC concentration at that site under these two
scenarios (see Fig. 6a), as the response of these parameters likely
translated to a higher amount of DOC produced in the soil matrix and,
therefore, to a higher DOC export.

Determining the relative importance of model parameterisation
versus future climate inputs can inform efforts to reduce total uncer-
tainty in such projections. In GCM-driven projections for water re-
sources, improving the quality of climate data, increasing GCM
ensemble size, and better spatial and temporal input resolution are often
indicated as the most effective steps (Hattermann et al., 2018; Kund-
zewicz et al., 2018; Her et al., 2019b). However, when model parameter
uncertainty plays an important role, improving catchment model
structure and parameter representation for both hydrology and water
quality should also be evaluated (Schürz et al., 2019; Marshall et al.,
2021). Using as an example the model structure of GWLF-DOC, these
actions could be focused on the parameters that showed the greatest
sensitivity (see Section 3.1).

Moreover, although other potential sources of uncertainty were not
included (e.g., methods for bias correction, use of an ensemble of
catchment models, land use change projections, and input data down-
scaling), this study represents a step forward in catchment DOC water
quality modelling. By incorporating model parameter uncertainty, all of
our results including those representing the likelihood of extreme DOC
concentration and DOC flux account, to a large extent, for model equi-
finality. This key aspect is required for a better interpretation of the
results (Naden et al., 2010), especially of DOC model outputs that were
produced using a model structure forced by hydrology (Wei et al., 2024).

Fig. 8. Relative contribution of (1) future climate input data and (2) model parameterisation as individual sources of uncertainty to the total uncertainty in future
projections of DOC concentration under SSP126, SSP370 and SSP585 scenarios for Vattholma (a, c, and e) and Glenamong (b, d and f).
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It is to note, however, that GWLF-DOC does not replicate other factors
that influence DOC dynamics such as those related to biochemistry in
soils (e.g., pH response and microbial populations) or in-stream pro-
cesses. Nevertheless, we consider it captured the fundamental processes
related to temperature and water availability variations in the soil that
drive DOC dynamics at the catchment scale.

4.1. Implications for water management

Our simulations quantify the DOC concentration envelope within
which water managers at similar sites may need to operate in the future.
Such results could be used to evaluate scenario-based management for
preserving source water quality and supply. It was clear, however, that
the SSP126 scenario represented the best trajectory in terms of future
change, not only for climate but also for DOC source waters. Higher and
more variable concentrations, and the likelihood of extremes, were
much smaller under this scenario, especially over the long term. More-
over, a process-based modelling approach such as that described can
provide insights into how climate and other key catchment dynamics
influence DOC concentrations at the outlet. This allows the identifica-
tion of site-specific measures to reduce DOC thereby safeguard drinking
water in the context of DBPs both by catchment management or
improved water treatment.

Catchment-scale measures could include improved soil management,
riparian buffers, land use regulations, soil treatment, drain-blocking in
peatlands, and preservation of organic soils (Ritson et al., 2014; Kritz-
berg et al., 2020; Anderson et al., 2023). These could be implemented in
a targeted way for a specific hydrological zone or land cover (Xu et al.,
2018; Williamson et al., 2023). At the treatment scale, understanding
the magnitude of future increases could allow planning for mitigation
measures, for example, improved DOM removal during pretreatment
(Anderson et al., 2023) and enhanced disinfection during treatment and
post-treatment (Xiao et al., 2024). Both catchment and treatment scale
measures could be applied for a particular time of the year, for a man-
agement period (e.g., 5 years), or implemented gradually over the years
(Anderson et al., 2023; Williamson et al., 2023). They can also be con-
ducted while closely monitoring key variables at the water source intake
(e.g., meteorology, discharge, DOC) and intensified accordingly during
periods of rising DOM, such as a particular season, flow regime, or event
(e.g., a drought) (Warner and Saros, 2019; Srivastav et al., 2020; Xiao
et al., 2024).

At our Swedish site Vattholma, the elevated river discharge and DOC
loading projected in the winter and spring may pose additional chal-
lenges, along with increased DOC concentrations. Higher amounts of
carbon export would have implications downstream for Lake Mälaren
that further complicate current water treatment (Köhler et al., 2016) and
DBP reduction (Andersson, 2021) during these seasons. Moreover, our
results indicated that groundwater flow pathways play a critical role in
DOC export for this site. This finding has also been highlighted for other
Swedish sites in other modelling studies (Naden et al., 2010; Jutebring
Sterte et al., 2022). Therefore, extra attention could be paid to measures
that consider the saturated sub-surface zone, its impacts on baseflow and
the transport of DOC in the porous media including sorption-related
processes (Ploum et al., 2020).

The Glenamong (Ireland) represents catchments that face a challenge
directly associated with the sensitivity of a peatland-dominated land
cover to climate-induced DOC release (Jennings et al., 2010; Mozafari
et al., 2023). Here, the largest increases in DOC concentration, com-
bined with a lower discharge, were indicated for the summer and
autumn especially under warmer, drier scenarios. Both surface runoff
and baseflow were equally important for DOC export in this catchment,
emphasizing the role of the peaty topsoil not only for organic carbon
decomposition (Arsenault et al., 2024) but also for transport (Prijac
et al., 2023). Moreover, maximum DOC concentrations (indicated by
increases and extreme events) would have a pronounced seasonality,
peaking in the autumn (Fig. 7). This volatility, in particular, could

represent an important challenge for water treatment (Klante et al.,
2022; Riyadh and Peleato, 2024) that, along with other climate-induced
impacts on catchment dynamics (Jennings et al., 2009), can further
complicate Irish water supply in complying with European Union reg-
ulations, especially in the context of DPBs (O’Driscoll et al., 2018b).
Management steps should, therefore, evaluate not only reducing the
potential DOC increases over monthly to annual time scales but also
account for high levels of temporal variability associated with extreme
events (Jennings et al., 2020).

5. Conclusions

Our study has highlighted the dominant impacts of future climate
variability on the uncertainty in future projections of catchment
discharge and DOC dynamics. However, it also showed how model
parameterisation can be an important source of uncertainty in climate
change impact assessments. Importantly, DOC concentrations for our
study sites were projected to increase in all simulated futures, sometimes
to levels that can largely exceed the historical reference. It is of note,
however, that the smallest increases and variability were estimated
under SSP126, especially by the end of the century. This suggests, with
regard to catchment DOC export and potentially for drinking water
supply, that it might be worth adopting more long-term sustainability
actions aligned with that scenario (e.g., efforts for climate adaptation,
infrastructure development, and a reduction in GHG emissions). We
propose that the use of our site-specific findings can assist in developing
mitigation protocols and strategies that can lead to a more adaptive
catchment and water treatment management.
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Köhler, S.J., Lavonen, E., Keucken, A., Schmitt-Kopplin, P., Spanjer, T., Persson, K., 2016.
Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter
removal during surface water treatment. Water Res. 89, 232–240. https://doi.org/
10.1016/j.watres.2015.11.048.

Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., Liski, J., 2010.
Temperature sensitivity of organic matter decomposition in two boreal forest soil
profiles. Soil Biol. Biochem. 42, 72–82. https://doi.org/10.1016/j.
soilbio.2009.10.002.
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Speroterra, C., 2015. Performance metrics and variance partitioning reveal sources
of uncertainty in species distribution models. Ecol. Model. 309-310, 48–59. https://
doi.org/10.1016/j.ecolmodel.2015.03.017.

Wei, X., Hayes, D.J., Butman, D.E., Qi, J., Ricciuto, D.M., Yang, X., 2024. Modeling
exports of dissolved organic carbon from landscapes: a review of challenges and
opportunities. Environ. Res. Lett. 19, 053001. https://doi.org/10.1088/1748-9326/
ad3cf8.

Williamson, J., Evans, C., Spears, B., Pickard, A., Chapman, P.J., Feuchtmayr, H.,
Leith, F., Waldron, S., Monteith, D., 2023. Reviews and syntheses: understanding the
impacts of peatland catchment management on dissolved organic matter
concentration and treatability. Biogeosciences 20, 3751–3766. https://doi.org/
10.5194/bg-20-3751-2023.

Wit, H.A.de, Stoddard, J.L., Monteith, D.T., Sample, J.E., Austnes, K., Couture, S.,
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