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Predicting climate-change impacts on the
global glacier-fed stream microbiome

Massimo Bourquin 1 , Hannes Peter 1, Grégoire Michoud 1,
Susheel Bhanu Busi2, Tyler J. Kohler3, Andrew L. Robison 1, Mike Styllas 1,
Leïla Ezzat 4, Aileen U. Geers 1, Matthias Huss 5,6,7, Stilianos Fodelianakis 1,
The Vanishing Glaciers Field Team* & Tom J. Battin 1

The shrinkage of glaciers and the vanishing of glacier-fed streams (GFSs) are
emblematic of climate change. However, forecasts of how GFS microbiome
structure and function will change under projected climate change scenarios
are lacking. Combining 2,333 prokaryotic metagenome-assembled genomes
with climatic, glaciological, and environmental data collected by the Vanishing
Glaciers project from 164 GFSs draining Earth’s major mountain ranges, we
here predict the future of the GFS microbiome until the end of the century
under various climate change scenarios. Our model framework is rooted in a
space-for-time substitution design and leverages statistical learning approa-
ches. We predict that declining environmental selection promotes primary
production in GFSs, stimulating both bacterial biomass and biodiversity.
Concomitantly, predictions suggest that the phylogenetic structure of the GFS
microbiome will change and entire bacterial clades are at risk. Furthermore,
genomic projections reveal that microbiome functions will shift, with inten-
sified solar energy acquisition pathways, heterotrophy and algal-bacterial
interactions. Altogether, we project a ‘greener’ future of the world’s GFSs
accompanied by a loss of clades that have adapted to environmental harsh-
ness, with consequences for ecosystem functioning.

Predicting the impacts of climate change on biodiversity has become a
mainstay in ecological research1,2. Despite the intricate relationships
between microorganisms and climate, climate change microbiology is
still in its infancy,which is particularly true for forecasting responses of
entire microbiomes to climate change3. This is surprising, given the
predictive power encoded in microbiomes, which integrate past and
current environmental conditions and drive key ecosystem functions4.
Despite this, relatively few studies have predicted climate impacts on
microbiome structure and function—mostly in the ocean5,6 and soils7,8.

Today, no such study exists for stream and river microbiomes, which
contrasts their relevance for global biogeochemical cycling9 and eco-
system services10.

Glacier-fed streams (GFSs) initiate the flow of water for some of
the world’s largest river systems and provide water resources to large
human populations11, but are also most vulnerable to climate change.
The shrinking of glaciers not only threatens water availability but also
fundamentally alters the GFS environment, putting their ecological
communities at risk. Recent studies on invertebrates suggest that
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species adapted to the harsh environmental conditions of GFSs
become increasingly imperilled as glaciers disappear, and their dis-
tributions are reduced to cold-water refugia12,13. This biodiversity at
higher trophic levels is to a large extent sustainedbymicrobial biofilms
that coat the GFS streambeds and regulate key ecosystem processes,
including metabolism and nutrient cycling14. The genomic repertoire
of biofilm-dwelling microorganisms allows them to cope with the
highly selective GFS environment (e.g. near-freezing water tempera-
tures, high UV radiation, and ultra-oligotrophy), and to seize oppor-
tunities when they become available at punctuated periods of the
year15,16. Recent studies based on space-for-time substitution approa-
ches suggest that climate change-induced glacier shrinkage may sti-
mulate organic matter decomposition by microorganisms in GFSs17,18

and shift microbial energetics from chemolithoautotrophy to
heterotrophy15,17. However, predictions of how the GFS microbiome
structure and function will change under projected climate change
scenarios are still lacking.

Here, we develop a hierarchical, machine-learning-basedmodelling
framework to forecast how the structure and function of the global GFS
microbiome will change in response to climate change under different
greenhouse gas emissions scenarios (Shared Socioeconomic Pathways;
SSP19) for the years 2070–2100. We leverage 2333 bacterial
metagenome-assembled genomes (MAGs, strain-level resolution, 99%
average nucleotide identity) and 6226 KEGG orthologs, alongside gla-
ciological and environmental data, fromGFSs sampled by the Vanishing
Glaciers project across the Caucasus Mountains, the European Alps, the
Andes, Himalayas, Pamir and Tien Shan, Rwenzori Mountains, Scandi-
navian Mountains, New Zealand Southern Alps, and Southwest Green-
land (Fig. 1A). In each of the 164 GFSs, we captured the deglaciation
history since the end of the Little Ice Age period, mirroring our fore-
casting horizon (Supplementary Fig. 1). Our forecasts show how the
global GFSmicrobiome, including its biomass andbiodiversity, aswell as
structure and function will shift under future climate scenarios.

Results
Climate-induced changes in the glacier-fed stream environment
The structure and function of stream biofilms are shaped by a suite of
environmental factors (e.g. flow-induced hydraulics, temperature,
resources), which are changing predictably as glaciers shrink14. In fact,
glacier shrinkage alters flow and temperature regimes in GFSs, as well
as sediment loads, with implications for turbidity and resources (e.g.
phosphorus, nitrogen, organic carbon)17,20–22. Given the influence the
environmental template has over the GFS microbiome23, we first
modelled the future GFS environment (2070–2100), considering SSP
climate change scenarios, of which we here report the results for SSP3
(results for SSP1 and SSP5 are provided in Supplementary Informa-
tion). Our modelling framework is rooted in glaciological and clima-
tological projections based on the Global Glacier Evolution Model
(GloGEM)24 and Climatologies for Earth’s Land Surface Areas
(CHELSA)25 at high spatial resolution, respectively. Combining these
projections with measured data of the GFS environment along the
chronosequence (i.e. leveraging differences between up- and down-
stream reaches for each GFS) (“Methods”, Supplementary Fig. 1), we
first predict how the GFS environment will change in response to
glacier retreat by the end of the century.

Our predictions suggest that median streamwater temperature and
electrical conductivity (a proxy for ion concentration) will increase by
306.7% (IQR: 87.9–633.1%) and 88.2% (IQR: 51.6–130.7%), respectively,
while median streamwater turbidity will decrease by 44.4% (IQR:
31.6–71.7%) across all study GFSs (Supplementary Fig. 2). Median con-
centrations of soluble reactive phosphorus and dissolved inorganic
nitrogen will decrease by 14.1% (IQR: 9.6–27.3%) and 11.5% (IQR:
5.2–16.3%), respectively, and pH will be lowered by 2.8% (IQR: 1.6–4.2%)
(Supplementary Fig. 2). Response curve analyses suggest that the mag-
nitude of changes depend on glacier area (Supplementary Fig. 3).

Consistent with previous studies and conceptual models20,26, these find-
ings suggest reduced erosion and weathering capacity of shrinking gla-
ciers, leading to decreases in streamwater fine suspended sediments and
soluble reactive phosphorus concentrations. Changes in these selective
constraints are likely to have significant impacts on the microbiome.

Biodiversity shifts with the greening of glacier-fed streams
Benthic microbial biomass is key to stream ecosystem functioning, as
it fuels the food web and regulates ecosystem energetics and nutrient
cycling14. Our projections suggest significant increases in benthic
chlorophyll a (339.7%; IQR: 183–852.2%), a proxy for algal biomass, and
bacterial abundance (88.5%; IQR: 60.4–150.2%) until the end of the
century (Fig. 1B, C). This projection corroborates recent evidence
suggesting that GFSs become ‘greener’ because of the fading capacity
of glaciers to generate fine sediments, thereby reducing light limita-
tion in GFSs17. In fact, fine suspended sediments render GFSs turbid,
which reduces light availability for photosynthesis and increases phy-
sical abrasion, a notion that is supported by a negative correlation
between projected values of streamwater turbidity and benthic
chlorophyll a (rho = −0.96, p <0.001). Yet, the projected benthic bio-
mass of GFSs is still low compared to high-alpine streams without
glacial influence27, which points to the persistence of constraints in
GFSs other than those related to flow and turbidity.

Despite the harsh GFS environment, resident biofilms host a dis-
tinct and diverse microbiome15,23,28. Our projections show that this
diversity (expressed as Shannon H’) will increase by 6.2% (IQR:
4.7–8.9%) under SSP3 (Fig. 1D). Positive relationships of both, bacterial
Shannon diversity (rho =0.69, p <0.01) and bacterial abundance
(rho = 0.98, p <0.001), with chlorophyll a supports the notion that
increased primary production sustains higher microbial biodiversity.
Underpinning mechanisms may include elevated environmental sta-
bility and energy availability, the latter being a well-known driver of
biodiversity29. Hence, we predict that future increases in algal biomass,
and thus resource availability, will impact GFS microbiome diversity.

Both deterministic and stochastic assembly processes imprint
upon the phylogenetic structure of microbial communities30. Envir-
onmental filtering, for instance, can lead to phylogenetic clustering. In
GFSs, deterministic environmental selection favours microdiverse
clades, which greatly contribute to microbiome diversity31. We posit
that weaker selective constraints under future climates will alter
microbial community assembly processes. To explore this emerging
property, we modelled the mean nearest taxon distance and mean
phylogenetic distance, reflecting relatedness at shallow and deep
phylogenetic branching, respectively. We find median values of mean
nearest taxon distance to significantly (Generalized Additive Model,
GAM p < 0.001) increase by 3.5% (IQR: 2.2–5.8%, Fig. 1E), suggesting
terminal phylogenetic clustering will diminish in the future GFS
microbiome. Correlation between predicted mean nearest taxon dis-
tance and chlorophyll a (rho = 0.97, p < 0.001) suggests increased
resource availability may contribute to the reduction of selective
constraints. While the ability to use different carbon substrates can
promote divergence within microdiverse clades32, microdiversity in
GFSs is concentrated in clades utilising chemolithotrophic energy
pathways31. Reduced environmental selection may erode micro-
diversity in GFSs, with yet unknown consequences for the stability and
resilience of the GFS microbiome33. Similarly, the mean phylogenetic
distance is predicted to increase by 3.2% (IQR: 1.7–6.3%), pointing
towards deeper-branching changes to the future GFS microbiome
phylogeny. In line with the predicted increase in alpha diversity, we
attribute such a deeper-branching expansion of the phylogeny to the
establishment of novel taxa and lineages in future GFSs.

Climate change shifts strain distributions
Species distribution models are commonly used to forecast climate-
change impacts on the structure and diversity of ecological
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Fig. 1 | The ‘greening’ of the world’s glacier-fed streams impacts the micro-
biome. A Shown is a world map showing the mountain ranges and the number (in
circles) of glacier-fed streams sampled per mountain range. Made with Natural
Earth. Free vector and raster map data @ naturalearthdata.com. B Scatter plots of
present-day (red) and future projections (blue) of algal biomass (chlorophyll a) and
streamwater turbidity, C algal biomass and bacterial cell abundance, D algal

biomass and the Shannon index of bacterial communities, and E algal biomass and
the within community mean nearest taxon distance (α-MNTD) of the bacterial
communities. The current and future states of each GFS are linked with grey lines.
Two-sided tests for correlations between predicted changes were all significant
(p <0.001, Spearman rho = −0.96, 0.98, 0.69, and 0.97 for panels
B–E, respectively). Source data are provided as a Source Data file.
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communities34. To predict the impacts of climate change, and inte-
grate glaciological and environmental controls on the GFS micro-
biome, we built individual models for each of the 2333 strain-level
MAGs in a strain distribution model framework (“Methods”, Supple-
mentary Fig. 1). For this, we used a combination of climatic, glaciolo-
gical, and mineralogical data, as well as forecasts of streamwater
physico-chemistry. Overall, these models predicted strain abundance
with satisfactory accuracy (median cross-validation R2 = 0.25; IQR:
0.13–0.36; Supplementary Fig. 4).

We first assessed the importance of covariates selected as pre-
dictors to identify the main drivers of strain abundances (Supple-
mentary Fig. 5). Across all strains, streamwater electrical conductivity,
pH, and temperature were the most important predictors, along with
latitude. Distance to the glacier, annual snow cover, and bioclimatic
variables (reduced by Principal Component Analysis) were also iden-
tified as important predictors (Supplementary Fig. 5). Interestingly,
chlorophyll a did not rank among the strongest predictors of strain
abundances. Together, these predictors highlight the direct controls of
glacial meltwaters and underlying bedrock geology on the abundance
of microorganisms in GFSs. Moreover, phylogenetically closely related
strains shared similar predictors compared to less related strains
(Spearman correlation, rho = −0.15, p <0.0001, Supplementary Fig. 6).
This apparent niche conservatism supports our modelling approach.

Next, using forecasts of these predictors, we assessed future
abundance distributions for each strain. The majority (i.e. 64.7%) of the
2333 strains are expected to increase in abundance, with only 5.3%
remaining unchanged (Fig. 2A and Supplementary Table 3). This overall
gain in abundance aligns with our independent forecast of increasing
bacterial abundance. Overall, Gamma- and Alphaproteobacteria, which
numerically dominate the present-day GFS microbiome15, are projected
to experience the largest increase in abundance (Fig. 2C). This increase
in abundance can, at least partially, be attributed to the large number of
strains in these classes. However, strains that currently occur at low
abundance (i.e. lower half of the abundance distribution) are projected
to increase disproportionately more in abundance compared to strains
that are currently abundant in GFSmicrobiomes (Fig. 2B). Among them,
the class of Gemmatimonadetes, which is known to form close associa-
tions with freshwater algae35 and Paceibacteria, known for their parasitic
or symbiotic lifestyles36, revealed the largest relative increase in abun-
dance. We hypothesise that Paceibacteriamay be promoted by a larger
size of the host pool, putatively related to elevatedmicrobial biomass in
future GFSs.

We also found that 30% of the strains will decrease in abundance
(Fig. 2B), further pointing to the reorganisation of the GFS micro-
biome. Unlike covariates associated with strains predicted to increase
in abundance, annual snow cover duration, distance to the glacier,
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bioclimatic variables, and streamwater temperature were the best
predictors for strains that will decrease in abundance (Supplementary
Fig. 5B). In line with the predicted pruning of phylogenetically clus-
tered clades, this suggests thatbacteria particularlywell adapted to the

cryospheric influence inGFS are facing a reduction in abundance in the
future. This is underlined by the fact that changes in abundance were
more similar for phylogenetically closely related strains than for dis-
tantly related strains (i.e. phylogenetic signal in log2-fold abundance
change: lambda =0.88, p < 0.001, Fig. 2A and Supplementary Table 4).
The finding that phylogenetically related strains decrease in abun-
dance reflects their shared evolutionary history and suggests that
fundamental ecological niches in GFSs will undergo major transfor-
mations as glaciers shrink. This raises concerns, as it may mean that
climate change imperils entire clades in GFSs rather than individual
strains. This concern is substantiated by the fact that 26.6% of the
strains projected to decrease in abundance were members of mono-
phyletic clades, of which all members are projected to decrease in
abundance (Supplementary Table 5). Notably, some of the largest
clades (e.g. Ferruginibacter, Lacisediminihabitans, Acetobacteraceae)
are hallmarks of cryospheric ecosystems37–39. Taken together, these
findings suggest that the microbiome of the world’s GFSs will experi-
ence a profound compositional and phylogenetic restructuring with
climate change. Although overall diversity of the GFSmicrobiomemay
expand due to the availability of novel niches associated with
increased algal biomass the loss of microdiversity in putatively well-
adapted clades likely has important ramifications for community sta-
bility and resilience.

Genomic traits associated with decreased abundance
To gain more mechanistic insights into the projected trajectories of
strains, we next linked genomic traits to predicted changes in abun-
dance. We found that strains predicted to decrease in abundance have
generally smaller genomes (GAM, fixed effect estimate = −0.2mbp,
p <0.01) but encode more KEGG (Kyoto Encyclopaedia of Genes and
Genomes) ortholog groups (KOs; GAM, mean difference = 4.02,
p <0.001), compared to strains that will increase or stay invariant in
abundance (Fig. 3A). Elevated metabolic diversity (i.e. higher KO
numbers), despite reduced genome size, points towards genome
optimisation, which can be explained by reduced KO redundancy.
Indeed, estimatingKO redundancyas the ratioofuniqueKOs to allKOs
ongenomes, we found that strains predicted todecrease in abundance
have reduced KO redundancy (GAM, mean difference = −0.0136,
p <0.001).

Together, this suggests that despite a broadmetabolic repertoire,
smaller genomes are favoured under current climatic and environ-
mental conditions inGFSs, putatively reflecting the adaptation to ultra-
oligotrophy and the unstable GFS environment. This notion is sup-
ported by the observation of a large degree ofmixotrophy among GFS
bacteria, supposedly enabling them to exploit varying energy sources
(e.g. solar radiation and organic carbon15). However, these traits may
no longer be favoured in GFSs under a future climate.

Given the predicted decline in abundance of entire clades, we
next focused on KOs associated with strains that are projected to
decrease in abundance. To this end, we constructed random forest
classifiers and used a leave-one-out approach accounting for phylo-
genetic structure (“Methods”), identifying 408 KOs that characterise
these strains (p < 0.05, feature importance quantile > 0.95). KOs
associated with biofilm formation and cold adaptation were parti-
cularly prevalent (Supplementary Table 6). These include, for
instance, the sec-independent protein translocase (TatB) which has
previously been linked to cold-shock in Shewanella oneidensis40, and
DNA topoisomerase I (topA), whose mutants become cold sensitive
in Escherichia coli 41.

Using enrichment analysis, we found KEGG categories related to
carbohydrate metabolism (Fisher test, OR = 2.20, p <0.001) and
energymetabolism (Fisher test, OR = 1.80,p <0.001) to be significantly
enriched among strains predicted to decrease in abundance (Fig. 3B
and Supplementary Table 7). The prevalence of these KEGG categories
may be linked to changing glacial and terrestrial carbon sources within

Carbohydrate metabolism Energy metabolism

Others Decrease Others Decrease

0

10

20

K
O

 p
ro

po
rt

io
n 

[%
]

A

0

100

200

300

400

500

−1.0 0.20.2 1.0 2.0
Genome size [ln mbp]

To
ta

l K
O

 [#
]

B

Group Others Decrease

Fig. 3 | Future changes are associated with the genomic properties of MAGs.
A Shown is the relationship between genome size and the total number of KOs for
MAGs predicted to decrease in abundance (blue, n = 700) and forMAGs predicted
to increase or remain unchanged in abundance (red, n = 1633). The lines reflect
GAM fits with a linear effect of ln(genome size) on the total number of KOs for
both groups of MAGs, accounting for completeness, contamination and N50 of
the genomes. The slopes of these relationships differ significantly (two-way
ANOVA, p < 0.001, slopeDecrease = 127.3 ± 1.1, slopeOthers = 118.6 ± 0.7) suggesting
that MAGs predicted to decrease in abundance have optimized genomes (i.e.
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Source data are provided as a Source Data file.
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catchments42,43. In fact, as GFSs become ‘greener’, carbon sources may
shift towards more predictable algal-derived organic carbon17. Con-
sequently, MAGs encoding chemolithoautotrophic metabolisms may
become less prevalent whereas metabolisms such as aerobic che-
moorganoheterotrophy may become more prevalent15. These results
thus provide evidence for an alleviation of the multi-faceted selective
constraints on future GFS microbiomes, ultimately altering their
function.

Alteration of the functional potential
The predicted compositional reorganisation of the GFSmicrobiome is
expected to affect its metabolic repertoire. Besides resolving genomic
traits and functions associated with strains that will decrease or
increase in abundance in the future, wemodelled shifts inmicrobiome
functional potential by building 6226 individual models of KO abun-
dances. Compared to the strain-resolvedmodels, thesemodels yielded
generally lower predictability (median cross validation R2 = 0.01, IQR:
0.0009–0.053), which is intuitive because of the invariance of core
functions. However, 45.7% of KOs are predicted to increase, whereas
38.4%were predicted to decrease in abundance (Fig. 4). Pathways with
the largest proportions of KOs forecasted to increase in abundance
included photosynthesis (88% of KOs in this pathway are predicted to

increase) and photosynthesis antennae (88%). We posit that this
putatively reflects the predicted increase in light availability because of
reduced turbidity in future GFSs. Several more specific metabolic
pathways are also expected to increase in abundance, including sele-
nocompounds metabolism (61.5%), alanine, aspartate and glutamate
metabolism (62.7%), taurine and hypotaurine metabolism (60%), and
nitrogen metabolism (58.7%) (Fig. 4). Pathways enriched in KOs pre-
dicted to decrease in abundance, and thus expected to play a reduced
role in the future GFS microbiome, were related to protein processing
(62.1%), sphingolipid metabolism (61.9%), replication and repair
(60.4%), thiamine metabolism (59.1%), peptidoglycan biosynthesis
(56.7%), fatty acid degradation (54.5%), and cell growth (51.7%) (Fig. 4).
Taken together, the eminence of microbiome functional turnover
suggests a substantial functional reorganisation of the future GFS
microbiome with potential impacts on ecosystem functioning (e.g.
decomposition and nutrient cycling).

In conclusion, we provide global-scale projections of the GFS
microbiome for climate change scenarios. Environmental constraints
that vary little across GFSs worldwide, but impose strong selective
forces on the microbiome, allowed us to forecast changes in the
environment and linked to this, ofmicrobiome structure and function.
Overall, we found that climate-induced glacier shrinkage relieves GFS

Category Increase Not significant Decrease

00052 Galactose metabolism

99978 Cell growth

00071 Fatty acid degradation

00660 C5−Branched dibasic acid metabolism

99994 Others

00550 Peptidoglycan biosynthesis

00730 Thiamine metabolism

99976 Replication and repair

00600 Sphingolipid metabolism

99975 Protein processing

0.00 0.25 0.50 0.75 1.00

00910 Nitrogen metabolism

04147 Exosome

00430 Taurine and hypotaurine metabolism

00450 Selenocompound metabolism

00250 Alanine, aspartate and glutamate metabolism

03012 Translation factors

04121 Ubiquitin system

03011 Ribosome

00195 Photosynthesis

00196 Photosynthesis − antenna proteins

0.00 0.25 0.50 0.75 1.00
KO proportion

Fig. 4 | Shift in the functional repertoire under climate change. Shown is the proportion of KOs predicted to increase or decrease under SSP3 for ten functional
pathways, predicted to decrease or increase the most, respectively. Source data are provided as a Source Data file.
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microbiomes from environmental constraints, putting at risk entire
clades of microorganisms that have adapted to the extreme environ-
ment. Our projections also reveal that microbiome functions will shift,
particularly towards light acquisition pathways and translation, which
is in linewith the ‘greening’ of GFSs.We acknowledge potential caveats
inherently related to species distributionmodels, including potentially
missing variables and overfitting. We argue that a priori knowledge of
the GFS environment and its microbiome, as well as cross-validation
and ensemblemodelling collectivelymake our projection architecture
robust. Ultimately, future expeditions and long-term observations will
allow a better understanding of climate change impacts on the
microbiome of a rapidly vanishing ecosystem.

Methods
Study sites and sample collection
GFSs were sampled by the Vanishing Glaciers project between Jan-
uary 2019 and July 2022 (Supplementary Fig. 1 and Supplementary
Table 1), and the resulting stream parameters’ dataset is also
described in ref. 15 was used for this study (physicochemical para-
meters, stream water characteristics, benthic chlorophyll-a and bac-
terial abundance). Our global sampling included the European Alps,
Scandinavian Mountains, Himalayas, Pamirs and Tian Shan, Ecua-
dorian and Chilean Andes, Southwest Greenland, Alaska Range,
Caucasus, Rwenzori Mountains, and the New Zealand Southern Alps.
For the sake of comparability, GFSs were predominantly sampled in
spring or autumn during ‘windows of opportunities’16, which are
characterised as periods either directly preceding or following peak
glacier melt. For each GFS, two reaches were sampled: one as close as
possible to the glacier terminus (median distance to glacier snout =
76m, IQR = 29–301), and one located further downstream (median
distance = 706m, IQR = 336–1280). This approach allowed us to
capture changes in glacier influence over the two stream reaches,
creating a space-for-time substitution design. Space-for-time sub-
stitutions are well suited for communities shaped by environmental
selection, but require communities to be part of the same ecological
trajectory. This constrained the location of downstream reaches to
be situated close to the terminal moraine, in many mountain regions
hallmarks of the last glacial maximum (Little Ice Age). Because of the
poorly developed soils and lack of vegetation in catchments above
the terminal moraine, the influence of glacial meltwater (e.g. low
temperature, turbidity, inorganic nutrient and organic carbon bio-
geochemistry) determines the environmental template in these
reaches. At both, up- and downstream reach, we sampled three
separate sediment patches (<10m distance) with flame-sterilised
devices. At each patch, we collected sandy (250μm–3.15mm; Retsch)
sediments from the upper 5 cm of the benthic zone. Sediment sam-
ples were transferred to sterile cryovials, immediately flash-frozen in
liquid nitrogen, and subsequently stored at −80 °C prior to and fol-
lowing shipping to Switzerland for DNA extraction and biomass
analyses.

Streamwater and sediment physicochemical parameters
Wemeasured streamwater temperature, pH, specific conductivity, and
turbidity using a portable MultiLine Multi 3630 IDS (WTW) metre.
Streamwater samples for nutrient analyses were filtered through pre-
combusted GF/F filters (Whatman) into acid-washed Nalgene HDPE
bottles and frozen within 48h. Samples for the determination of DOC
concentration were filtered identically, but into pre-combusted glass
vials and kept at 4 °C. A LaChat QuikChem8500 flow injection analyser
was used to measure concentrations of ammonium (N-NH4

+; Quik-
Chem method 10-107-06-3-D), nitrate (N-NO3

−, QuikChemmethod 10-
107-05-1-C), and soluble reactive phosphorus (P-SRP; Method 10-115-
01-1-M). Inorganic forms of nitrogen were combined to quantify dis-
solved inorganic nitrogen (DIN). A Sievers M9 TOC Analyser (GE) was
used to measure DOC concentrations. Major cation and anion

concentrations weremeasured from sterile-filtered (0.2μm,Millipore)
streamwater samples (stored in the dark at 4 °C) using aMetrohm 930
Compact ICflex system. Benthic sedimentmineralogywas determined
using an X-TRA ThermoARL Diffractometer (errors varied between 5%
and 10% for the phyllosilicates and 5% for grain minerals). Relative
abundances of the main mineral groups (clays, quartz, feldspar, and
calcite) were computed from counts of mica, chlorite, amphibole,
feldspars, calcite, and quartz.

Benthic chlorophyll a and bacterial abundance
We measured benthic chlorophyll a concentrations as a proxy for
benthic algal biomass. For this, we added 90% ethanol to sediment
samples, and incubated the samples in a hot water bath (78 °C) for
10min, followed by incubation in the dark at 4 °C for 24 h. Then,
samples were vortexed, and centrifuged and the supernatant was read
in a high-sensitivity plate reader (BioTek SynergyH1) at 436/680 ex/em
wavelengths. Chlorophyll a concentrations were calculated from
standard curves obtained using a spinach standard (Sigma Aldrich)
and normalised to a dry mass of sediment. Bacterial abundance was
determined using flow cytometry as described previously31. Briefly,
2.5–3 g of sediment were fixed using a paraformaldehyde/glutar-
aldehyde mixture and kept frozen. In the laboratory, sodium pyr-
ophosphate (final concentration of 0.025mM) was amended and
microbial cells were detached from sediments using vigorous shaking
and sonication (Sonifier 450, Branson, 1min, 60%duty cycle, output 5).
Extracts were briefly spun, the supernatant 10-fold diluted and stained
using SYBR Green and analysed on a NovoCyte flow cytometer (ACEA
Biosciences) equipped with a 488 nm laser. Results were corrected for
dilutions and normalised to sediment dry mass.

Climatic data
Climatology data at high spatial resolution was obtained from the
CHELSA database (version 2.1)25. CHELSA provides both climatic and
bioclimatic data typically used in species distribution modelling
approaches at high spatial resolution (~1 km) based on a global
downscaling approach. The database is based on an ERA-Interim cli-
matic reanalysis and contains future projections of climatology for
Shared Socioeconomic Pathways (SSP)19. The data was obtained using
Python and the database’s API, and processed with the rasterio (v1.3.8)
and gdal (v3.7.0) Python libraries44,45. GPS coordinates of all sampling
locationswere used to identify the corresponding grid cells of the (bio-
)climatic dataset. The specific samplingmonthswere used formonthly
parameters. For future projections, five different institutional models
were downloaded and combined by averaging (gfdl-esm4, ukesm1-0-ll,
mpi-esm1-2-hr, ipsl-cm6a-lr, and mri-esm2-0). Because values in the
databasewere only available up to 2010, linear extrapolation based on
the 1981–2010 period (per month) was performed to obtain data
matching the 2019–2022 sampling period (Supplementary Fig. 7). In
addition, climatic data for the 2070–2100 time period for three SSPs
scenarios corresponding to different greenhouse gas emission trajec-
tories were obtained. These scenarios included SSP1, SSP3, and SSP5,
encompassing a range of potential future climate outcomes.We report
median change and interquartile ranges for the site-specific changes
for all parameters. To test for significant shifts, we conducted Wil-
coxon tests of the future projections minus the present conditions. All
statistical analyses were performed using R (v4.3.1)46 and the tidyverse
R package suite (v2.0.0)47. Figures were prepared using the ggplot2
(v3.4.2)48 and ggridges R packages (v0.5.4)49.

Glaciological data
The future evolution of all mountain glaciers is available through the
Global Glacier Evolution Model (GloGEM)24. The model is initialised
with present-day glacier extents and computes changes in snow
accumulation andmelt, aswell as changes in glacier length basedon an
ensemble of Global CirculationModels using different greenhouse-gas
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emission scenarios. Themodel has been calibrated to match observed
mass changes at the scale of every individual glacier globally50. For this
study, we extracted the distance of sampling locations to the glacier
terminus, as well as the area of the glacierized surface for the time
period 2070–2100.We report median change and interquartile ranges
for the site-specific changes for all parameters. To test for a significant
shift, we conducted Wilcoxon tests of the future projections minus
present-day observations.

Metagenomics
Metagenomes were sequenced for 155 sediment samples covering all
visited mountain ranges except the Alaska Range (these samples were
collected last by the Vanishing Glacier Project andwere not included in
metagenomic sequencing runs). DNA extraction, purification, library
preparation, sequencing and metagenome assembly steps were per-
formed as described in ref. 51. Briefly, 5 g of GFS sediments were
treated using an optimised phenol:chloroform-based extraction
method subsequently followed by an ethanol precipitation step. This
protocol yielded on average 50 ng of DNA per sample which was used
for library preparation using the NEBNext Ultra II FS library kit, which
included 6 PCR cycles. Sequencing library quality was screened using
Qubit (Invitrogen) and Bioanalyzer (Agilent). Subsequently, libraries of
app. Sixty samples were pooled and sequenced at the Functional
Genomics Centre Zurich on a NovaSeq (Illumina, 150bp) using S4
flowcells.

The metagenomic sequence data generated for ref. 15. was used,
and was processed using the Integrated Meta-omic Pipeline workflow
(version 3.0; commit# 9672c874)52. Briefly, adaptor trimming from
reads is followed by an iterative assembly using MEGAHIT 53 and
metaFlye 54. Reads from each individual sample were assembled into
contigs and subjected to multi-coverage binning to obtain MAGs. For
each individual assembly, wemapped the reads of the 5 geographically
closest samples (Euclidean distances of gps coordinates) using BWA-
mem (v0.7.17)55. To reduce computation time, we removed sequences
in the assembly of <1.5 kbp. Subsequently, 10% of the pre-processed
reads were randomly selected before mapping with seqtk (v1.3)56. We
then used MetaBAT2 (v2.15)57, CONCOCT (v1.1.0)58 and MetaBinner
(v1.4.3)59 using default parameters to obtain bins. DAS Tool (v1.1.4)60

was then employed to generate a non-redundant set of bins using a
score threshold of 0.3. The quality of bins was assessed using CheckM2
(v1.0.1)61. Bins from all samples (including the ones generated by IMP3)
with completeness of more than 50% (n = 12,599 bins) were selected
for further analyses. We used MDMCleaner (v0.8.3)62 to reduce con-
tamination. Finally, after rerunning CheckM2 to get final estimates of
completeness and contamination, we used dRep (v3.2.2)63 to derepli-
cate bins using minimum completeness of 70 % and maximum con-
tamination of 10% and an ANI of 99%. This led to 2868 MAGs (strain-
level dereplication). Functional annotation of the MAGs was per-
formed with eggNOG-mapper (v2.1.9)64 against eggNOG v5.0 after
obtaining coding regions with prodigal (v2.6.3)65. The coverage of the
MAGs was estimated by mapping the reads of the samples to the
genomic contigs using CoverM (v0.6.1, available at https://github.com/
wwood/CoverM) using the trimmed_mean parameter. We normalized
the coverage by similarly mapping the reads on the recA gene
(K03553). After removing low-abundance strains (prevalence lower
than 20% at a 10× recA coverage threshold), 2333 were selected for the
strain distributionmodelling. GTDB-Tk (v 2.1)66 was used to determine
the taxonomy of the MAGs. We used the concatenated alignment of
120 ubiquitous single-copy proteins created by GTDB-Tk to de novo
generate a phylogenetic tree using FastTree2 under theWAGmodel of
protein evolution with gamma-distributed rate heterogeneity.

Modelling environmental parameters and microbial biomass
Models of streamwater temperature, turbidity, electrical conductivity,
pH, soluble reactive phosphorus (SRP), and dissolved inorganic

nitrogen (DIN) were built using climatic, bioclimatic, glaciological
and geological parameters as covariates, chosen by automated fea-
ture selection (Supplementary Fig. 3). The same modelling approach
was used to model biomass parameters (chlorophyll-α, bacterial
abundance) and diversity metrics (Shannon H’, mean nearest taxon
distance, mean phylogenetic distance). Response variables and cov-
ariates were log-transformed where necessary to improve the nor-
mality of residuals, adding a constant equal to half of the smallest
non-zero value. Beforemodel fitting, all variables were z-transformed
(i.e. scaled to mean and units standard deviation). All generalised
additive models (GAM) models were created using the Gaussian
family function and the bam function of themgcv package (v1.9_0)67.
GAMs have been successfully used to model and predict future
changes in environmental sciences and ecology, especially for spa-
tially structured data7,68,69, and have also been applied to stream
ecosystems70,71. Here, GAMs were used to model stream parameters
and biomass in order to account for spatial autocorrelation at the
regional scale using a spatial spline (formula: s (latitude, longitude,
bs = ‘sos’,m = 1, k = −1)). Feature selection was performed by building
individual GAM models with a spline for each covariate (k = 3, bs = ‘

ts’) along with the spatial spline and were then ranked by −log(p-
value) of the covariate spline. The top three variables were retained
for a final model. This procedure was repeated on each of the nine
models for each cross-validation fold. A final model was then built
with the spatial spline and a spline for the three top variables with the
following parameters: k = 3, bs = ‘ts’. These parameters allowed for
non-linear relationships while the small number of knots and the
penalisation on the spline were added to control for smoothness and
to avoid overfitting.

The models were validated using 10-fold cross-validation, mean-
ing that several times the models were trained on 90% of the glacier-
fed streams, and tested on the remaining data. The performance of the
models (measured as the cross-validation R2) was computed by pool-
ing the results of all 10-folds of the cross-validation72. The choice of
parameters and ensemble modelling were chosen to control for
potential overfitting. Moreover, we selected only three covariates for
each strain distribution model to further avoid overfitting. The shape
of the smoothed splines was then inspected and all had reasonable
smoothing (Supplementary Fig. 3). To further improve the robustness
of the approach, we performed ensemble modelling by averaging the
predictions of GAMsbuilt on each cross-validation fold using an elastic
net linear regressor. Different alpha values of 0, 0.5, and 1 were tested
and the best one was retained based on the error reported by the
cv.glmnet function of the glmnet R package (v4.1_7)73. Using 5-fold
cross-validation, the function automatically computes the best lambda
value. We avoided autocorrelation at the GFS level (as two reaches
were sampled from each GFS) by randomly sampling one of the two
reaches before creating each of the sub-models. By fitting nine sepa-
ratemodels to predict each cross-validation fold, we allowed a fraction
to represent local variations in the data, and stacking multiple models
allowed for all samples to be included in thefinalmodel (sinceonly one
sample per GFS is included in each model). The final predictions were
the mean of the predictions made by all ten ensemble models trained
on 9-folds.

Response curves were obtained using predictions for all
sampling points. The consistency of the stream parameter models
created for each SSP scenario was assessed by comparing the
selected features and their corresponding response curves (Sup-
plementary Fig. 3). We measured model performance as cross-
validation R2 comparing predicted and observed data for the held-
out folds (Supplementary Table 2). Statistics comparing present
and future stream parameters were obtained in the same way as
statistics for the climatic dataset. Correlation between predicted
stream parameters was assessed using Spearman correlations
across all sites.
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Models of strain and KO abundances
Models of strain abundance (normalised using the recA gene coverage)
and KO abundance were built using climatic, glaciological, and
mineralogical data, aswell as streamparameter forecasts as covariates,
chosen by feature selection (one set of features for each strain). To
reduce overfitting and collinearity, we reduced the dimensionality of
bioclimatic variables using principal component analysis (PCA)
implemented in the prcomp R function, and retained the first six
dimensions, as they represented more than 95% of the variation
(Supplementary Fig. 8). Strain and KO abundances, as well as covari-
ates were log-transformed and z-scaled as described above. Models
were created with the same approach as for the stream parameters
models, using GAMs stacked with an elastic net, the only difference
being that spatial splines were not used; instead latitude, absolute
latitude, and longitude, along with elevation and the slope of the
stream, were added as potential covariates in the feature selection
process. For each model, four variables were selected with the same
feature selection procedure as for the stream parameters models.
Model performance (predictive power) was assessed using the
R2

prediction pooled over all ten of the cross-validation folds34.

Statistical analyses
Phylogenetic signal in log2 fold-change in future abundance and in
R2

predictionwasmeasured by using the “lambda”method of the phytools
Rpackage (v1.5_1)74.We reportmedian change and interquartile ranges
for the site-specific changes for all parameters. To test for a significant
shift, we conductedWilcoxon tests of the future projectionsminus the
present observations. Evenness was assessed by comparing present
and future median predictions of abundance for all strains, and by
showing that the relationship had a slope less than one (Supplemen-
tary Fig. 9). The largest monophyletic sub-trees composed only of
representatives predicted to decrease under the SSP3 scenario were
identified using R packages phytools (v.1.5_1)74 and ape (v5.7_1)75. The
phylogenetic tree was plotted using R packages ggtree (v3.8.0)76 and
ggtreeExtra (v1.10.0)77.

We used Spearman correlations between the number of shared
covariates and phylogenetic distance of pairs of MAGs to assess phy-
logenetic signal in covariates (i.e. whether phylogenetically similar
MAGs share more covariates than phylogenetically distant MAGs).
Similarly, to assess taxonomic similarities, we split MAGs based on
taxonomy and used the Kruskal–Wallis test to evaluate whether cov-
ariates have similar importance in all classes. This was computed using
the kruskal.test R function, and plots were created to show the dis-
tribution of median relative ranks across taxa with the ggridges R
package (v0.5.4)49.

Random forest classifiers were used to identify KOs associated
with strains that decrease in abundance. To this end, we accounted for
phylogenetic structure by splitting the data into ten phylogenetic
clusters, and training models on nine of them while assessing the
importance on the one left out. Random forest classifiers were created
using the ranger R package (v0.15.1)78, using random grid search
(n = 50) to find hyperparameter settings (Supplementary Table 8).
Feature importance (i.e. the importance of KOs) was estimated using
the method developed by ref. 79. We considered KOs with a p-
value < 0.05 and in the upper 95th percentile of the importance values
in at least one of the phylogenetic clusters as significant. We con-
sidered “top” KOs that were significant in at least eight out of the ten
phylogenetic clusters (n = 21), and for these, descriptions were gath-
ered on the KEGG website (https://www.genome.jp/kegg/) (Supple-
mentary Table 6).

Enrichment analysis was carried out at the level of KEGG cate-
gories to identify categories overrepresented in the set of significant
KOs. This was donewith the fisher.test in R and p-valueswere corrected
using the Bonferroni method. We only considered positively sig-
nificant categories with the thresholds: p-value < 0.05 and odds ratio

(OR) > 1. To compare the number of KOs among genomes of strains
predicted to decrease in abundance with “others”, we used GAMs
considering the completeness, contamination, and N50 of these gen-
omes and their interactions with a tensor (k = 3, bs = ’cs’). GAMs
(gaussian family model) were created for the counts of KOs in the
MAGs. Weights were added by multiplying the inverse of the number
of MAGs for each phylogenetic cluster (such that all phylogenetic
clusters obtained equal weights), the completeness of the genomes
(to give less weight to KO absences owing to incomplete genomes),
and the mean relative abundance. These models were fit using the
bam function in the mgcv R package (v1.9_0)67. Using the same
approach, we tested for differences between the two groups of
bacterial genomes (i.e. “decreasing in abundance” vs “others”) in the
total number of KOs, genome length and KO redundancy (unique
KOs/total KOs). We further regressed the number of KOs on the
genomes against genome length (accounting for completeness,
contamination and N50 with a tensor; function ‘te’ with parameters
k = 3 and bs = ’cs’). For these models, we tested the difference
between the strains predicted to decrease in abundance and “others”
by fitting fixed effects (and an interaction for the KO number ~
genome length model) with ANOVAs as implemented in the stats R
package included in the base R package (v4.3.1)46 and reported the
estimated means and standard errors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The climatic and glaciological data generated in this study has been
deposited on Zenodo alongside the metagenomic-derived and environ-
mental datasets under the (https://doi.org/10.5281/zenodo.10409762).
All sequencing raw data and MAGs are deposited in NCBI under bio-
project PRJNA781406. Source data are provided with this paper.

Code availability
The code is available on this GitHub repository: https://github.
com/Mass23/CrystalBall and was published on Zenodo under the
(https://doi.org/10.5281/zenodo.14497117). To fully reproduce the
study, the conda environment included in the envs/needs to be
installed and the data copied from Zenodo in the directory. Then
the scripts 1_Create_data.py and 2_Analyse.R need to be run
sequentially. All data tables, stat tables and figures will be gen-
erated automatically.
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