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TECHNICAL NOTE

Functional data analysis to investigate controls on and changes in the seasonality of 
UK baseflow
Kathryn A. Leeminga, John P. Bloomfieldb, Gemma Coxonc and Yanchen Zhengc

aBritish Geological Survey, Keyworth, UK; bBritish Geological Survey, Wallingford, UK; cSchool of Geographical Sciences, University of Bristol, 
Bristol, UK

ABSTRACT
Continuous streamflow is critical for sustaining ecological systems and ensuring water resource security. 
Understanding controls on and changes in flows, including the seasonality of baseflow, is therefore an 
important task. Baseflow seasons have typically been investigated separately, potentially missing hydro-
ecologically important timing changes. Instead, we apply a functional data analysis clustering approach 
to seasonal patterns of baseflow hydrographs for 671 catchments across Great Britain (GB). The baseflow 
clusters are characterized as early-, mid-, and late-season peaks. The spatial distribution of the baseflow 
seasonality clusters is closely connected to the baseflow index and a partition tree shows the influence of 
catchment topological, hydrogeological and soil factors. Changes in timing of baseflow seasonality are 
compared to climate seasonality. In GB there appears to be a small but systematic influence of a warming 
climate on baseflow seasonality via effective rainfall with a tendency for earlier seasonal baseflow peaks, 
with greater timing changes in snow-influenced catchments.
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1 Introduction

Baseflow is the delayed component of streamflow fed by sub-
surface storage between precipitation and/or snowmelt events 
(Tallaksen 1995, Price 2011, Zhang et al. 2017, Gnann et al.  
2019, Singh et al. 2019). It is of interest for a number of 
reasons: baseflow can act to regulate the quality and tempera-
ture of streamflow (Jordan et al. 1997, Gomez-Velez et al.  
2015, Hare et al. 2021), it supports ecological flows and eco-
system functioning (Poff et al. 1997, Boulton 2003), and, 
importantly for water resources, it sustains surface flows at 
times when there is a deficit in precipitation, and so baseflow is 
a significant component of streamflow during episodes of low 
flow and drought (Smakhtin 2001, Miller et al. 2016). 
Consequently, there is a need to understand the controls on 
and changes in baseflow, including the seasonality of base-
flow – the focus of the current study.

Baseflow is a hydrological phenomenon that represents an 
integrated, whole-catchment response to meteorological and 
other environmental change signals (Bloomfield et al. 2009,  
2011, Price 2011) as well as to water resource management 
practices, such as abstraction and discharge within catchments 
(Bloomfield et al. 2021). It typically exhibits catchment- 
specific responses over a wide range of spatio-temporal scales 
to variability or changes in driving climatology and longer- 
term climate change, and to changes in catchments, such as 
land-use and land-cover change.

A number of studies have considered baseflow and climate- 
influenced changes in many parts of the world, ranging from 

local to global spatial scales (e.g. Wang and Cai 2010, Ayers 
et al. 2021, Miller et al. 2021, Mo at al. 2021). Previous inves-
tigations of change in baseflow have typically used non- 
parametric methods such as the Mann-Kendall trend test, or 
slope-based methods (e.g. Ficklin et al. 2016, Mohammed and 
Scholz 2016, Ahiablame et al. 2017, Bosch et al. 2017, Rumsey 
et al. 2020, Tan et al. 2020) to characterize annual and/or 
seasonal trends. Consistent changes across time can be identi-
fied using these methods. However, a drawback to using trend 
tests such as these is that only monotonic changes can be 
identified and the tests are not particularly suitable to char-
acterize changes in seasonality with time other than by simply 
segmenting the data into predefined “seasons” (as in Wang 
and Cai 2010, Ficklin et al. 2016, Bosch et al. 2017, Tan et al.  
2020). In addition, care must be applied to the choice of test as 
autoregression and seasonal behaviour in a time series can 
affect the performance of trend tests (Hirsch and Slack 1984). 
Splitting the hydrographs by season allows for the investiga-
tion of higher or lower flows within each season, but more 
subtle changes (particularly timing changes), will be lost in the 
season-splitting approach. An alternative approach is to use 
functional data analysis (FDA) (Ramsey and Silverman 2005, 
Bouveyron et al. 2015). FDA treats the data (e.g. annual hydro-
graphs) as a curve, rather than as discrete, sequential temporal 
observations in a time series, and allows for general seasonal 
shapes in the data to be identified and compared. Functional 
clustering enables groups of catchments with similar seasonal 
patterns of baseflow across time blocks (such as early, mid-, or 
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late seasonality) to be identified. Our approach does not con-
sider seasons separately and instead considers the annual pat-
terns that characterize seasonality. This is similar to how 
vegetation phenology changes are considered as alterations to 
seasonal timings (Kim et al. 2018, Piao et al. 2019, Geng et al.  
2020, Chen et al. 2022). A number of other studies have 
applied FDA to hydrological data (e.g. Haggarty et al. 2015, 
Suhaila and Yusop 2016, Ternynck et al. 2017, Larabi et al.  
2018, Alaya et al. 2020, Ghumman et al. 2020). However, to 
date, FDA has not been applied to the quantification of 
changes in hydrological seasonality.

To address the gap in observation-based understanding of 
changes in and controls on the seasonality of baseflow in 
catchments in temperate settings, a large-sample dataset for 
Great Britain (GB), Catchment attributes and hydro-meteor-
ological time series for 671 catchments across Great Britain 
[CAMELS-GB] (Coxon et al. 2020a, 2020b) is analysed here 
using an application of FDA methods (Bouveyron et al. 2015, 
Ramsey and Silverman 2005). Data from the CAMELS-GB 
dataset catchments for the period 1976 to 2015 is split into 
two 20-year time blocks (1976–1995, 1996–2015) to character-
ize the distributions of average annual patterns of baseflow and 
how these vary over time. Following a description of the study 
area and analytical methods, the FDA approach is used to 
characterize the seasonality of the standardized baseflow 
hydrographs, and controls on the seasonal hydrographs and 
their changes are investigated.

2 Study area and data

2.1 Study area

The study area, GB, consists of England, Scotland and Wales 
(Fig. 1(a)) and includes a wide range of climate–landscape– 
water management features as described in Coxon et al. 
(2020b). Catchments in the north and northwest of the study 

area typically have higher mean elevations than those in the 
south and southeast of GB and the prevailing climatology 
reflects the broad gradient in catchment physiography. Wet 
and cooler conditions with reduced evapotranspiration are 
typically prevalent in the north and west of GB, compared 
with relatively dry and warmer conditions in the southeast 
(Fig. 1(b)).

Annual mean precipitation over England shows no sys-
tematic trends with time since records began in 1766 and 
there has been no attribution of changes in annual mean 
precipitation to anthropogenic factors (Jenkins et al. 2008, 
Watts et al. 2015). Precipitation in the UK is, however, seaso-
nal and variable over a range of spatio-temporal scales, with 
a tendency towards drier summers in the southeast and wetter 
winters in the northwest (Jenkins et al. 2008, Watts et al. 2015) 
and towards showing significant inter-annual variations, 
including episodes of meteorological extremes (Bloomfield 
and Marchant 2013). Although annual average precipitation 
has not changed significantly in the observational record, there 
is a tendency for increasing winter rainfall and with more 
winter rain falling during intense events (Jenkins et al. 2008, 
Burt and Ferranti 2011, Jones et al. 2012). Air temperature has 
increased by about 1°C between 1980 and 2015 (Jenkins et al.  
2008, Watts et al. 2015) consistent with long-term global 
warming trends. However, there have been few studies of 
historical changes in associated evapotranspiration. Kay et al. 
(2013) documented increased potential and actual evapotran-
spiration (PET and AE) across GB between 1961 and 2012 and 
Watts et al. (2015) speculated that it is reasonable to hypothe-
size that PET has increased in line with decadal-scale warming 
of air temperatures over GB.

High-productivity aquifers are largely found in the south-
east and east of GB (Allen et al. 1997, Bloomfield et al. 2009, 
Marchant and Bloomfield 2018), whereas less productive aqui-
fers and non-aquifers are generally more extensive in the west 
and northwest. Catchments in which clay-dominated soils 

Figure 1. (a) Map of the study area with Chalk aquifer designation, country boundaries and paired catchments (described in Section 3.2). (b) Mean daily precipitation at 
CAMELS-GB catchments. (c) Baseflow index (BFI) at CAMELS-GB catchments.
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overlie mudrock and clay bedrock formations and catchments 
with extensive glacial till deposits are typically present in 
central and eastern areas (Bloomfield et al. 2009, 2021, 
Bricker and Bloomfield 2014). These regional variations in 
underlying hydrogeological conditions are reflected in spatial 
variation in the baseflow index (BFI) across GB (Fig. 1(c)), 
with the highest BFI associated with streams flowing over the 
unconfined Chalk (a fractured microporous limestone of 
Cretaceous age and the main aquifer in GB) of southern, 
southeast and eastern England (Fig. 1(a)), and the lowest base-
flow in northern and western catchments where low perme-
ability–low storage bedrock and superficial deposits 
predominate (Allen et al. 1997, Bloomfield et al. 2021).

In a previous analysis of baseflow data from CAMELS-GB 
using multiple linear regression, Bloomfield et al. (2021) showed 
that, even though natural covariates, such as topography, aridity, 
and fractional area of highly productive fractured aquifers, pro-
vide the main explanatory power, BFI is also affected by ground-
water abstraction and to a lesser extent discharges to rivers from 
sewage treatment works. Groundwater abstraction is focused on 
major aquifers, particularly the Chalk, in GB; however, discharges 
to rivers from sewage treatment works have no regional focus and 
are typically highest in catchments with large populations and 
high use of water (Bloomfield et al. 2021, fig. 2).

2.2 Data

Hydro-climatic time series for 671 catchments in GB are used 
from the CAMELS-GB dataset (Coxon et al. 2020a, 2020b). These 
data are a combination of UK National River Flow Archive 
(NRFA) and meteorological time series, provided at a daily reso-
lution for the period 1970 to 2015. The streamflow series were 
collected by agencies including the Environment Agency, Natural 
Resources Wales and the Scottish Environmental Protection 
Agency and then compiled and quality checked by the NRFA. 
The data feature a good spatial coverage of GB, and over 80% of 

the locations have under 20% missing flow data, converted 
to mm d−1.

The daily precipitation data in CAMELS-GB are derived from 
the gridded estimates of daily and monthly areal rainfall for the 
United Kingdom [CEH-GEAR] dataset (Keller et al. 2015). These 
data consist of observations from Met Office UK gauges, quality 
checked and converted to grid format using natural neighbour 
interpolation. Snow fraction is taken from the CAMELS-GB data-
set (Coxon et al. 2020a) and given by the fraction of precipitation 
falling as snow for days colder than 0°C.

The CAMELS-GB temperature data used in this study are 
catchment daily averaged temperature from the climate 
hydrology and ecology research support system - meteorolo-
gical [CHESS-met] dataset (Robinson et al. 2017), and 
CAMELS-GB PET data used in this study are catchment 
daily averaged PET for a well-watered grass based on the 
Penman–Monteith equation (Robinson et al. 2020).

The baseflow series are derived from the daily CAMELS-GB 
streamflow series using the Lyne-Hollick filter with standard set-
tings (Ladson et al. 2013). The Lyne-Hollick digital filtering 
approach is chosen as this enables the separation of hundreds of 
baseflow series without requiring additional estimation of para-
meters. The monthly average baseflow values for each location are 
calculated, then the average seasonal shapes for each time block 
(A: 1976–1995 and B: 1996–2015) are formed by taking the 
median over the years in the time block. Any locations and 
months with less than 10 years’ worth of data within a 20-year 
time block are removed from the dataset. This means that catch-
ments may be present in one time block but not the other. These 
seasonal shapes are standardized to have a mean of 0 and standard 
deviation of 1, so that the FDA method considers different seaso-
nal shapes rather than absolute levels or the magnitude of annual 
variation of baseflow. This treatment of the seasonal shapes allows 
a novel application of the FDA method to the seasonal distribution 
of the baseflow, focusing on the timing of annual patterns and 
changes across space and time.

Figure 2. Graphical demonstration of the methods and data used within this study.
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BFI is taken from CAMELS-GB (Coxon et al. 2020a) and is 
estimated from the ratio of mean daily baseflow to daily dis-
charge, where hydrograph separation has been performed 
using the Ladson et al. (2013) digital filter.

To investigate changes over time in the hydro-climatic time 
series, the data are split into two 20-year time blocks: hydro-
logical years (October–September) 1976–1995, and 
1996–2015. This split was chosen to maximize the number of 
catchments and years within each time block and enable the 
comparison across time. The time series within each block and 
catchment are treated equally, so meaningful comparisons can 
be made over time and space. Peaks and troughs in the 
standardized functional baseflow curves are identified as days 
from the start of the hydrological year.

3 Methods

Figure 2 shows the data and method workflow used in the 
study. Following the preparation of the baseflow time series, 
FDA is used to identify functional clusters of seasonal baseflow 
curves. These are then explored to investigate spatial distribu-
tions of the clusters across GB and changes in cluster member-
ship of individual catchments between the two time blocks. 
A range of graphical plots and other analytical methods, 
including partition tree analysis and paired catchments are 
used to quantify controls on cluster membership and changes 
in cluster membership between time blocks. The following 
section describes the methods used.

3.1 Functional data analysis

FDA allows smooth relationships between variables to be 
estimated statistically by fitting functions to curves (Ramsey 
and Silverman 2005). Our study considers seasonal baseflow 
patterns, which form a curve of length 1 year. Fitting 
a function to the seasonal baseflow curve allows us to char-
acterize all of the seasonal distribution information simulta-
neously. These functions that represent the baseflow curves 
can then be compared across space and time to consider 
similarities and differences.

Functional data consist of representations of functions 
X1; . . . ;Xnf g observed on a domain t1; t2½ �. In this work tem-

poral domains are considered, but functional data can also be 
considered over other domains, such as spatial applications. 
The monthly data are considered to be observations from 
a curve on the domain 0; 12½ Þ months. The functional 
approach allows discretely sampled data to be considered as 
observations from a process acting on a continuous domain. 
Unlike the previously cited work using FDA in hydrological 
contexts (Haggarty et al. 2015, Suhaila and Yusop 2016, 
Ternynck et al. 2017, Larabi et al. 2018, Alaya et al. 2020, 
Ghumman et al. 2020), we consider the seasonal shapes of 
baseflow, which are standardized to remove their mean and 
give unit variance for each curve. This allows the shapes 
defining the baseflow seasonality to be compared rather than 
the absolute values.

To identify similarities between the average annual base-
flow curves at different locations and time blocks we apply the 
funFEM clustering method (Bouveyron 2015). The funFEM 

package runs the algorithm of the same name (Bouveyron  
2015), which aims to find a discriminative functional subspace 
to separate the curves into different clusters. This involves 
starting with a matrix of coefficients containing a basis repre-
sentation of each curve, then assuming a latent subspace exists 
such that the coefficients of the curves separate into distinct 
clusters. For full details see Bouveyron (2015). The clustering 
approach is different to testing methods such as Larabi et al. 
(2018) or Suhaila and Yusop (2016) as there is no explicit test 
of difference; instead, this method allows for characterization 
of the seasonal curves over space and time blocks.

In this application of funFEM to annual signals, the Fourier 
basis is chosen as it provides a periodic function space over the 
domain interval so the smoothed seasonal patterns can seam-
lessly repeat from year to year. The Fourier basis is constructed 
using a combination of sine and cosine functions defined over 
the year interval. Over the domain of one year, 0; 12½ Þmonths, 
seven basis functions are used as a balance between flexibility 
and complexity. The parameters of the latent subspace in the 
clustering algorithm are such that the mean and variance of 
each cluster can be different, with diagonal covariance 
matrices. Although information criteria such as the Akaike 
information criterion (AIC) or the Bayesian information cri-
terion (BIC) could be applied to choose the number of clusters, 
it is noted by Bouveyron (2015) that these can be less efficient 
in real data scenarios than with simulated test data. Here, the 
number of clusters is set to three for the seasonal baseflow 
clustering. This number is chosen to allow for clear compar-
isons to be made between the shapes of baseflow seasonality 
and for comparison of these groupings spatially and across the 
time blocks.

3.2 Graphical and statistical methods

Following the functional clustering of the 
standardized seasonal hydrographs, we (i) explore and char-
acterize the spatial and temporal distribution of the functional 
clusters, (ii) investigate controls on the functional clusters of 
seasonal baseflow, and (iii) investigate any changes in baseflow 
seasonality.

The spatial and temporal distribution of the functional 
clusters is characterized using colour-coded point maps. 
Changes (or not) in cluster membership between the time 
blocks are illustrated using graphical flow diagrams linking 
colour-coded cluster membership of a given catchment 
between time blocks.

To investigate controls on the functional clusters of 
seasonal baseflow, histograms of BFI associated with catch-
ments in each functional cluster across the time blocks are 
investigated. In addition, the connections between key 
catchment attributes representing hydrogeological, topo-
graphical and soil features of catchments and the func-
tional baseflow clusters are quantified using a partition 
tree analysis (Therneau and Atkinson 2022). Three repre-
sentative catchment attributes from CAMELS-GB (Coxon 
et al. 2020a) were explored using a partition tree: the 90th 
percentile of elevation, volumetric porosity of soils, and the 
percentage of the catchment covered with high productiv-
ity fracture deposits. These attributes were chosen based 

4 K. A. LEEMING ET AL.



upon previously described relationships between topologi-
cal, hydrogeological and soil attributes and BFI (Bloomfield 
et al. 2021) and were the attributes within each of those 
categories that had the highest magnitude of correlation 
with the cluster groupings, but correlation of magnitude 
under 0.4 across the three catchment attributes. The parti-
tion tree makes a series of splits of the input variables 
(catchment characteristics) in order to best predict the 
output variable (cluster), resulting in a rules-based label 
prediction. Default arguments for the rpart algorithm for 
classes were used (Therneau and Atkinson 2022), including 
only considering splits for nodes with more than 20 catch-
ments, and having at least seven catchments in each node.

Two approaches have been used to investigate any 
changes in baseflow seasonality: a paired catchment 
approach and an analysis of changes in the timing of peak 
seasonal baseflow. Three pairs of catchments with different 
cluster allocations and changes in cluster allocation (one 
catchment in each pair moves to an earlier baseflow cluster 
and one does not) were selected to consider the controls on 
the annual shapes in baseflow and the changes over the time 
blocks. The three pairs of catchments are catchments 37008 
and 37020, 33020 and 33012, and 45004 and 45005, and they 
are marked on Fig. 1(a). These were chosen based on several 
principles: (a) adjacent and nearby catchments were preferable; 
(b) each pair has rather similar catchment attributes in terms 
of climate (e.g. the differences of annual precipitation and PET 
should be within 10%), topography, land cover, geology, etc., 
yet with different cluster memberships over the time blocks; 
(c) catchment pairs with less human activity (no reservoir and 
urban percentage <10%) or under similar human influences 
are selected. The key catchment attributes of selected pairs and 
their cluster allocations over time blocks are presented in 
Supplementary material Table S6 and the respective pairs of 
standardized seasonal baseflow curves are shown in 
Supplementary material Fig. S7.

In a manner similar to Liebmann et al. (2012) and Dunning 
et al. (2018), the timing of seasonal baseflow peaks has also been 
identified, and maps are used to explore spatial distribution of 
changes in direction and magnitude of peak timing of seasonal 
curves for individual catchments between the time blocks.

4 Results

In the following sections, baseflow seasonality in GB is 
characterized by describing the spatio-temporal distribution 
of the functional seasonal baseflow clusters, and controls on 
those distributions are investigated by comparing functional 
seasonal baseflow cluster membership with BFI and catchment 
features. Controls on changes in cluster membership and base-
flow seasonality are then explored.

4.1 Characterization of baseflow seasonality

Figure 3(a) shows the standardized median seasonal baseflow 
curves (in grey) grouped by cluster, with the cluster means 
overlaid (in bold colour). Figure 3(b) shows the spatial dis-
tribution of the catchments as a function of cluster member-
ships for each of the two time blocks. Figure 3(c) is a flow 

diagram showing how the cluster membership of individual 
catchments varies (or not) across the two time blocks, and 
Fig. 3(d) shows this information spatially. Table 1 gives the 
numbers of catchments assigned to each seasonal baseflow 
cluster and how they vary over time, and Table 2 contains 
the mean residual variance for each baseflow cluster and the 
timings of the peak and trough of the annual baseflow curves. 
Plots equivalent to Fig. 3 and Table 1 for precipitation, tem-
perature and effective rainfall are given in the Supplementary 
material (Figs. S4 to S6 and Tables S3 to S5).

The three functional seasonal baseflow clusters have 
broadly similar annual shapes, as shown in Fig. 3(a). All are 
slightly asymmetrical with relatively sharper peaks in baseflow 
during late winter and broader, less well-defined troughs in 
summer. However, the timing of the peaks (and troughs) in 
seasonal baseflow varies between the three clusters. Baseflow 
cluster 1 peaks (troughs) earliest in December (July), with 
cluster 2 peaking (troughing) around a month later, and clus-
ter 3 peaking later still, in February to March. In addition, 
there is a difference in the within-cluster variation in baseflow 
seasonality, with the smallest mean residual variance asso-
ciated with cluster 2 and the greatest associated with cluster 3 
(Table 2). The functional clustering, resulting in groups that 
we will describe as early-, mid- and late-season clusters, indi-
cates that the main difference between the baseflow seasonality 
across catchments and time blocks is the timing of the peaks 
and troughs, rather than the seasonal shapes.

There are no spatial inputs to the clustering algorithm used 
to generate the clusters, the inputs are simply the average 
seasonal shapes for each location and time block. 
Consequently, any spatially coherent grouping of the clusters 
in Fig. 3(b) is a sign of similar seasonal behaviour in these 
catchments for a given time block. The maps of cluster mem-
bership (Fig. 3(b)) show consistent spatial relationships that 
persist across the two time blocks. Catchments in cluster 1 
(associated with the earliest baseflow seasonality) are predo-
minantly distributed throughout the west of GB across both 
time blocks, with only a few isolated, outlying catchments in 
the second time block (1996–2015) in this cluster found in 
southeast England. Catchments in cluster 2 are predominantly 
distributed along a band running from eastern Scotland down 
through central England to southwest England and a second, 
smaller spatially coherent region running from the eastern-
most area of England through southeast England to the south-
east coast of England. Finally, cluster 3 catchments with the 
latest baseflow seasonality are predominantly situated in cen-
tral, eastern and southern England (largely co-incident with 
the outcrop of the Chalk aquifer, Fig. 1(a)) with a small outlier 
of catchments distributed in the east Scottish Highlands. 
However, most of these latter catchments change to cluster 1 
catchments by the second time block (Fig. 3(b)). As previously 
noted, cluster 3 has the greatest within-cluster variation in 
baseflow series (Fig. 3(a) and Table 2), which may result 
from the geographical diversity of regions in GB that contri-
bute to this cluster (Fig. 3(b)) compared with clusters 1 and 2.

The majority of catchments have unchanged cluster 
membership between the two time blocks (Fig. 3(d)). 
Even though over time some catchments change cluster 
allocations, as shown by Table 1 and in the maps in 
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Fig. 3(b,d), the overall spatial disposition of the seasonal 
baseflow clusters remains broadly similar between the two 
time blocks. The most noticeable changes over time are the 
increase in membership of cluster 1 (the cluster with the 

earliest peak in seasonal baseflow) from 233 catchments in 
1976–1995 to 328 catchments in 1996–2015, and the 
decrease in membership of cluster 3 (the cluster with the 
latest peak in seasonal baseflow) from 133 catchments to 
88 catchments over the same time (Table 1). The increase 
in membership of cluster 1 is due to movement from 
clusters 2 and 3, and some catchments that were not 
included in the first time block due to missing data. In 
addition, some catchments move from cluster 3 to cluster 2 
between the time blocks. Of the catchments included in 
both time blocks, 97 catchments move to an earlier func-
tional baseflow seasonality cluster in the last time block 
and 501 catchments do not change cluster. In comparison, 
only three move to a cluster with later baseflow seasonality.

4.1.1 Controls on baseflow seasonality
Given the strong spatial association between catchments with 
the latest baseflow seasonality (cluster 3, Fig. 3(b)) and the 

Figure 3. (a) Median annual baseflow for each location and time block plotted by cluster (grey lines), with the cluster means overlaid (in cluster colour and bold). (b) 
Cluster membership of each location within each time block. (c) Flow diagram of each location showing cluster membership over the time blocks. Each location is a thin 
line within the plot. (d) Map showing the cluster membership of each location in time block B (shown by colour), with triangular symbols denoting those locations in an 
earlier or later cluster compared with time block A.

Table 1. Number of locations assigned to each baseflow cluster within each time 
block.

Cluster Block A Block B

1 233 328
2 237 252
3 133 88

Table 2. Mean residual variance per baseflow cluster (variance is calculated per 
time series and averaged over each cluster), approximate timing of cluster peak 
and trough (presented as days through the hydrological year).

Cluster Mean residual variance Peak timing Trough timing

1 0.083 85 283
2 0.050 116 319
3 0.182 152 338
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outcrop of the unconfined Chalk aquifer with associated high 
BFI (Fig. 1(a,c)), the association between the timings of base-
flow seasonality and the BFI of the catchments is considered 
here.

Figure 4 shows histograms of BFI for the catchments 
plotted by time block, with different colours used for the 
different seasonal baseflow clusters. There is a broad alignment 
between the baseflow clusters and BFI. In general, the catch-
ments in clusters with earlier (later) baseflow seasonality have 
lower (higher) BFI. In the later time block there is a wider 
spread of BFI in cluster 2 and a narrower spread of BFI in 
cluster 3, corresponding to the movement of many of the 
cluster 3 catchments to cluster 2. Bloomfield et al. (2021) 
found that the BFI of a catchment is influenced by 
a combination of factors including drainage path slope, under-
lying aquifers, soil composition and human influences such as 
abstraction and land cover, so links between catchment factors 
and baseflow seasonality are considered next.

Here we demonstrate the connections between some of the 
same key catchment attributes representing hydrogeological, 
topographical and soil features and the clusters using 
a partition tree analysis (Therneau and Atkinson 2022). 
A partition tree involving seven splits correctly 
categorizes the first cluster allocation of 76% (403/603) of the 
catchments (see Supplementary material, Fig. S1). Early base-
flow seasonality catchments (cluster 1) are associated with 
higher elevation (correlated with steeper slopes) 
(Supplementary material, Fig. S1(a)), high porosity and no 
high-productivity fracture deposits (Supplementary material, 
Fig. S1(b)). Cluster 3 is associated with low elevation and the 
presence of high-productivity deposits (Supplementary mate-
rial, Fig. S1(c)), and cluster 2 is between these, with lower 
porosity than cluster 1 (Supplementary material, Fig. S1(a), 
(b)) and higher elevation than cluster 3 (Supplementary 

material, Fig. S1(c)). This demonstrates that the clusters are 
closely linked to the catchment characteristics that relate the 
supply of groundwater, the speed of water transition through 
the soil, and the height and slopes within the catchment. 
Further details are available in the Supplementary mate-
rial (S1).

This connection to catchment characteristics is supported 
by the observation that when the FDA methodology is applied 
to precipitation (6-month smoothed precipitation), tempera-
ture, and effective rainfall time series for the same set of 
CAMELS-GB catchments (see Supplementary material, Figs. 
S4 to S6), there is no clear spatial correlation between the 
resulting clusters for the seasonality of the climatological vari-
ables and the equivalent baseflow seasonality clusters (Fig. 3 
(b)). For example, the annual patterns in precipitation 
(Supplementary material, Fig. S4) appear to be moving earlier 
between the two time blocks, but spatially the eastern locations 
exhibit earlier peaks in baseflow. There are barely discernible 
differences between the three clusters of temperature season-
ality (Supplementary material, Fig. S5), indicating a process 
with shared annual distribution across this study area. For 
effective rainfall (Supplementary material, Fig. S6), in the 
first time block relatively late effective rainfall seasonality 
dominates across much of GB (with the exception of the 
northwestern and northern GB that shows relatively early 
seasonality), but at the second time block both the early- and 
late-season effective rainfall cluster membership switches to 
the mid-seasonality cluster. Given that the majority of catch-
ments across GB exhibited late seasonality in the first time 
block, the effect is that the majority of sites across GB move to 
earlier effective rainfall seasonality (with the exception of those 
in northwestern and northern GB that move to a slightly later 
seasonality). Based on these observations, the first-order con-
trol on baseflow seasonality is inferred to be catchment 

Figure 4. Histogram of baseflow index (BFI) for the cluster allocations in each time block (sub-plots). Histogram bars for different clusters are overlaid (not stacked).
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characteristics (combinations of geological, hydrological, 
topographical and landcover features that are in large part 
reflected by the BFI) rather than the driving climatology.

4.2 Controls on changes in baseflow seasonality

Although the study area is predominantly temperate in char-
acter, there are a few catchments in the north of GB, in the 
mountains of eastern Scotland, where snow accumulates dur-
ing winter. Given previously documented links between the 
effects of warming on snowmelt-influenced flow regimes 
(Barnett et al. 2005, 2008, Leppi et al. 2011, Kormos et al.  
2016, Rumsey et al. 2020, Tan et al. 2020, Ayers et al. 2021), 
changes in baseflow seasonality in snow-influenced GB catch-
ments are first explored. Then we explore the evidence for 
potential controls on changes in baseflow seasonality more 
generally across the study area.

4.2.1 Changes in baseflow seasonality associated with 
snowmelt-influenced catchments
One geographically distinct group of catchments that start in 
cluster 3 (late season baseflow) in the earlier time block 
(Fig. 5(a)) are 24 catchments in Scotland. The BFI of these 
catchments is shown in Fig. 5(b). These catchments have BFI 
values typically in the range 0.4 to 0.7, rather than the higher 
BFI associated with the majority of the groundwater- 
dominated catchments in cluster 3 located in the southeast 
of England primarily on the Chalk (BFI typically >0.9). These 
Scottish catchments are mostly in locations with relatively 
high elevation (mean elevation greater than the 80th percen-
tile of GB catchments, 315 m, for all but four of these catch-
ments) and have a correspondingly high fraction of 

precipitation falling as snow (greater than or equal to the 
80th percentile for GB catchments).

Of the 24 Scottish catchments, 20 move to cluster 1 (the 
earliest seasonal baseflow), three move to cluster 2 and one 
stays in cluster 3 in the later time block, and it is inferred that 
the catchments that move from cluster 3 to earlier clusters are 
associated with earlier snowmelt associated with long-term 
warming in these high catchments. Figure S2 in the 
Supplementary material shows that warming January tempera-
tures for the selected catchments over the two time blocks are 
consistent with the snow melting at an earlier time in the year: 
Fig. S2(a) shows an increase in median January temperature 
and Fig. S2(b) shows an increase in the proportion of days with 
temperature over 0°C between the two time blocks. The only 
catchment to stay in cluster 3 (with the latest timed peak) in 
the later time block is the catchment with the lowest tempera-
ture, highest elevation and highest proportion (17%) of pre-
cipitation as snowfall. The movement from cluster 3 to cluster 
1 for many of the selected catchments indicates a large change 
in the timing of the peak in annual baseflow (median change 
~87 days), consistent with higher temperatures contributing to 
earlier melting of the snowpack. This observation is consistent 
with similar observations from North America (Barnett et al.  
2005, 2008, Leppi et al. 2011, Kormos et al. 2016) and with the 
findings of Pohle et al. (2019) who have shown that, over the 
period of analysis of this study, increased air temperature due 
to climate warming has led to earlier snowmelt across the 
Scottish Highlands.

4.2.2 Other controls on changes in baseflow seasonality
In addition to the Scottish catchments described above, 73 
catchments show a change to earlier baseflow seasonality 
between the time blocks (Fig. 3(d)) and, unlike the 

Figure 5. (a) Map denoting the selected Scottish catchments that start in cluster 3 in time block A (marked as cluster 3S). (b) Box plot of baseflow index (BFI) of the 
selected catchments, split according to their cluster allocation in time block B.
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Scottish catchments, these catchments that move to earlier 
baseflow seasonality have a wide spatial distribution across 
large parts of GB. Two approaches have been used to 
investigate what may be controlling this systematic change 
to earlier baseflow seasonality in these catchments across 
GB: a paired catchment approach and an analysis of 
changes in the timing of peak seasonal baseflow.

Given the first-order control of BFI and catchment char-
acteristics on baseflow seasonality (Section 4.1.1), we first 
used three sets of paired catchments with different cluster 
allocations and contrasting changes (or not) in cluster allo-
cation to investigate whether there is evidence for catchment 
controls on the move to earlier baseflow seasonality (see 
Supplementary material Table S6 and Fig. S7 for details of 
the paired catchments and results). From the paired catch-
ment study, there was no evidence of systematic control of 
catchment characteristics on cluster allocations and changes 
in cluster membership. Instead, we found that all catch-
ments exhibit an earlier seasonality at the second time 
block regardless of whether a site changes cluster member-
ship with time when details of the monthly baseflow curves 
are considered. Thus increased temporal granularity 
(beyond early-, mid-, and late-season functional clusters) 
in the seasonal analysis may be useful in exploring controls 
on changes in baseflow seasonality.

As the paired catchment analysis has indicated that 
changes in baseflow seasonality without a corresponding 
change in cluster allocation may be affected by factors 
other than catchment characteristics and to provide 
increased temporal granularity to the analysis, the timing 
of the peaks in the baseflow curves is identified for each 
location and time block and compared with comparable 
plots for precipitation, temperature, and effective rainfall to 
investigate whether changes in the seasonality of climate 
variables may be influencing changes in baseflow seasonal-
ity. This is shown in Fig. 6 where the direction of change in 
the seasonal peak timing and magnitude for each of the 
variables is mapped across GB.

The majority of the symbols have a red outline in Fig. 6 
(d), indicating that most catchments across GB are exhibit-
ing an earlier peak in baseflow in the second time block 
compared to the first, by up to a month. Conversely, there 
are a few catchments, indicated by light blue triangles mostly 
situated in western, northwestern and northern GB, along 
with a few catchments near London that exhibit later base-
flow peaks (by up to a month) in the second time block 
compared with the first. Most of these catchments with later 
peaks in baseflow in the second time block are in an area 
predominantly allocated to cluster 1 in both time blocks. 
This could indicate that there is a limit to how early the 
peaks of the baseflow curves can be, as curves that are 
already early do not see a shift to an earlier peak in annual 
baseflow. Note that the Scottish catchments that have been 
inferred to be affected by snowmelt processes (Section 3.2) 
show peak seasonal baseflow more than 1 month earlier in 
the second time block compared with the first time block 
(Fig. 6(d)).

The predominant change in precipitation is to earlier 
peaks (Fig. 6(a)), except for locations in western Scotland 

where there is evidence for some later peaks in precipitation 
seasonality. This tendency to earlier peaks in precipitation is 
strongest (indicated by dark red filled triangles) in the east 
of GB. There is very little change shown in the timing of 
peaks in temperature seasonality (Fig. 6(b)): either the peaks 
are slightly later or there is no change. The map of change in 
effective rainfall (Fig. 6(c)) shows regions of later seasonal 
peaks in the western, northwestern and northern GB and in 
the far southeast of GB, with a band of earlier peaks in 
lowland southern, central and eastern England and up to 
the east of Scotland. There is a strong similarity in the 
overall patterns of changes in peak timings of the effective 
rainfall and baseflow seasonal curves in Fig. 6(c,d) (with the 
exception of a greater tendency for a change to later effective 
rainfall in the far southeast of England compared with gen-
erally earlier baseflow seasonality). Lin’s concordance coeffi-
cient for the respective changes in peak timing of the 
baseflow compared with the effective rainfall is 0.40, whereas 
comparing the changes in peak timing of baseflow to pre-
cipitation and temperature yields coefficients of 0.00 
and −0.01.

In summary, unlike Tan et al. (2020), we have found no 
evidence for an association between changes in the seasonality 
of baseflow with changes in the seasonality of either precipita-
tion or temperature. However, from Fig. 6(c,d), and given Lin’s 
concordance coefficients, there is some evidence that changes 
in the seasonality of effective rainfall may be associated with 
changes in baseflow seasonality across the study area. Changes 
in the seasonality of PET are driven at least in part by long- 
term warming across the UK (Kay et al. 2013, Watts et al.  
2015). This association is consistent with the vegetation phe-
nology-mediated changes in PET proposed by Chen et al. 
(2022) under climate warming.

5 Discussion and conclusion

The baseflow separation method used in this work is the digital 
filtering approach (Ladson et al. 2013), which suits the task of 
performing separation for over 600 series using the same 
methodology. There are many different baseflow separation 
methods available, with different merits. As our work starts 
with the daily separated baseflow, then averages over the 
month, and finally averages over the years within the time 
block, the differences in baseflow separation results should 
not have a great influence on the results of the analysis. This 
is demonstrated in the Supplementary material Fig. S3 and 
Table S2, which include the clustering results calculated using 
the 5-day minima method of baseflow separation (Gustard 
et al. 1992). Those results show the same patterns as those 
detailed within this article.

Within this study, the data were split by year into two time 
blocks. This allowed for the comparison of the seasonal pat-
terns over time. Other choices of split could be applied to these 
data, such as shorter or overlapping time blocks. As the time 
blocks used are relatively long, and the median was used to 
summarize the values within the time blocks, the results should 
not be affected by occasional extreme years.

One of the key challenges we found when conducting this 
study was identifying clear links between changes in baseflow 
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seasonality and climatic, geophysical and water management 
catchment attributes. Catchment attributes included in large- 
sample datasets such as the CAMELS-GB dataset (Coxon et al.  
2020a) typically represent a snapshot (i.e. a specific year) or an 
average over time, rather than changes or trends. This hinders 
their application in large-sample studies when identifying con-
trols on changes in time. Changes to water management 
schemes and other changes to catchments over the analysis 
period that increased the responsiveness of catchments to 
precipitation, such as changes in land cover (including, for 
example, increased urban coverage) or stream conveyance, 
may also have contributed to the switch to earlier seasonal 
peaking of baseflows and should also be the focus for future 
research. This study highlights the need for future large- 
sample datasets such as the CAMELS family of datasets 

(Addor et al. 2017, Chagas et al. 2020, Coxon et al. 2020a), 
the related LamaH-CE large-sample dataset for Central Europe 
(Klingler et al. 2021), and the Caravan meta-dataset (Kratzert 
et al. 2023).

This application of FDA to seasonal data has shown differ-
ences over time in annual baseflow (shifting to earlier pat-
terns) that might not have been identified using other 
seasonal approaches such as trend identification following 
seasonal averaging. The clustering part of the methodology 
allows for discrete categorization of the time series, and 
catchments with large changes in seasonal baseflow can be 
identified as those changing cluster. However, the discrete 
nature of the clustering analysis can mask smaller temporal 
changes that are present in the functional representation of 
the annual series.

Figure 6. Changes in peak timing between the two time blocks: (a) six-month smoothed precipitation, (b) temperature, (c) effective rainfall (PPT − PET), (d) baseflow. 
Red-outlined upward-pointing triangles indicate locations with earlier peaks, white circles indicate no change, and blue-outlined downward-pointing triangles indicate 
later seasonal peaks. The shapes are filled with colour according to the magnitude of change (in months).
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The FDA methodology is well suited to annual patterns as 
the fitted curves can be defined as cyclic so that the end of 
the year continues seamlessly into the start of the next. Here 
the data are averaged over months before applying the func-
tional method; however, the daily data could also be used, as 
in Ternynck et al. (2017). The monthly averaging provides 
smoother starting curves for analysis. The months were also 
considered to be equally spaced through the year, which is an 
approximation. However, whilst the ability to compare the 
seasonal distributions of the data is a key factor of this work, 
standardizing the curves also limits the information available 
to the distribution over the year and not the absolute values. 
This is related to the application of the FDA method to 
standardized shapes in this work and is not a feature of 
FDA approaches in general. Means and different variances 
can be included in FDA but would have distracted from the 
seasonal patterns in this work. It is also noted that for this 
application, the cluster means are of similar shapes but dif-
ferent timing so the clusters are described as earlier and later 
versions of the annual pattern, but this will not always be the 
case for the resulting clusters. In other applications where the 
curves (seasonality or other series) are of different shapes, the 
categorization of clusters would focus on shape rather than 
timing.

Our application of FDA has shown that membership of 
functional clusters of similar seasonal baseflow curves is 
strongly linked to catchment characteristics. Here we have 
shown that elevation and geological and soil attributes can be 
used within a partition tree to correctly classify 76% of the 
catchments into clusters in the first time block. However, 
change in climate, and specifically warming, is the first- 
order effect on changes in baseflow seasonality. For snow- 
influenced catchments in GB, there has been a shift towards 
earlier baseflow seasonality inferred to be due to earlier 
snowmelt associated with global warming. For other catch-
ments, there is a geographical association between a shift to 
earlier seasonal effective rainfall and earlier seasonal 
baseflow.

This FDA approach to identifying patterns of seasonal 
distribution of hydrological variables is not specific to the 
GB catchment data in CAMELS-GB. This method could also 
be applied to other hydrological or climate time series to 
identify similarities and changes over space and time. 
A natural extension to this work would be application to 
further CAMELS (Addor et al. 2017) and related datasets in 
other countries and regions. It has been shown that the FDA 
approach described here is a potentially powerful data-driven 
analytical tool to identify and quantify hydrological changes 
as a precursor to designing subsequent research and models 
to address specific process-based questions, such as elements 
of the causal cascade of process from changing phenology, 
through changing evapotranspiration and associated effective 
rainfall to changes in recharge, flow and discharge within 
catchments.
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