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A B S T R A C T

Rock exposure distribution maps provide invaluable information for a range of applications from geohazard 
assessment through to aggregate resource potential assessments. Despite the usefulness of such information, it is 
only available to a limited extent across Great Britain (GB). Recent developments in the application of machine 
learning approaches to map exposed rock distribution rely on existing geological and land cover maps as the key 
input data for model training. We present a catchment-scale approach for delivering high-resolution rock 
exposure maps for GB mountain terrains. Our application has two objectives: establish a consistent and cross- 
applicable approach enabling feature identification from elevation datasets; use the results and diagnostics of 
the application to assist in further environmental process understanding. We utilize manual aerial image 
interpretation, and a suite of geomorphic terrain variables generated from a 5 m Digital Terrain Model as inputs 
to a distributed random forest model. Eight separate catchment models were derived from the training datasets 
using a leave-one-out approach. Aggregated results indicate a model accuracy of 79%, with a relatively high 
model sensitivity (78%) at the cost of relatively low precision (20%). Variable importance assessment high
lighted patterns consistent with expected geomorphic controls on rock exposure related to gravity-driven slope 
processes in mountain landscapes. These results highlight the potential of multi-variant approaches for high- 
resolution rock exposure mapping, and lay a foundation for further development, particularly in relation to 
opportunities for further training data capture to ensure model accuracy. The ability to associate features based 
on geomorphological variables - indicative of landscape processes including erosion and deposition - presents 
opportunities that go beyond rock exposure such as for critical mineral and resource assessment. This approach 
will be applied for initial site characterisation as part of future onshore and offshore geological survey activities 
where high-resolution terrain and bathymetric data are available.

1. Introduction

Quantifiable distributions of surface bedrock exposures in upland 
areas provide useful information for a range of applications, from nat
ural resource potential assessments (Scarpone et al., 2017; Hengl et al., 
2017), geological site characterization as part of geotechnical surveys 
(Sarkar et al., 2004), to geohazard assessments (e.g. Yang et al., 2024) 
and studies of groundwater resource (Wilson et al., 2007). More spe
cifically, rock exposure information can be used to support decision 
making regarding slope stability assessments, transport developments 
(e.g. Karlson et al., 2016), energy infrastructure development, forestry 

and land management, as well as providing inputs to process-based 
physical and 3D stratigraphic models (Scarpone et al., 2017; Ganerød 
et al., 2023). Crucially, rock exposure data provide boundary conditions 
for constraining superficial sediment thicknesses (or depth to bedrock) 
models, i.e. points where sediment thickness is equal to zero. In Great 
Britain (GB), existing models of superficial deposit thickness (Lawley 
and Garcia-Bajo, 2009) are compromised by the paucity of these data in 
upland areas, yet acquisition of bedrock exposure data through field 
mapping is limited by the inaccessibility of upland areas throughout GB, 
and the challenging environmental conditions frequently encountered. 
Approaches for identifying exposed bedrock in upland terrains using 
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topographic metrics have been established in previous studies. These 
metrics, including slope (DiBiase et al., 2012) and roughness 
(Milodowski et al., 2015), can be related to erosion and depositional 
processes occurring at the ground surface and therefore have a causal 
link to rock exposure when analysed at relevant spatial scales. Alter
native approaches for mapping rock exposure using remote sensing 
imagery rely on colour or infra-red signatures that relate to the presence 
or absence of vegetation through colour, thermal properties and mois
ture content. Automated image classification methods are now widely 
used for land cover (i.e. vegetation) and habitat mapping (e.g. Marston 
et al., 2023).

The use of both topographic metrics and remote sensing imagery for 
regional mapping of exposed rock have been explored in two recent 
studies. Scarpone et al. (2017) map exposed rock in British Columbia 
using a random forest (RF) classifier and 43 variables including remote 
sensing and topographic parameters sampled at 100 m resolution. They 
found that variable importance was highest for Landsat derivatives 
related to biomass and temperature or soil moisture, with a ruggedness 
metric the third most important predictor of bedrock exposure. Ganerød 
et al. (2023) trialed a deep learning method in Norway to compare use of 
30 m resolution Landsat and 10 m resolution DEM derivatives, finding 
that the terrain derivatives proved to be better predictors of exposed 
rock than the Landsat.

Although the different methods used may be a factor affecting the 
outcomes of these studies, the type and resolution of the training data 
used and the vegetation type of the study area, are also likely to have 
influenced the predictive value of Landsat and DEM derivatives. In 
particular, the differing resolutions of the training datasets, and the 
vegetation contexts of the study areas are significant factors. Both 
Milodowski et al. (2015) and Ganerød et al. (2023) highlight the diffi
culty of identifying exposed bedrock (i.e. bedrock with soil cover less 
than 10 cm) beneath tree canopies or other vegetation; they note that 
the use of topographic metrics for mapping rock exposure provides ad
vantages over image classification, which are also affected by variation 
in illumination and cloud cover.

In GB, upland landscapes are largely vegetated, comprising moor
land, acid grassland and forest, with thin, patchy minerogenic soils 
mantling bedrock (Fig. 1D). Existing land cover maps developed using 
an RF classifier based on Sentinel-2 datasets and other contextual in
formation (Marston et al., 2023) tend to under-predict exposed rock 
outcrops in this terrain (Fig. 1A). By contrast geological maps, which are 
based on a British Geological Survey convention which limit mapping to 
areas where deposits are estimated to be thicker than 1 m (British 
Geological Survey, 2012), tend to omit the presence of thin, patchy 
sediment cover on upland slopes (Fig. 1B).

In this article we present a method for quantifying the spatial extent 
of exposed bedrock in upland areas of GB using high-resolution eleva
tion data ( ≥ 5 m). Our specific objectives are to. 

1. Establish a consistent and widely-applicable method for predicting 
bedrock outcropping at surface using nationally available elevation 
data,

2. Attribute the relative importance of terrain derivatives covariables to 
further our understanding of environmental process operating within 
specific catchments.

We use an RF approach for automated mapping (cf. Scarpone et al., 
2017) rather than the deep learning method of Ganerød et al. (2023)
because it provides information about covariable importance, support
ing our second objective. To avoid replicating the limitations of existing 
GB land cover and geological datasets with respect to exposed rock 
mapping, we create objective rock exposure datasets for model training 
through manual mapping of rock outcrop from high-resolution aerial 
photographs and field observations.

Multi-scale geomorphometric covariables are calculated from a 5 m 
digital terrain model derived from Lidar (Bluesky International Limited, 

2021). The use of terrain data reflects the higher performance of these 
metrics in the comparable vegetated temperate landscape studied by 
Ganerød et al. (2023) and reduces problems with illumination and cloud 
cover inherent in most remote sensing imagery. Training data and 
geomorphometric terrain variables were collected for 8 catchments 
within the Montane and Valley (MV) domain (Booth et al., 2015). A total 
of eight model runs were conducted utilising a leave-out-one approach 
to verify model predictions and assess covariable importance. We 
consider the importance of different topographic covariables as pre
dictors of rock exposure and the distributions of false positives and false 
negatives in the context of geological processes affecting the MV domain 
area.

2. Study design

The UK has highly varied geology and a complex glacial process 
history which may give rise to regional variability in the relationship 
between rock exposure and topographic parameters. We focus on 
development of a method suitable for UK uplands which typically have 
sparse distributions of observations. We identify these areas based on 
the MV domain of the Quaternary domains classification for Great 
Britain (GB) (Booth et al., 2012). This scheme subdivides GB into eleven 
semi-contiguous areas, or ‘domains’, following a land systems approach 
(Benn and Evans, 1998). These domains are closely related to Pleisto
cene glacial cycles, firstly subdividing the UK into glaciated versus 
non-glaciated zones, constrained by the maximum Quaternary glacial 
limits, followed by a series of regional landscape domains (Booth et al., 
2015). The domains are predominantly characterised by topographic 
features, allowing rule-based predictive models based on geo
morphometric parameters to be robustly applied across them. The MV 
domain is described as mountainous terrain with precipitous slopes, 
craggy glaciated troughs, deep cirques, fjords and numerous lochs 
residing in ice scoured basins and hollows, or deeply dissected upland 
plateaus (Booth et al., 2012).

We focus on eight valley catchments within the MV domain (Fig. 2), 
selected as representative catchments to enable the development and 
analysis of a robust predictive model for this landscape type. The 
catchments are chosen to encompass a range of landscape features, from 
catchment floors, a variety of slopes, and ridges at watershed bound
aries, as well as a variety of bedrock lithologies.

Catchment locations and descriptions are presented in.
Table 1. To ensure high model performance, these catchments share 

the following characteristics: (i) limited urban areas and infrastructure, 
(ii) minimal areas of forestry, and (iii) availability of high resolution 
aerial imagery (25 cm). Fig. 3 provides maps of key geomorphometric 
variables for a selection of these catchments to give an impression of the 
landscapes used to train the model.

3. Methodology

A multi-stage method was designed to predict the location of bedrock 
exposed at surface. This consisted of (1) developing training datasets of 
observed exposed bedrock via aerial photograph interpretation, (2) the 
generation of a suite of geomorphometric parameters based on a 5 m 
spatial resolution DTM, and (3) the training and application of a RF 
classifier together with various quality testing components.

3.1. Manual data capture and training dataset development

A team of two to four expert geologists generated binary point data 
on a pixel-by-pixel basis for exposed rock outcrops in each catchment 
using high resolution aerial photographs (25 cm) within a GIS. These 
point data were converted into binary raster images (10 m resolution), 
scoring one where observations of rock at surface by all operators were 
coincident, and a value of zero where rock was not unanimously iden
tified. The expert consideration of environmental process and feature 

C. Williams et al.                                                                                                                                                                                                                               Computers and Geosciences 196 (2025) 105814 

2 



Fig. 1. Comparison of existing landcover and geological datasets for the Glengyle catchment, near Loch Katrine in the southern Scottish Highlands. A) the CEH 25 m 
Landcover map for 2023, no “Inland Rock” areas are shown within the Glengyle catchment area. Patches of Inland Rock located over the mountains to the north vary 
considerably in extent between years (4.3 km2 in 2015, 5.8 km2 in 2019 and 0.4 km2 in 2023). Data owned by UK Centre for Ecology & Hydrology © Database Right/ 
Copyright UKCEH. B) 1:10,000 scale geological mapping of superficial deposits (from 2015). C) a geologist’s interpretation of rock exposure in the Glengyle 
catchment (10m grid) based on manual inspection of aerial photograph imagery from 2016 (0.25m resolution). D) Image from the Glengyle catchment showing 
slopes with steep rock outcrops interspersed with areas of colluvium. Note the debris flows sourced from colluvial patches. The photo was taken facing north, location 
shown in map A.
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interpretation based on a range of environmental constraints (i.e. 
landform morphology, position within the catchment, and adjacent 
pixel classifications) is what differentiates this approach from more 
traditional image classification solutions, where feature identification is 
based on colour balance alone.

3.2. Geomorphometric derivatives

A suite of terrain derivative rasterized surfaces were generated as 
model covariates using a 5 m DTM, with a mean estimated uncertainty 
of 0.5 m (Bluesky International Limited, 2021). Terrain derivatives were 
calculated using a Python framework that integrated a range of 

geospatial software packages including Numpy, SciPy, GDAL and GRASS 
GIS (Table 2). Roughness-related metrics were calculated using a 
multi-scale approach to account for roughness values over different 
spatial scales following Amatulli et al. (2020), implemented by adapting 
processing window size.

Most terrain derivatives (Table 2) are widely used, but for 
completeness the less common are described below. 

• Multi-resolution Valley Bottom Flatness (MrVBF) and Multi
resolution Index of Ridge Top Flatness (MrRTF) (Gallant and Dow
ling, 2003) provides an index that can be used to respectively 

Fig. 2. Map of GB Quaternary domains after Booth et al. (2012) indicating the location of training catchments used in this study.
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characterise valley and ridge locations – larger values of both MrVBF 
and MrRTF indicate flatter valleys and more prominent ridges.

• Easterness and northerness are the cosine of slope and sine of slope 
respectively, enabling aspect to be treated as a continuous variable 
(Olaya, 2009).

• Vector strength and Fisher’s k provide roughness information based 
on unit vectors relating to regularly spaced elevation values 
(Grohmann et al., 2011). In smooth locations, vector strength values 
will be high, while rough areas would be low. Fisher’s k (based on 
Fisher, 1953) provides a measure of the uncertainty linked with the 
potential dispersion associated with a surface and contrasts with 
vector strength. Smaller values of k are expected in smooth areas, 
whereas relatively high values of k are expected for rougher areas 
where the potential for dispersion and therefore uncertainty associ
ated with dispersion direction, is greater (Grohmann et al., 2011).

3.3. Training data selection

The full training dataset across all eight catchments consisted of 
406,835 entries in total: 31 variables, 29 of which were continuous and 
three of which were categorical. The dependant variable, rock at sur
face, was coded as a binary category, i.e. rock present/rock absent at 
surface. The data were unbalanced with respect to the dependant vari
able: 6.3% of entries were positive for rock at surface, the remaining 
93.7% negative. Tree-based models are sensitive to class imbalance, i.e. 
bias (Liu et al., 2009), therefore the minority class was upscaled during 
the training runs following test/train data splitting, creating a model 
trained on an equal number of positive and negative entries.

3.4. Classification model design

A Distributed Random Forest was selected as our Machine Learning 
(ML) algorithm (Chen et al., 2017), as they are less prone to over-fitting, 
tend to minimise the effects of co-linearity (Cutler et al., 2007) and are 
therefore more computationally efficient. RF models allow for 
straightforward assessment of variable importance, a key requirement 
given that we wished to use terrain derivatives as proxies for under
standing environmental processes operating within a catchment. 
Importantly, RF models can characterise non-linear interactions be
tween co-variables; a realistic portrayal of process interactions in a 
natural setting. The H2O framework (LeDell and Poirier, 2020) was used 
to train and create a model as it can accept mixed data (categorical and 
continuous) with minimal pre-processing. A grid search was used to 
optimise model hyperparameters, using a training set of 10% of the 
overall training set. Hyperparameters for the final models were defined 
as: ntrees = 500, max. tree depth = 50, min. rows = 20.

3.5. Classification model cross-validation

Tests of model performance were conducted via cross-validation, 
splitting the training and testing datasets using a leave-one-out 

Table 1 
Summary information relating to the catchments considered in this study, or
dered by area Generalised domain area descriptions are taken from Booth et al. 
(2015).

Catchment Locale Description Area 
(km2)

Elevation 
range (m a. 
s.l.)

Swanston Southern 
Uplands 
(Scotland)

Dissected rolling 
plateau with local 
steep-sided glaciated 
troughs, especially in 
the Galloway and 
Moffat hills. Extensive 
paraglacial deposits on 
slopes. Restricted 
glaciofluvial deposits. 
Devonian extrusive 
volcanics (andesite, 
basalt and rhyolite).

1.2 193 to 492

Plymlimon Cambrian 
mountains 
(Wales)

Extensive dissected 
upland erosional 
plateau with areas of 
higher relief. Extensive 
till on upland surfaces, 
commonly soliflucted. 
Valley slopes 
dominated by 
periglacial deposits. 
Glacial and 
glaciofluvial deposits 
in valley bottoms. 
Ordovician continental 
slope sandstones, 
siltstones and 
mudstones.

3.0 347 to 745

Beanaidh 
Bheag

Cairngorm & 
Gaick plateaux 
(Scotland)

Glacial erosion and 
deposition mainly 
restricted to corries. 
Widespread survival of 
deeply weathered 
Devonian granitic 
rock.

3.8 594 to 1294

Blaenau Snowdonian 
mountains 
(Wales)

Steep slopes, glaciated 
troughs, extensive 
paraglacial deposits on 
slopes with glacial and 
glaciofluvial deposits 
in valley bottoms. 
Upland plateau area at 
catchment head. 
Ordovician mudstone.

4.3 246 to 688

Talla Southern 
Uplands 
(Scotland)

Dissected rolling 
plateau with local 
steep-sided glaciated 
troughs, especially in 
the Galloway and 
Moffat hills. Extensive 
paraglacial deposits on 
slopes. Restricted 
glaciofluvial deposits. 
Gala Group 
sandstones, mudstones 
and conglomerate 
bedrock.

5.5 405 to 801

Mosdale Shap and 
Howgill Fells 
(England)

Steep slopes, glaciated 
troughs, extensive 
paraglacial deposits on 
slopes with glacial and 
glaciofluvial deposits 
in valley bottoms. 
Borrowdale Volcanic 
Group (andesitic sills).

6.7 85 to 892

Glasahoile Grampian 
Highlands 
(Scotland)

Steep-sided glaciated 
troughs and extensive 
paraglacial deposits on 
slopes. Severity of 
glacial erosion 

6.8 118 to 717

Table 1 (continued )

Catchment Locale Description Area 
(km2) 

Elevation 
range (m a. 
s.l.)

declines eastwards. 
Cambrian psammites 
and semipelite.

Glen Gyle Grampian 
Highlands 
(Scotland)

Steep-sided glaciated 
troughs and extensive 
paraglacial deposits on 
slopes. Severity of 
glacial erosion 
declines eastwards. 
Cambrian psammites 
and semipelite.

11.6 116 to 765
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approach. Data from a single study area (catchment) were held out for 
testing, and a model trained using the seven remaining catchments. This 
was repeated for all eight catchments, generating eight separate models 
and eight separate test sets. For details on the specific programmatic 
implementation of this approach, please refer to the model code and 
associated documentation.

Predictions are given as confidence of rock at surface (p1), where 
0 indicates the model has 0% confidence of rock at surface and 1 in

dicates 100% confidence per pixel. Model performance was assed using 
accuracy, precision and sensitivity statistics. Accuracy is given as: 

Tp + Tn

Tp + Tn + Fp + Fn
(1) 

where Tp is the number of true positives, Tn is the number of true neg
atives, Fp is the number of false positives and Fn is the number of false 
negatives. Precision is given as: 

Fig. 3. Maps of key derivatives for selected catchments. Colour ramps have been normalised for comparison. 1 km scale is shown for each catchment and north is 
towards the top of the page in all cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Tp

Tp + Fp
(2) 

Sensitivity is defined as: 

Tp

Tp + Fn
(3) 

For each model, the following were calculated. 

• The Receiver Operator Characteristic (ROC) curve, which charac
terises the balance between sensitivity and specificity when different 
thresholds are used to define a positive prediction from model 
confidence.

• The average Youden’s J statistic for all eight models derived from the 
ROC curve. This statistic is used to select a decision threshold value 
that is a good compromise between model sensitivity and specificity 
(Witten et al., 2017). This is referred to as the ‘global decision 
threshold’.

• A confusion matrix which represents the accuracy of the eight 
models en masse, when tested against each of their respective 
catchment test sets.

The purpose of calculating metrics across all catchments was to 
obtain a characterisation of model performance across a series of 

disconnected datasets, rather than testing on a single catchment. The 
global decision threshold value was applied to obtain results for all in
dividual catchments, necessary because in a real-world application the 
actual values for a new catchment may not be known. In such scenarios a 
decision threshold can only be determined from existing data, so the 
global decision threshold is taken as a robust measure of overall model 
performance potential.

4. Results

4.1. Rock at surface prediction: multi-catchment results

Aggregating predictions for all eight models, across all eight 
respective test sets resulted in an overall model accuracy of 78.98%. The 
model sensitivity was 77.71%, which is the proportion the model 
correctly identifies instances of rock at surface. This was at the cost of a 
relatively low precision of 19.98%, meaning for every correctly identi
fied instance of rock at surface, the models identified four false positives.

The low precision could be traded for lower accuracy by raising the 
prediction threshold value. However, the optimum value used for the 
final confusion matrix (Fig. 4), as defined by the average Youden’s J 
statistic, was 0.24. This adjusted threshold was used to account for class 
imbalances, as opposed to the more typical threshold of 0.5 which is 
more appropriate for balanced datasets. This was then applied to the 
predictions for each individual catchment. The ROC curve for the eight 
aggregated models displays the tendency for false positive rate to 
initially grow rapidly as the predictive threshold is increased (Fig. 5). 
This is indicative of models with a low precision relative to sensitivity 
where a low decision threshold is required to correctly categorise most 
positive instances.

Variable importance was reasonably consistent across all models. 
Slope (2nd order), slope (3rd order), MrVBF, topographic wetness index 
and elevation were the five most important variables for all models, 
although not always in the same order. The top ten most important 
variables, averaged across all eight models are presented in Table 3.

4.2. Rock at surface prediction: catchment specific results

Model performance is compared for individual catchments using key 
metrics (Table 4). Catchment models have a relatively high accuracy 
(>70%) and sensitivity (>79%), except for Blaenau) at the expense of 
lower precision (<34%).

Precision is very low for Plymlimon, Glasahoile, Swanston and Talla, 
with 5% or less of the total predictions of rock as true positives. All these 
catchments have areas of observed rock that cover less than 1% of the 
catchment area (Table 4; e.g. Talla, Fig. 6). Precision is higher for 
Mosdale, Glen Gyle, Blaenau and Beanaidh Beag, where 16–34% of the 
total predictions of rock are positives. In these catchments, observed 
rock covers 2–11 % of the catchment area (e.g. Glen Gyle, Fig. 7).

Table 2 
Calculated derivatives together with associated software and processing scales 
with which they were generated. Elevation is included here to illustrate all 
continuous data available for each catchment.

Derivative Processing 
window 
(pixels | 
metres)

Algorithm Reference/Software

Elevation N/A Values as 
provided

Bluesky International 
Limited, 2021

Aspect (2nd order) 3 | 15 9 parameter 
2nd order 
polynomial

Zevenbergen and 
Thorne (1987)Slope (2nd order) 3 | 15

Convergence 3 | 15 GRASS: r. 
convergence

GRASS

Multiresolution index 
of the ridge top 
flatness (MrRTF)

3 | 15 GRASS: r. 
valley.bottom t 
= 42a

GRASS; Gallant and 
Dowling, 2003

Multiresolution index 
of valley bottom 
flatness (MrVBF)

3 | 15

Easterness 3 | 15 GRASS: r. 
northerness. 
easterness

GRASS; Olaya 
(2009)Northerness 3 | 15

Northerness slope 3 | 15
Vector strength 3 | 15, 5 | 25, 7 

| 35, 9 | 45
GRASS: r. 
roughness. 
vector

GRASS; Grohmann 
et al., 2011

Fisher’s k 3 | 15, 5 | 25, 7 
| 35, 9 | 45

Geomorphons 3 | 15 GRASS: r. 
geomorphon

GRASS; Stepinski 
and Jasiewicz, 2011; 
Jasiewicz and 
Stepinski (2013)

Aspect (3rd order) 3 | 15 9 parameter 
3rd order 
polynomial: 
GRASS: r.slope. 
aspect

Horn (1981); 
Mitasova (1985); 
Hofierka et al. (2009)

Plan curvature (3rd 
order)

3 | 15

Slope (3rd order) 3 | 15
Tangential curvature 3 | 15
Standard Deviation 3 | 15, 5 | 25, 7 

| 35, 9 | 45
Standard 
deviation

–

Topographic 
Roughness Index

3 | 15, 5 | 25, 7 
| 35, 9 | 45

9 parameter 
variance

Adapted from Riley 
et al. (1999)

Topographic Wetness 
Index

3 | 15 GRASS: r. 
topidx

GRASS; Cho (2000)

a for the MRVBF and MRRTF variables, a value for the required t_slope 
parameter in the GRASS implementation of the function of 42 was used based on 
the input DTM pixel size of 5 m while considering the power function provided 
in Gallant and Dowling (2003).

Fig. 4. Confusion matrix based on combined test data from the separate 
catchment cross-validation models.
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Blaenau has the lowest sensitivity (0.52) and accuracy (0.71) despite 
moderate precision (0.19) and the highest proportion of observed rock 
for the catchment area at 11.2% (Fig. 7). However, Blaenau has a lower 
proportion of predicted rock (29.6%) than both Glen Gyle and Mosdale 
(>30%) which have only 4% and 5% of the catchment mapped as rock 
respectively. Comparison of mapped and predicted rock for Blaenau 
(Fig. 8) highlights a large area in the south of the catchment which is 
mapped as rock that does not show up in the model prediction and may 
be responsible for the low sensitivity and accuracy for this catchment.

4.3. Geomorphometry covariance and predicted rock presence/absence

4.3.1. Spatial autocorrelation of derivatives
To provide an understanding of how the variables are spatially 

distributed within catchments, spatial autocorrelation was calculated 
for key variables and rock presence using Moran’s I statistic (Fig. 9). 

Beanaidh Beag, Blaenau and Mosdale exhibit the highest Moran’s I, 
indicating localised clustering in larger contiguous areas of rock (see the 
results for Blaenau in Fig. 8). By contrast, Plymlimon, Swanston, Gla
sahoile and Glen Gyle have Moran’s I scores of less than 0.5 and show 
more dispersed distributions of rock presence (see the results for Glen 
Gyle in Fig. 7).

In general, stronger spatial autocorrelation signatures are associated 
with key derivatives for the catchments where rock presence is also 
more autocorrelated (Fig. 9). The effect of data resolution and sampling 
window on the autocorrelation of derivatives is illustrated by the sys
tematic increases in Moran’s I values for the vector strength, Fisher’s k 
and standard deviation parameters with increasing kernel size.

4.4. Derivative covariance and predicted rock presence/absence

The distribution of rock presence and absence relative to key deriv
ative distributions highlights that rock presence is generally associated 
with higher slope angles, and a lower TWI, but there is considerable 
variation (Fig. 10). Except for elevation, rock presence is reflected by a 
relatively narrow range of values for each derivative.

4.4.1. Derivative covariance and catchment variability
To assess for catchment-specific effects, the association of derivatives 

and rock presence is shown for the different catchments in Fig. 11. This 
highlights that rock presence plots relatively consistently with key 
variables. The only exceptions to this include Beanaidh Beag, which is 
characterised by an overall higher elevation profile and Glen Gyle that 
has a small proportion of rock presence associated with higher MrVBF 
values. Mosdale, Glen Gyle and Blaenau have rock presence across a 
large range of TWI, slope and elevation values.

5. Discussion

5.1. Model design and performance

Our approach of predicting exposed bedrock from a range of terrain 
derivatives using a random forest method resulted in models with 
relatively high sensitivity but low precision. All eight test catchments 
had high levels of over-prediction of rock, particularly in catchments 
with very limited mapped rock exposures. This low precision means the 
model will be best suited to real world applications where false positives 
can be tolerated, but false negatives are less acceptable.

The training set for each model contained data from seven distinct 
catchments, with marked variability in the amount of rock present in the 
selected catchments. Testing on a large catchment required the catch
ment be omitted from the training set to create its respective model, 
which removed a proportionally larger amount of data than for a smaller 
catchment. The use of a greater number of appropriately varied catch
ments for training would mitigate this problem.

Fig. 5. ROC curve for cross validated predictions on the 8 catchments test 
holdout data split. Note that the threshold is low to the bottom left, increasing 
to the top right.

Table 3 
Mean relative importance of variables from the combined results of the catch
ment cross-validation models. Only the top ten variables are shown.

Variable Scaled importance

Topographic wetness index 0.94
MrVBF 0.81
Slope (3rd order) 0.68
Slope (2nd order) 0.56
Elevation 0.41
Standard deviation (15 m2 kernel) 0.35
Standard deviation (25 m2 kernel) 0.34
Convergence (15 m2 kernel) 0.30
Topographic roughness index (25 m2 kernel) 0.28
Topographic roughness index (15 m2 kernel) 0.26

Table 4 
Catchment specific model performance - based on rounded and threshold adjusted positive prediction values. Moran’s I is presented here for each catchment to 
illustrate the varying spatial autocorrelation of rock exposure within each catchment.

Catchment Observed rock as a proportion of the 
catchment

Predicted rock as a proportion of the 
catchment

Accuracy Sensitivity Precision Area under ROC 
curve

Moran’s I (rock 
presence)

Beanaidh 
Bheag

0.02 0.14 0.87 0.98 0.16 0.96 0.76

Blaenau 0.11 0.30 0.71 0.52 0.19 0.68 0.76
Glasahoile 0.01 0.21 0.78 0.85 0.04 0.90 0.48
Glen Gyle 0.04 0.31 0.72 0.79 0.23 0.83 0.49
Mosdale 0.05 0.32 0.78 0.88 0.34 0.89 0.68
Plymlimon 0.004 0.16 0.83 0.94 0.02 0.96 0.32
Swanston 0.005 0.16 0.84 0.82 0.05 0.91 0.39
Talla 0.0002 0.09 0.91 0.90 0.05 0.96 0.58
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5.2. Model training data

Observational training data for our model was captured by multiple 
expert geological interpreters, then filtered to isolate points of unani
mous agreement. Uncertainties arise from the limitations of interpreting 
from aerial images, including illumination angles, vegetation cover 
(including tree cover along narrow river corridors), shadow effects, 
clouds, and the inability to capture and steep slopes. This last point is 
mitigated, to a certain extent, by using terrain derivatives in the RF 
model (cf. Milodowski et al., 2015).

Some discrepancies between aerial images and DTM data arise due to 
temporal mismatch, i.e. the action of geomorphic processes such as 
debris flows occurring between the capture of datasets. However, the 
comparatively small scale of geomorphic processes in UK uplands (i.e. 
tens to hundreds of metres) means that any impact on model results is 
likely to be small. Utilising recent imagery and ensuring minimal gap 
between capture of terrain and aerial imagery will minimise these 
effects.

The training data effectively defines the nature of ‘bare rock’ being 
modelled and machine learning outcomes will reflect the key associa
tions and limitations of the training data. Scarpone et al. (2017) trained 
their model using bare rock classifications derived from habitat-based 
landcover datasets, which may be a significant factor in the relative 
importance of Landsat imagery in the model outcome. By contrast 
Ganerød et al. (2023) utilize geological maps as training data, and the 
finding that terrain derivatives provide better prediction may reflect the 

fact that areas mapped as “bare rock” and “thin organic soils on 
bedrock” (i.e. soils 10–30 cm thick) were merged within the training 
dataset. The latter includes vegetated areas thus limiting the value of 
‘colour’ and moisture properties as predictors of rock exposure.

In this study we used an independent dataset of observations of rock 
exposure to avoid replicating the limitations of existing landcover and 
geological datasets. Alternative datasets and methods for the capture of 
training data could be explored in future, including the use of outcrop 
sites marked on geological field maps, ground walkover surveys, oblique 
photography (e.g. DiBiase et al., 2012), and terrestrial laser surveys.

5.3. Scaling effects

Rock outcrops in GB vary considerably in size from metres to kilo
metres. The choice of grid resolution for rock exposure mapping/ 
modelling needs to reflect the scale of rock outcrops that are relevant to 
(a) the required mapping outcome, and (b) the scale of features and the 
process-scales associated with their formation (Hengl, 2006; Tarolli and 
Tarboton, 2006; Tarolli, 2014).

For example, a coarse grid resolution (such as 100 m) will smooth 
terrain metrics such as slope and roughness (Molnar and Julien, 1998), 
potentially reducing the likelihood of identifying rock exposures on 
crags and decimetre-scale rock ridges that occur on otherwise sediment 
mantled slopes. Conversely, using too fine a grid resolution may lead to 
spurious associations such as with metre-scale boulders present in 
rockfall, landslide or moraine deposits (c.f. Tarolli and Tarboton, 2006).

Fig. 6. Results of model prediction for the Talla catchment, representing observed rock presence, predicted rock presence, true positives and false positives. Axis 
coordinates are in British National Grid.
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The use of 100 m grided training data by Scarpone et al. (2017) may 
thus be an additional factor limiting the sensitivity of their modelling to 
terrain predictors. We use a 10 m grid to derive a range of 
multi-resolution datasets, finding that the importance of slope and 
roughness variables decreases with kernel size, with the 3x3 window 
yielding the highest variable importance. Although limited by the base 
resolution of our training data, this result is consistent with the relevant 
scales of rock outcrops within the UK MV terrain (typically 10–100 m). 
There is potential for further work to compare the relative importance of 
scale derivatives in different UK landscape domains where rock expo
sure may have different geomorphic process associations.

5.4. Modelling and geological context

5.4.1. Geomorphic significance of key variables
Of the 31 terrain derivatives, all models had the same top ten vari

ables (Table 3). The high contribution of slope, elevation, TWI and 
MrVBF across the full range of catchment morphologies sampled is 
consistent with gravity-driven slope processes controlling the distribu
tion of soil and other sediment deposits on hillslopes (Patton et al., 
2018). The top contributing co-variable, TWI, reflects the accumulation 
of flow at a given point and therefore scales inversely with the occur
rence of rock at surface (Fig. 9), identifying areas where limited sedi
ment can accumulate due to either high slopes or a lack of material 
inputs from upslope (i.e. where there is rock at surface). Similarly, areas 
with lower slope values are more likely to be sediment covered due to 
the diffusion-like nature of slope processes.

High values of standard deviation and roughness at length-scales less 

than 30 m are thought to be indicative of areas where bedrock is present 
at surface regardless of elevation or position on slopes (e.g. Beven and 
Kirkby, 1979). This potentially reflects the influence of geological het
erogeneities, such as bed thickness and fracture density, which locally 
influence weathering, erosion rates and slope stability (e.g. Coblentz 
et al., 2014; Milodowski et al., 2015; Falcini et al., 2022). By contrast in 
areas of greater sediment availability, depositional processes typically 
lead to the formation of relatively smooth, convex slope surfaces (Carson 
and Kirkby, 1972).

5.4.2. Model performance within catchments – the role of landforms
Differences in spatial autocorrelation between catchments reflect the 

influence of different landscape morphologies within the MV domain on 
the model performance. The spatial autocorrelation of rock exposure is 
highest (i.e. most clustered) for Beanaidh Beag and Blaenau, and lowest 
(i.e. most dispersed) for Plymlimon, Glasahoile and Glen Gyle.

Plymlimon, Glasahoile and Glen Gyle catchments lack well- 
developed corries and are characterised by rugged slopes and nar
rower valley floors with patchy superficial deposits (Fig. 3 - Glasahoile). 
Rock exposures are dispersed across the catchment in small clusters 
occurring across a range of elevations and are associated with high 
slopes, low TWI, and low to moderate MrVBF. These catchments with 
lower autocorrelation show a more even distribution of false positives, 
which tend to be located at the margins of the areas of rock exposure and 
reflect higher model uncertainty in areas that are marginal to small rock 
outcrops (e.g. the Glen Gyle catchment, Fig. 7).

The stronger autocorrelation seen in the catchments of Beanaidh 
Beag and Bleanau is associated with the presence of well-developed 

Fig. 7. Results of model prediction for the Glen Gyle catchment, representing observed rock presence, predicted rock presence, true positives and false positives. Axis 
coordinates are in British National Grid.
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Fig. 8. Results of model prediction for the Blaenau catchment, representing observed rock presence, predicted rock presence, true positives and false positives. Axis 
coordinates are in British National Grid.

Fig. 9. Moran’s I calculated for each derivative for each catchment to demonstrate variations in spatial auto-correlation.
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corries, and wide valley floors that are typically mantled in till and 
moraine deposits (Fig. 3). In these catchments, rock exposures are 
concentrated in large contiguous areas on the corrie head and side walls, 
giving rise to larger areas of exposure linked to high slopes, mid to high 
elevations and low TWI and MrVBF values. These catchments corre
spondingly have relatively large contiguous areas of false positives and 

false negatives. False positives are associated with the presence of 
shadows in the aerial images and with vertical rock faces separated by 
vegetated ledges (e.g. Fig. 12). These false positives reflect limitations in 
the training data, with some degree of compensation arising from the 
use of terrain metrics – effectively the model is performing better than 
the training data in these areas (cf. Milodowski et al., 2015).

Fig. 10. Predicted rock presence and absence normalised derivative covariance associations.
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Underprediction of rock exposure (false negatives) occurs in the 
southern part of the Blaenau catchment where a large area of mapped 
exposure associated with rock slabs are underrepresented in the model 
prediction (Fig. 12E). The rock slabs occur over an interfluve at mod
erate to high elevations, and with moderate slope, on the southern side 
of the corrie. The lack of sediment on these surfaces is likely to reflect 
localised ice-scouring at the intersection of the corrie glacier with a 

larger glacier occupying the adjacent valley.
The terrain variables used in this analysis may not sufficiently ac

count for the influence of historical ice-scouring on sediment distribu
tions at low to moderate slopes and elevations. This factor would need to 
be accounted for in upscaling of the model, and particularly in further 
applications to the ice-scoured domain of Northern Scotland (Fig. 2; 
Booth et al., 2015). Additional variables such as higher-resolution 

Fig. 11. Predicted rock presence derivative covariance associations by catchment.
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roughness and directional roughness parameters related to specific 
wavelengths (Hubbard and Hubbard, 1998) could be included in future 
model iterations for application to ice-scoured topography.

5.5. Development opportunities

A range of the current model limitations might be addressed by using 
additional covariates and additional, or alternative, sources of inde
pendent observational data. The model has been trained in non-urban 
environments and is therefore suitable for applications in moun
tainous upland settings that are represented by the training datasets. 
However, additional training data would be required for wider appli
cations or upscaling, along with approaches that account for the influ
ence of urban areas and infrastructure.

Few of the terrain variables used as inputs had a significant control 
on the model prediction. It is likely that lower value metrics could be 
removed from the training data without significantly impacting model 
performance. This would reduce the training time, allowing for the 
training of more models and a more comprehensive approach to 
hyperparameter tuning. A recursive-based approach to tuning could be 
used (Wicaksono and Supianto, 2018), building on the simple grid-based 

approach used for this study. However, it should be noted that RFs do 
tend to be less sensitive to poorly optimised hyperparameters than most 
other ML approaches (Bernard et al., 2009).

The ability of the models to produce predictions that correlate well 
with the spatial distribution of rock at surface, but not accurately predict 
rock at a given point suggests a more complex model may be required if 
point-prediction is necessary. The RF models only consider the inde
pendent variables at a given point to make a prediction. As the data is 
presented in the form of a 2D array, the values of these variables at 
nearby points are likely to provide useful information for determining 
the value at a given point. The use of a Convolutional Neural Network 
(CNN) (Minetto et al., 2019) may be an alternative approach for 
improving predictive accuracy. However, use of a CNN would remove 
some of the benefits of a RF based model; notably easy assessments of 
variable importance, which were a key output of this study.

6. Conclusions

Modelling rock exposure across GB uplands using a RF classifier and 
a range of terrain derivatives offers a time-efficient approach for map
ping exposed rock compared to traditional field approaches. The use of 

Fig. 12. Illustration of false positives and negatives in the Blaenau catchment: A) aerial image of the whole catchment, B) distribution of predicted rock shown a true 
positives, false positives and false negatives, C) area showing shadow effect in areal image where the model predicts false positives, D) corrie backwall of stepped crag 
lines associated with false positives, E) interfluve with exposed rock slabs associated with false negatives. Aerial photography © UKP/Getmapping Licence No. 
UKP2006/01.
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catchment-scale cross-validation highlights the high sensitivity but low 
precision of the model, which means the potential implications of false 
positives must factored into downstream applications. However, ex
amination of the model highlights that it does a good job of isolating key 
variables that control the nature of upland sediment and soil processes, 
and it may out-perform the training data input leading to overestimation 
of false positive cases. The consistency of identified key variables across 
models indicates the model is robust, therefore supporting upscaling in 
the MV domain.

The model may be improved by inclusion of additional derivative 
datasets such as NDVI. These may be particularly useful in regions where 
the distribution of deposits related to historical geological contexts 
cannot be fully accounted for by purely gravity and flow processes, and 
therefore may be important when expanding the model coverage to 
other Quaternary domains, particularly the ice-scoured domain.

The preliminary results of this study highlight that field validation 
will be important for assessing the model outcome and should be used to 
provide quantitative assessment of model error, as well as evaluating the 
model performance metrics. Further data input capture and develop
ment work may be needed to justify model application in areas with 
significant anthropogenic features, or along streams.

Although focussed on rock exposure mapping in this work, the ma
chine learning model developed has broad applicability for land system 
modelling, with opportunities for a range of input and derivative data to 
be used. Applications may include geochemical mapping, habitat 
modelling, and superficial deposit mapping amongst many other 
opportunities.
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