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dashboard using Edge AI at sea
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Eric Payne1, Joseph Ribeiro1 and James Scott1
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2The Alan Turing Institute, London, United Kingdom, 3National Oceanography Centre,
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We describe RAPID: a Real-time Automated Plankton Identification Dashboard,

deployed on the Plankton Imager, a high-speed line-scan camera that is

connected to a ship water supply and captures images of particles in a flow-

through system. This end-to-end pipeline for zooplankton data uses Edge AI

equipped with a classification (ResNet) model that separates the images into

three broad classes: Copepods, Non-Copepods zooplankton and Detritus. The

results are transmitted and visualised on a terrestrial system in near real time.

Over a 7-days survey, the Plankton Imager successfully imaged and saved 128

million particles of the mesozooplankton size range, 17 million of which were

successfully processed in real-time via Edge AI. Data loss occurred along the

real-time pipeline, mostly due to the processing limitation of the Edge AI system.

Nevertheless, we found similar variability in the counts of the three classes in the

output of the dashboard (after data loss) with that of the post-survey processing

of the entire dataset. This concept offers a rapid and cost-effective method for

the monitoring of trends and events at fine temporal and spatial scales, thus

making the most of the continuous data collection in real time and allowing for

adaptive sampling to be deployed. Given the rapid pace of improvement in AI

tools, it is anticipated that it will soon be possible to deploy expanded classifiers

on more performant computer processors. The use of imaging and AI tools is still

in its infancy, with industrial and scientific applications of the concept presented

therein being open-ended. Early results suggest that technological advances in

this field have the potential to revolutionise how we monitor our seas.
KEYWORDS

plankton imager, real time, plankton ecology, Edge AI, Pi-10, plankton classification,
machine learning, adaptive sampling
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1 Introduction

Plankton are fundamental in many processes of aquatic

ecosystems. Photosynthesizing plankton (phytoplankton) play a

key role in carbon flux, being responsible for more than 45% of

Earth’s photosynthetic net primary production (Field et al., 1998).

Through absorbing carbon dioxide from the atmosphere, they

provide organic carbon to the water column and thus sustain all

aquatic life. Animal plankton (zooplankton) are located at the

interface of the so-called “lower” and “upper” trophic levels, often

controlling the primary producers by grazing, and providing food

for many important larval and adult fish and ultimately seabirds

(Lauria et al., 2013; Pitois et al., 2012). From absorption of

atmospheric carbon to sinking of organic particulate matter,

plankton are key to the functioning of ocean carbon storage via

the biological pump. Plankton are sensitive to environmental

changes due to their short life cycles, and as such, changes in

their abundance, biomass, community, and size structure are

important indicators of overall ecosystem status (Edwards and

Richardson, 2004; Gorokhova et al., 2016; Serranito et al., 2016).

Decades of laboratory and field investigations have shown major

impacts of changing oceans on phytoplankton and zooplankton

physiology, community composition, and distribution, and their

resulting influence on both biogeochemistry and productivity of the

oceans (Pitois and Yebra, 2022; Ratnarajah et al., 2023). It is

therefore critical to further our understanding of how plankton

community structures and abundances are changing, as it informs

about their likely response, and associated effects on ecosystem

dynamics, to climate change.

To date, more is known about the ecology of phytoplankton as

their habitat is close to the surface ocean and their fluorescent

pigmentation allows assessment of their dynamics on a global scale

from satellites (Dierssen and Randolph, 2013). While indirect

methods using satellite data have also been employed to map

zooplankton populations in general [e.g., Strömberg et al. (2009)],

zooplankton cannot typically be monitored from satellites as their

distribution covers the full ocean depth and can hence not be picked

up from space. Furthermore, zooplankton vary in size from a few

micrometres (i.e. micro-zooplankton) up to metres for larger

jellyfishes and from robust crustaceans to extremely fragile

gelatinous species. They also exhibit extremely diverse behaviours,

daily and seasonal vertical migration, and different feeding,

reproductive, survival and escape strategies. The resulting

difficulty in collecting zooplankton data means that our

knowledge of their biomass, size composition and rates of

production globally remains fragmented, often restricted to the

few dedicated monitoring sites and surveys (Mitra et al., 2014;

Giering et al., 2022).

Traditionally, zooplankton are sampled using nets of varying

designs (Wiebe and Benfield, 2003). Following collection, the

sample needs to be preserved in chemical solution before being

transferred to the laboratory where an expert taxonomist uses a

light microscope to identify and enumerate the species in the

sample. Both sample collection and analysis are labour intensive,

time-consuming, and thus costly processes (Benfield et al., 2007).

Recently, a suite of cost-effective tools has been developed to
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improve marine monitoring networks (Borja et al., 2024;

Danovaro et al., 2016). In particular, imaging instruments have

received a high level of interest for the identification and

quantification of zooplankton organisms, in part due to their

ability to provide rapid and unbiased data that can be stored

digitally. Thus, they offer the opportunity to help overcome many

of the limitations that characterise traditional methods of collecting

and analysing zooplankton samples.

The first image analysis computerised systems that were

considered a potential alternative to the manual zooplankton

sample processing started to appear in the 1980s (Jeffries et al.,

1984; Rolke and Lenz, 1984). Shortly after, the Video Plankton

Recorder (VPR: Davis et al., 1992) was developed. The VPR was the

first in situ optical system aiming to collect zooplankton images

continuously and automatically, with sufficient quality high enough

to allow for crude taxonomic classification in near real time. The

continuous nature of the instrument resulted in high numbers of

images collected over short periods of time, which necessitated an

automated approach to plankton recognition (Tang et al., 1998).

Whilst technology provided an increased data collection rate, image

quality, timely image processing and image classification remained

a challenge. Subsequent advances in image acquisition hardware,

computer power and development of machine learning algorithms

allowed for the development of ever more performant systems.

Today’s imaging systems (Lombard et al., 2019) include bench

instruments such as the ZooSCAN (Gorsky et al., 2010; Grosjean

et al., 2004) (see also www.hydroptic.com) or Flowcam (Le Bourg

et al., 2015) (see also www.fluidimaging.com), instruments

deployed in situ to collect underwater images, such as the

Underwater Vision Profiler (UVP: Picheral et al., 2022, Picheral

et al., 2010), and in-flow systems, such as the Plankton Imager

(Pitois et al., 2018).

One holy grail of pelagic studies is the ability to monitor

plankton along environmental variables in real-time rather than

near real-time, just as oceanographers use sensors for real-time

measurements of physical parameters such as temperature and

conductivity. Such instant insights are needed to quickly respond

according to observed changes, for example to adjust data collection

strategies during a survey or respond to harmful events [e.g.

Harmful Algae Blooms events: Kim et al. (2021); Kraft et al.

(2022), jellyfish blooms: Mcilwaine and Casado (2021)]). Whilst

the number of studies working to achieve adaptive sampling from

real-time plankton imaging and analysis has increased in the last

few years, procuring the necessary computing power to do this at

sea remains challenging. Furthermore, imaging instruments have

the ability to collect large quantities of data, allowing for sampling at

fine spatial and temporal scales, and over large areas, but thereby

creating a “big data” problem. There are too many images for a

human to examine and classify, too many to transmit from a ship to

a terrestrial data centre and the number of files can be challenging

even to store on local digital storage systems. Bottlenecks are

created soon as images are collected faster than they can

be processed.

Deep-learning techniques (LeCun et al., 2015) can enhance

classification accuracy while significantly reducing reliance on

human annotation (Masoudi et al., 2024) and have the capability
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http://www.hydroptic.com
http://www.fluidimaging.com
https://doi.org/10.3389/fmars.2024.1513463
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pitois et al. 10.3389/fmars.2024.1513463
to achieve real-time high-accuracy plankton classification for long-

term in situ monitoring by making computations more efficient,

specifically on high-performance GPU hardware that has recently

become more accessible. This was exemplified by Guo et al. (2021),

who integrated deep learning methods with digital inline

holography, to create a rapid and accurate plankton classification

of commonly seen organisms; and Kraft et al. (2022), who created a

data pipeline that allows near-real-time automated classification of

individual phytoplankton images collected from flowcytometry.

and using a Convolutional Neural Network (CNN) algorithm.

Schmid et al. (2023) further deployed a deep learning algorithm

on an edge server which made real-time plankton classification and

visualisation at sea possible. Edge AI allows the computation

necessary for image processing to occur on a computer close to

the point of collection rather than centrally in a cloud computing

facility or data centre. Therefore, only information extracted from

the collected and processed images need to be transferred to the

cloud, thus reducing the data transfer rate required to keep up with

the collection rate.

Here, we describe RAPID: a Real-time Automated Plankton

Identification Dashboard. It is an end-to-end flow for zooplankton

data, using Edge AI for automated classification of images and

transmission of results to a terrestrial system in near real time. The

system was deployed with the Plankton Imager (Pi-10), an

automated images system that is connected to a ship’s seawater

supply and collects high frequency plankton images as the vessel is

underway. We aim to demonstrate the value of rapid zooplankton

assessments and visualisation in real time, by comparing its results

to those obtained from a post survey processing, i.e., without the

advantage of near real-time.
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2 Materials and equipment

The Pi-10 is the latest iteration of the Plankton Imager (PI),

following an upgrade of the 10 µm pixel camera. The PI, a high-

speed colour line scan-based imaging instrument available from

Plankton Analytics Ltd (https://www.planktonanalytics.com), has

previously been described as part of several ecological studies (Pitois

et al., 2021; Pitois et al., 2018; Scott et al., 2021; Scott et al., 2023).

The instrument is a sealed unit (to protect it from dust and

humidity) that can be easily connected to any platform with a power

and water supply. If the water intake design on the platform cannot

provide water at a sufficient flowrate, a pump can be added along

the water pipeline. Once the set-up has been established (i.e. power

and water connections), the system can easily be plugged in and out

as needed. When deployed on the Research Vessel Cefas

Endeavour, the Pi-10 is connected to the ship’s water supply, with

water continuously pumped through the system from a depth of

4 m as the ship is underway and can take images of all particles

within a size range of 10 µm to 3.5 cm passing through a cell at a 34 l

min−1 flow rate. Colour images are captured using an EPIX E8

frame store and RGB composite images are constructed by joining

consecutive lines together, thresholding and extracting a region of

interest (ROI), or vignette, that is saved to a hard drive as a TIF file

(Figure 1). Each TIF image is time-stamped and named in the

convention of date + imageID.tif. For easier viewing and processing,

raw images are converted from 12 to 8-bit resolution through a

process of scaling. The Pi-10 can work continuously throughout a

survey, thus imaging a huge number of particles passing through

the flow-cell. Due to operational requirements (continuous image

processing while maintaining manageable file-size), only those
FIGURE 1

Example of images (not to scale) collected by the Pi-10.
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particles within the mesozooplankton range 180 µm – 3.5 cm were

processed and saved.
2.1 System design

RAPID consists of a Plankton Imager Pi-10 instrument

connected to two computers. The first computer (the “Edge AI”)

is an NVIDIA Jetson AGX Orin, used for image processing and

classification. Every 1 minute, the NVIDIA Jetson sends summary

data (counts of Copepods, Non-Copepods and Detritus) to a

terrestrial digital dashboard hosted in the cloud, via the ship’s

broadband satellite communication systems. The second computer

is a laptop (the “storage system”) used to store images on a solid-

state drive (SSD). We use SSDs from Microsoft (Microsoft Azure

Databox Disk, https://learn.microsoft.com/en-us/azure/databox/

data-box-disk-overview) because they can be shipped to Microsoft

post survey, who then transfer their data to cloud storage for

subsequent processing in a machine learning environment. The

processed data can then be stored on local servers. A high-level

design schematic is shown in Figure 2.
2.2 The classifier

In 2021, The Alan Turing Institute (London, UK) hosted a Data

Study Group to look at the problem of automated plankton

classification (Data Study Group, 2022). A dataset of labelled

images (n = 56,991) collected with the plankton imager PI,

consisting of Copepods (n = 10,275), Non-Copepods (i.e. other

zooplankton, n = 6,716), and Detritus (n = 40,000) was assembled

by plankton taxonomists. Copepods were selected as a group due to

their prevalence within zooplankton communities, their importance
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as food for higher trophic levels, in particular juvenile stages of

commercial fish species, and their distinctive shape. The dataset was

split into training images (n = 51,309) and test images (n = 5,682). A

ResNet 50 model (He et al., 2016) was implemented in Python

language using TorchVision library with default number of weights

for the three classes. The model was trained for 25 epochs on a

40,000:11,309 training-validation split . Training took

approximately eight hours on an NVIDIA GeForce GTX 1050 Ti

graphics processing unit. Accuracy results of 94-99% were obtained

across all label levels when comparing the proposed ResNet

architecture with baseline models (74-92% accuracy).

Deployment of this ResNet 50 model on new data collected by

the PI looked promising, but accuracy and reliability diminished

when the camera system was upgraded for the latest iteration of the

plankton imager instrument Pi-10. This necessitated a new classifier

which was developed in 2023 following the creation of a dataset of

labelled images collected with the Pi-10 (n = 145377), consisting of

Copepods (n = 6948), Non-Copepods (n = 1807), and Detritus (n =

136622). A ResNet 18 model was trained using transfer learning

(Huh et al., 2016) and weighted cross-entropy (Ho and Wookey,

2019). Eight different versions of the ResNet model were validated

on the test set. Each class’s performance was determined from

calculating the parameters Precision, Recall and F1 score. Precision

is the proportion of true positive predictions relative to all predicted

positives. For example, precision quantifies how many of the images

classified as Copepods were actually Copepods. Recall is the

proportion of actual positives correctly identified. For instance,

recall measures the ability of the model to correctly classify all

Copepod samples as Copepods. F1 Score is the harmonic mean of

precision and recall, which balances these metrics and is particularly

useful for imbalanced datasets. F1 is sensitive to both false positives

and false negatives, making it a comprehensive measure of

model performance.
FIGURE 2

RAPID Plankton hardware schematic. The Pi-10, connected to the water supply aboard the RV Cefas Endeavour (A) collects images of plankton
passing through a flow cell. The image stream is broadcast to an NVIDIA Jetson (B) where images are classified in real time. Summary statistics are

sent via satellite (C) to a digital dashboard (D) where they can be viewed in real time. Data from the Pi-10 are also written to an Azure™ data pack
(E) before being uploaded to blob storage where Azure ML is performed (F). Classified images and data are stored on local servers (G).
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After determining the above performance parameters, we used

macro-averaging to calculate the arithmetic mean for all the classes

to help select the best performing model. The macro-average

assigns the same weight to each class, regardless of the number of

instances, which makes this a good metric in imbalanced datasets.
2.3 Edge AI

The classifier described above is run in inference mode on an

NVIDIA Jetson AGX Orin running at 50W. Custom software was

developed in Python to i) handle the receipt of images via User

Datagram Protocol (UDP), ii) classify the images, and iii) send

summary statistics to the terrestrial digital dashboard, pushing data

to an Azure Service Bus queue. The queue is shared by the Python

application and the dashboard working on a publish-subscribe basis

with the Python application sending data as serialised JSON and the

dashboard receiving that data. The queue stores the information

durably, thus allowing for the dashboard to receive and process

information messages in the same order in which they were sent by

the Jetson custom software, but at different times and rates.

Development and refining of the Edge AI software is a continuing

process, with all versions recorded and shareable via GitHub

on request.
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2.4 Digital dashboard

Once dequeued from the Microsoft Azure Service Bus Queue,

summary statistics are entered into a SQL database and then

broadcast to a web application [Home page - Cefas RV

Dashboard (cefastest.co.uk)] that displays summary graphs on

counts and sizes of Copepods, Non-Copepods and Detritus

(Figure 3). The dashboard is interactive, and the user can select to

view additional graphs focusing on one class only rather than as a

stacked bar chart. If the ‘streaming’ option is enabled, users can

watch the map and the charts on the dashboard update in real time.

The dashboard is an Asp.Net Core application written in the C# and

JavaScript programming languages. The charts use the Chart.js

library and the mapping functionality uses Leaflet. The real-time

update capability is achieved using SignalR, a Microsoft library with

a front-end and a back-end component that wraps the WebSocket

functionality provided by modern web browsers.
2.5 Storage system

While the Edge AI system shares small packets of summary

statistics over the ship’s satellite data connection, raw unclassified

plankton images and associated GPS information are prohibitively
FIGURE 3

Screenshot of RAPID digital dashboard. (A) Menu barre for the user to select the data they wish to visualise, including time interval to group data
points. (B) Current location of the RV Cefas Endeavour and recent survey tracks. The user can select the option to view counts of Copepods, Non-
Copepods or Detritus on tracks. (C) The user can select what to visualise (i.e. counts or size of Copepods, Non-Copepods and Detritus) using a bar
chart, line or scatter plot and onto a linear or logarithmic scale.
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large to share in this way. These were instead saved locally to an

azure ‘data box’ encrypted SSD, which was periodically removed

and swapped out. The upload of the saved data to a data centre is

handled by Microsoft and destined for an Azure blob store. This

approach allowed for expandable encrypted storage with multiple

backups. The blob storage can be operated on via desktop-hosted

software or using scalable cloud-based computing. Both the

quantity of data stored and the rate at which it can be accessed is

scalable via the data storage subscription.

When handling images, the Pi-10 can be subject to internal

bottlenecks from RAM, ethernet, or hard drive write speeds. In

situations of high particle density in the sampled water, the Pi-10

hard drive cannot process the high number of images captured by

the camera. Thus, the data collection rate becomes faster than the

processing rate. When this situation arises, the instrument

computer is not capable of saving al l images, while

simultaneously recording the number of particles that passed

through the system. Images successfully captured and written to

disk are called “hits”, while images captured by the camera that

could not be saved to disk are called “misses”, both of which are

recorded. This is akin to subsampling, with more sub-sampling
Frontiers in Marine Science 06
required in areas or times of high particle density (Scott,

personal communications).
2.6 Evaluation of real-time data pipeline
and visualization

The system outlined above was deployed on the Cefas RV

Endeavour, from 17th to 23rd May 2024. The ship progressed

through the survey area, travelling from station to station where

it stopped for primary sampling activities (Figure 4). The Pi-10 ran

continuously during this 7-day and 5 hours period.

We explored the performance of the Edge AI in relation to that

of the Pi-10 system, by recording (1) the number and rate of

particles captured, and images saved onto disk from the instrument

(i.e. “hits” and “misses”), (2) the number of images processed via the

Jetson, and (3) the number of images received by the dashboard.

The results were compared to identify whether there was any data

loss along the pipeline, and whether any data loss would likely affect

inferences drawn from the data accessible from the dashboard. All

data captured by the Pi-10 were saved onto disk and sent to
FIGURE 4

Survey area and vessel tracks between 17th and 23rd May 2024. Red numbers indicate the date in May 2024 at the start of a new day.
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Microsoft for uploading onto Azure cloud storage. This dataset was

processed post-survey using the same classifier as that deployed on

the Edge AI Jetson, by batch classifying on a standard NC24ads

computer running an A100 processor (24 cores, 220 GB RAM, 64

GB disk). Outputs from both post-survey processing and dashboard

visualisation were aggregated in matching ten-minute time bins, for

exploration and comparison of abundances and distribution for the

3 groups: Copepods, Non-Copepods and Detritus. This was to

evaluate the performance of the Edge AI processing and real-time

visualisation. A chi-squared test was performed to test whether the

“observed” data used by the Edge AI corresponded with the

“expected” data from post-processing, or if the two datasets were

independent. This nonparametric test was chosen because our data
Frontiers in Marine Science 07
was bi-modal, likely due to whether bubbles were present in the

intake or not.
3 Results

3.1 Classifier’s performance

The classification (ResNet) model was optimised by

incorporating pre-trained weights and applied grid search to

adjust critical hyperparameters, such as the number of epochs

and learning rate. Out of the eight versions of the ResNet model

tested, the best-performing model, Model 8, consistently
FIGURE 5

Radar charts illustrating the performance comparison of classification models across (A) Precision, (B) Recall, and (C) F1-Score Metrics; and
(D) confusion matrix for model 8, selected as best overall performer. Each row of the confusion matrix represents an actual class example, and each
column represents the state of a predicted class. The numbers on the diagonal indicate the correct predictions for each class, while the off-diagonal
numbers show misclassifications between the classes.
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outperformed the other models, demonstrating superior

performance across the three metrics for precision, recall, and F1

score (Figures 5A–C). This model utilises transfer learning with a

ResNet-18 architecture, specifically trained on an imbalanced

dataset. To mitigate class imbalance, a weighted cross-entropy

loss function was applied, enhancing its ability to accurately

classify underrepresented classes. The selected model achieved a

macro-average F1-score of 89%. This high accuracy indicates that

the model effectively differentiates between various plankton classes,

such as Copepods, Non-Copepods, and Detritus, with high

precision. The confusion matrix (CM) shows above 90% True

Positives (TP) for all classes except the Non-Copepods class,

which shows 89.57% (Figure 5D).
3.2 Pi-10 instrument performance

The instrument worked continuously throughout the 7-day

survey (173 hours), capturing a total of 2,997,309,347 (just under

three billion) particles (Table 1). Of these, over 128 million were

saved to disk and shipped to cloud storage post survey (i.e. 4.28% of

the total). Particles successfully imaged and saved are called “hits”,

while the remaining images could not be saved and are called

“misses”. Misses are, however, still accounted for. The number of

particles captured by the camera ranged from 96 to 2 x 107 min-1,

including 96 to 6 x 104 hits min-1 (Figure 6). This translates to an

average particle detection rate of 300,663 min-1 and an average hit

rate of 12,875 min-1.

Much higher particle and associated image capture rates occurred

outside of stations (i.e. when the ship sails from one station to the next,

Figure 6B). When the ship was at station, therefore stationary or

moving slowly, we notice two things: firstly the numbers of particles

captured, imaged and processed by the Jetson were much lower than

when the ship was leaving the station to steam to the next one;

secondly, the number of particles captured always shot up when the

ship started travelling, to levels that are beyond the capacity of the

instrument. This capacity sits around 6 x 104 particles min-1 passing

through the system, beyond which particles stop being imaged

(i.e. misses) (Figure 7). Essentially, there were two clear populations

for the data falling at station versus in between stations, with respective

mean numbers of imaged particles being 206,272 and 299,452

min-1. A Wilcoxon rank-sum test yielded a p-value of 2 x 10-14,

indicating that this difference was almost certainly not due to chance.
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This supports our hypothesis that the difference was caused by

movement of the ship, which anecdotally is known to cause bubbles

in the Pi-10 water supply line. These bubbles were clearly visible on the

resulting images.
3.3 Edge AI performance

Over the 173-hour survey, 73 hours were identified as

‘downtime’. These were due to OS failure. After several hours of

continuous operation, OS freezes occurred at irregular times during

the survey. This was a known issue. The Python Edge AI software is

in early development, running on open-source Linux OS libraries,

which are themselves also subject to improvements and regular

changes. For this reason, long periods can be seen in Figure 6 where

no green line is present indicating the system was not running.

In the 100 operational hours the Jetson classified, measured,

summarised and transmitted summary statistics for between 100 and

8,000 images min-1, resulting in a total of 17.1 million images over the

duration of the survey (i.e. 13.3% of the images transferred from the Pi-

10) and an average processing rate of 2,833 images min-1. Similarly to

the Pi-10, the Jetson capacity was exceeded only when the system was

flooded with bubbles (Figure 6), therefore at the start of travel in

between stations. At these times, the imaged particles could not all be

processed by the Jetson, demonstrating that the Jetson maximum

processing capability was below that of the Pi-10. That capacity sits

around 8,000 images processed min-1 (Figure 8), beyond which images

were not processed and lost from the real-time pipeline, as the Jetson

software does not keep track of the number of images it receives.
3.4 Transmission performance

Over the 7 days and 5 hours duration, 73 hours were identified as

‘downtime’ when the dashboard did not receive any data for over 2

minutes. This is equal to a downtime of 42% and is a reflection of all

data losses due to the Jetson OS freezes and transmission losses

resulting from internet connection failure. In the absence of an

internet connection, the Jetson’s publishing service failed to initiate a

connection to the subscribing port. This exception was not handled

and consequently, the real-time system lost this data. As the system is

not designed to retain failed and unsent JSON summaries, this resulted

in some information loss between the Jetson to the dashboard. There
TABLE 1 Summary of transmission performance across the real-time data pipeline from capture of particles by Pi-10 camera to visualisation of
zooplankton metrics on dashboard.

Pipeline stage Event Number Success rate Reason for
data loss

Pi-10 instrument captures particles passing through system 2,997,309,347 – –

images taken saved to disk and sent to Jetson 128,349,510 4.28% Pi-10 performance

Jetson images processed by the Jetson and data sent via internet 17,100,000 13.32% Jetson capacity + OS freezes

Dashboard data received and visualised on dashboard 14,800,000 86.55% internet connectivity

overall pipeline particles captures and metrics visualised 0.50%
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were many occasions when the total number of particles transmitted to

the dashboard was lower than the number of particles classified by the

Jetson within a 5-minute time slot (Figure 9). This transmission loss

was not dependent on the Jetson processing capacity as the size of the

summary statistic packet is unrelated to the processed count but was

rather a reflection of internet availability.

Overall, the Pi-10 captured almost 3 billion particles and

successfully imaged over 128 million of them (4.28%). These

images were both saved to disk for post survey processing and

sent to the Jetson for real time processing using Edge AI. 17.1

million (13.25%) of the images received by the Jetson were

successfully classified and the resulting information sent to the

dashboard. Out of these information records, 14.8 million records

(87%) were successfully received and visualised on the dashboard

(Table 1). The overall output was 0.5% of particles captured by the

Pi-10 were successfully imaged, processed and the resulting

information sent for visualisation in real time. This suggests that
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the instrument capacity to image and save captured particles was

the biggest limiting factor, followed by the jetson capacity to process

the received images as well as its recurrent OS freezes, and finally

internet availability to allow for the dashboard to receive the

sent information.
3.5 Digital dashboard

Throughout the survey, the dashboard displayed a maximum

value of around 8,000 particles captured min-1 (Figure 10A), which

was set by the processing capacity of the Jetson and only reached at

times of likely bubbles injection through the system when the ship

started travelling. There were occurrences when the dashboard

didn’t display any results due to Jetson OS freezes and/or internet

connection failure, as described above. Overall, the majority of

particles were classified as Detritus (average 48.3%, varying from
FIGURE 6

Number of particles detected by the camera (red line), imaged and saved to disk (blue line), and processed by the Jetson (green line), per minute
over the duration of the survey (A) and a shorted extracted period between 2024-05-16 14:45:00 - 2024-05-18 16:00:00 UTC (B). The grey bands
indicate when the ship was at a station, so stationary or moving very slowly. A lack of green line indicates that the jetson did not process images as it
was interrupted due to the OS freezing and crashing the software.
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11% to 98%), followed by Copepods (average 33.3%, varying from

0% to 70%) and Non-Copepods (18.4%, varying from 0% to 88%)

(Figure 10B). The distribution of imaged particles differed when the

ship was at station and started travelling to the next station

(Figure 11), with Copepods being the majority class at station and

Detritus the majority class outside of station, thus suggesting that

bubbles were likely classified as Detritus.
3.6 Post survey processing

Following processing of the entire saved dataset, we extracted

575 10-minute bins matching the output of the dashboard between

2024-05-16 15:00:00 - 2024-05-22 23:50:00 for comparison. These

bins contained 14.5 million and 66.9 million images classified in real

time and post-survey, respectively. This large difference is a result of

the inability of the Jetson to process all the images saved by the Pi-

10 for transfer to the real-time pipeline.

At station, the Jetson processed all images sent by the Pi-10. As a

result, the output from Edge AI matched that of the dataset processed

post-survey through Azure machine learning compute jobs, showing

both similar dominant taxa (Figure 11) and counts (Figure 12). Outside

of station, when large spikes of bubbles flooded the system (Figure 6),

the resulting number of images exceeded the computing ability of the

Edge AI system, and consequently, the counts from the Edge AI and

post-processed results began to diverge (Figure 13). A Chi-square test

confirms this with a significant difference between the counts from the

two platforms (Azure and Edge AI) across the counts for Copepods,

Non-Copepods, and Detritus. With a Chi-squared value of 10,659 and
FIGURE 7

Log-log scatter plot of number of images successfully captured and
saved (i.e. hits) vs total number of particles captured by the Pi-10
camera per minute. The dashed red line indicates the maximum
capacity of the camera system with all particles detected
successfully imaged and saved. As the number of particles detected
increases beyond approximately 6 x 104 min-1, these stop being
saved (i.e. they are misses) and points on the plot start to deviate
from the red line, indicating that images are captured beyond the
capacity of the camera system.
FIGURE 8

Log-log Scatter plot of number of images classified by the Jetson in
real time vs. number of images successfully captured and saved, and
sent to the Jetson by the camera (hits). Both the Pi-10 and the
Jetson were set to a 60 second reporting interval, but clocks for
these intervals were not synchronised across systems.
Consequently, we binned data reported by the Jetson and the Pi-10
into 5-minute periods for comparison. Some degree of
dyssynchrony remained and the dots on the graphs can appear
marginally above the dashed red line. This line indicates that the
number of images classified by the jetson is equal to the number of
images received (i.e. the maximum capacity of the jetson). As the
number of particles detected increases beyond approximately 8,000
min-1, these stop being processed by the jetson and points on the
plot start to deviate from the red line, indicating the maximum
capacity of the jetson has been exceeded.
FIGURE 9

Scatter plot number of particles sent by the jetson to the dashboard
vs number of particles classified within 5-minute bins. The red
dashed line indicates that all particles classified in real-time are
successfully sent to the dashboard. ‘Transmission losses’ fall on the
right side of this line, where summary statistic totals within these 5-
minute bins do not equal the total number of particles known to
have been classified on the Jetson.
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a p-value smaller than 2.2 x 10-16, the result is highly significant. This

means the distribution of counts for these categories differs

substantially between the two platforms. Cloud computing and Edge

AI are not counting the categories similarly, so a null hypothesis of no

difference must be rejected. The adjusted residuals from the Chi-

squared indicate where these differences lie. Post-survey processing

counted significantly more Detritus (adjusted residual = 99.57) than

Edge-AI processing (adjusted residual = -99.57). Additionally, post-

survey processing returned significantly lower counts of Copepods and

Non-Copepods (adjusted residuals = -73.13, -26.81 respectively) than

Edge-AI processing (adjusted residuals = 73.13, 26.81 respectively).

These significant (>1.96) residuals indicate that the discrepancies

between the two platforms were not random but systematic,

suggesting that post-survey processing identified more particles as

Detritus in favour of the other classes. This is what we would expect

as post-survey processing is able to characterise bubbles which are

recorded to disk, but were overwhelming the Edge-AI system.

We note also that not only the Detritus class but also the

Copepods and Non-Copepods classes show ‘spikes’ when all

captured images are post-processed. Since the ResNet was not

trained with a class for bubbles, when presented with a bubble it

is forced to select one of the three categories. This suggests that

while bubbles are most likely classified as Detritus, they are also
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sometimes classified in the other two classes, thereby polluting the

results in all classes, but mostly those of the Detritus class.
4 Discussion

We have demonstrated a system capable of collecting and

processing plankton images from a flow-through system in real

time, with visualisation on a dashboard within a few minutes of

processing. The overall system underwent some substantial data

loss along the pipeline with 0.5% of particles captured by the Pi-10

successfully imaged, processed and sent for visualisation in real

time, compared to 4.3% of particles imaged and saved to disk for

post survey processing. Our results identified three areas where data

loss occurred: image collection with the Pi-10, image processing and

classification using Edge AI, and data transfer and visualisation.
4.1 Plankton imager

The first limitation resides within the Pi-10 capacity, with a

maximum rate of saved images recorded here around 6 x 104 min-1.

Over a period of 7 days, over 3 billion particles were counted, but only
FIGURE 10

Summary statistics transmitted by the Jetson, received, saved to Azure SQL database and visible on the plankton dashboard [Home page - Cefas RV
Dashboard (cefastest.co.uk)] (A) actual counts of Copepods, Non-Copepods and Detritus; (B) relatives counts.
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128 million could be imaged and saved, or 4.3% of all particles passing

through the system. There is no bias towards the type or size of

particles imaged and saved by the Pi-10, as the instrument simply stops

imaging as soon as it reaches its processing capacity and starts again

when memory has been freed (Scott, personal communications). This

is akin to subsampling.We note however that the Pi-10 worked beyond

its capacity only when the ship started its travel from one station to the

next. We attributed this to bubbles flooding the system, as a result of

increased turbulence in the water when the ship’s propellers started

rotating with increasing speed, and until the ship reached

constant speed.

A potential solution is the inclusion of a “bubble recognition

algorithm” to run at the imaging stage. While the number of

unwanted images (i.e. bubbles) saved would decrease, it is unclear

whether this would result in an increased rate of desirable images

saved, due to the additional processing needed. In other words, the

number of particles passing through the system would be the same

and the processing time saved on not saving images of bubbles would

likely be then spent on identifying them instead. Furthermore,

bubbles can obscure particles; therefore, it would be preferable to

physically remove them before they pass through the camera flow

cell. Our suspicion is that the bubbles are caused by the propeller

blades as they start rotating at increasing speed when the ship starts

moving at speed, and by the dynamic positioning system of the ship

causing aeration of the water in the intake. This issue could for

example be resolved by changing the position of the intake to a place

on the ship’s hull where the water has not yet become turbulent and
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mixed with air. This would, however, require amending the design of

the ship. Therefore, this solution is highly impractical at best, and

may produce new issues resulting from the extension of the water

journey through the pipes from the intake to the instrument.
4.2 Classification on Edge AI

We have built a reliable classifier that can process images fast

enough for real time output to be meaningful, and that can

therefore be used routinely. However, our classifier only has three

broad classes (Copepods, Non-Copepods, Detritus), so the ability to

process images fast and with a level of high confidence has been

achieved at the cost of taxonomic resolution.

Expanding the classifier to cover more taxonomic groups is

possible, and recently, the research community has been able to

access enormous plankton imagery thanks to the advent of high-

resolution in situ automatic acquisition technologies (e.g. Sosik and

Olson, 2007; Robinson et al., 2021). Nevertheless, acquiring unbiased

annotations is time- and resource consuming, and in situ datasets are

often severely imbalanced (Johnson and Khoshgoftaar, 2019), with

many images available for the most common species and few images

available for multiple rarer species. This problem can in part be solved

by using ImageNet [ImageNet (image-net.org)], a popular image

database for pre-training and transfer learning. Additionally,

adjusting the loss function to effectively reduce the impact of the

majority class during training, and the use of macro-averaging ensures
FIGURE 11

Dominant class along survey tracks from real-time processing via Edge AI (A) and post-processed data via cloud computing (B).
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FIGURE 12

Summary statistics resulting from processing of images with Edge AI (green line) and cloud computing post survey (red line): counts of Non-
Copepods (A), Detritus (B) and Copepods (C).
FIGURE 13

Violin and box plots for counts of Copepods, Detritus and Non-Copepods, computed on Edge AI and also via Azure cloud computing post-survey.
The two subplots show the distribution of counts when the ship is on station, and travelling between stations. Violin plots indicate data density using
Gaussian kernel smoothing and unbiased cross-validation to select the bandwidth of the kernel.
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that each class contributes equally to the overall performance

assessment, making it a robust metric for evaluating the classifier’s

generalisation capabilities across all classes. However, the feasibility of

deploying an expanded classifier for routine real-time applications

depends on various factors, notably, hardware processing capacities,

computational efficiency and deployment infrastructure.

Our results show that the biggest limitation is the processing

capacity of the Edge AI system (or Jetson), which was 13.3% that of

the Pi-10, or around 8,000 images min-1. An expanded classifier

would require more capacity, and either a more powerful processor,

operating multiple Jetsons in parallel, or accepting a lower rate of

images processing and data transfer for visualisation. The

requirements for high taxonomic resolutions will be dependent

on the specific purpose of collecting the data and those needs should

be balanced against the need to obtain reliable data fast.

In this study, the capacity of the Jetson was also exceeded only at

the time of bubbles flooding the system. Results suggest that bubbles

were most likely placed in the class of Detritus, but also polluting

the Copepods and Non-Copepod classes, because bubbles images

were not actual part of a training set. While removing bubbles from

the data as soon as they are detected by the Pi-10 seems either

impractical or an inefficient way of using computer resources, our

results suggest that the troublesome bubbles also distorted our

results. Therefore, identifying bubbles at the classification stage

would be useful to separate them from the Detritus and other

categories, even if this extra processing may slow down the data

flow and result in some additional data loss. Since bubbles are

distinctly opaque, smooth and symmetrical, multiple options exist

for computational bubble detection. The first and simplest solution

may be to require a minimum score before a class is accepted.
4.3 Data transfer and connectivity

Amajor challenge of transferring data from offshore locations is

having reliable internet. While we had some transmission losses

resulting from internet connectivity failure, this was relatively small

(13%) compared to the interruptions in data transfer from the

Jetson. The success rate of 87% is reflective of the ability to report

back “within the minute” given the current internet infrastructure

installed on the ship. When the internet becomes unavailable, the

Jetson is unable to retain unsent summary data packets which then

disappear from the pipeline. Internet connectivity is beyond our

control but there are mitigations that can be put into place, such as

defining an outgoing reporting data queue so that summary

statistics persist beyond the 5-minute reporting period. This

solution has been successfully implemented in a subsequent

survey, meaning unsuccessful transmissions are now backfilled

after the connection is reestablished. This of course means that,

when internet connectivity is lost, visualisation is not done in real

time anymore, but that is only a temporary feature and certainly

better than no visualisation at all.

The Jetson Operating System crashes posed a greater issue.

Those interruptions were related to the Jetson computer becoming

unresponsive rather than connectivity. Following this first

deployment and the results presented in this manuscript, two
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relevant changes have been implemented: Firstly, a limit has been

imposed on the maximum length of the image queue held in

memory on the Jetson computer. Thus, the Jetson now operates

similarly to the Pi-10, pausing saving images when the particle

capture rate exceeds its capacity. Secondly, the edge AI command

line tool includes an optional command line argument for –

subsampling_rate. This parameter can be carefully adjusted to

match the maximum throughput of the imager to prevent the

system from overwriting the ring buffer (images in memory).

Following those implementations, the Jetson has stopped freezing.

This is an improvement, however developing a dynamic

subsampling rate would be preferable. A dynamic subsampling

rate that is sensitive to the ring buffer state could theoretically

throttle throughput based on how full the buffer is, ensuring the

system benefits from both fair 1-in-n subsampling while making the

fullest use of the available computing power for inference.
4.4 Future improvements to mitigate for
bubble inference and data loss

Our system transmits images for both retention and real-time

classification, with the real-time classifier capable of processing a

fraction (i.e. 13.2%) of the number of photographs that can be

taken. Following this first study, we have successfully implemented

some software changes, as described above, to address issues with

the Jetson OS freezes and loss of internet connectivity.

We note however that data loss only occurred at the time of

bubbles flooding the system, sending both the plankton imager and

Edge AI over their processing capacity. Bubbles are inevitable

within a water flow and affected this system at two stages: 1)

when their numbers created bottlenecks within the data pipeline;

and 2) they polluted all classes, thereby distorting the final counts

within the processed classes. Consequently, our real time

visualisation produced satisfactory results, similar to those

produced post-survey on the entire dataset, only when the ship

was at station, or sailing at regular speed; That is, when there is no

surge of bubbles and when the number of images received remains

within its capacity of 8,000 images min-1.

While the processing power on the Edge AI system can be

scaled up to match that of the Pi-10, the plankton imager was itself

overwhelmed by bubbles when the ship started sailing, resulting in

its inability to image over 95% of passing particles over the duration

of the survey. In previous deployments on the plankton imager

(Pitois et al., 2018, Pitois et al., 2021; Scott et al., 2021), data

collection occurred at stations only, and thus, bubbles didn’t create

any issues. Scott et al. (2023) were the first to use the instrument to

record data continuously, but bubbles, whilst present at time, were

not particularly noticeable within the data. The reasons for this

discrepancy are unclear but likely related to the vessel speed which

can vary depending on survey requirements. It is therefore our first

encounter with the issue of troublesome bubbles creating

problematic incursions.

As the Pi-10 records hits andmisses, it is possible to apply a scaling

factor later at the processing stage. But, unlike the Pi-10, the Jetson did

not record the number of images it didn’t process, and therefore the
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data visible on the dashboard could not be scaled up to take into

account any subsampling. This flaw has since been addressed by

implementing the software changes described above. As the Jetson

can now record the number of hits and misses within each data packet

it sends to the dashboard, the total amount of subsampling can be

calculated and the published information scaled up accordingly. While

images themselves can vary in sizes and require more or less time to be

processed, all resulting summary statistics are sent to the service bus

queue in the form of information messages, all of the same size. These

are subsequently dequeued and received by the dashboard in a

sequence of the same order in which they were sent, but at different

times. There is unlikely to be a bias created during this sequential

process within images that cannot be processed by the Jetson at times

of over-capacity. We can therefore consider this step also akin to

subsampling, occurring when the Jetson operates beyond its processing

capacity, and making the application of a scaling factor based on hits

and misses is appropriate.

In theory, the processing power installed on the Pi-10 can also

be scaled up to cater for bubble surges, and matched by that of the

Edge AI, but this is conditional on substantial financial investments.

Inevitably, such costs will decrease in the future. In the short term,

to address data loss from Jetson and internet connectivity failures,

we have already implemented changes and improvements as

described above. Potential solutions to deal with bubble surges

were discussed earlier and we suggest that training our classifier to

include a bubble class is the way forward, to prevent bubbles

polluting all other classes. These important steps can transform

the dashboard from a qualitative real-time visualisation tool to one

that works mostly uninterrupted and produces reliable quantitative

results that can be used for real-time applications.
4.5 Limitations and strengths

Even if we implement the above suggested improvements,

including a class specific for bubbles embedded within the

existing algorithm, bubbles will still remain a problem for

overlapping particles when present in high densities. A physical

solution will need to be found at some point in the future, so as to

remove them from appearing in the water flow altogether. While it

is currently impossible to quantify the amount of misclassification

induced by bubbles and their overlapping particles, due to the sheer

quantity of images, separating bubbles from the rest of the data will

be easy to implement, and should allow for real or near real-time

visualisation of crude plankton groups abundances and biomass

continuously throughout a survey. For more detailed classification

and analysis post-survey, we recommend dismissing bins of data

collected when the capacity of the Pi-10 was exceeded as these most

likely relate to bubbles flooding the system. Such bins are easily

identified from the number of returned misses, as on Figure 6.

While this would leave gaps within the continuous data, the

resolution obtained should still be satisfactory for the great

majority of monitoring needs.

Even with noted improvements, our method does not currently

provide the ability of monitoring species biodiversity and associated

changes in real time, but it is always possible to deploy an expanded
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classifier at a later date on the full dataset uploaded onto cloud

storage, while making the most of the real-time information

provided: densities for broad taxonomic Copepods and Non-

Copepods groups, their size distribution and biomass. There are

three immediate applications for which our method is appropriate:

Firstly, the monitoring of trends and events at fine scales [e.g.

plankton patchiness, Robinson et al. (2021)], thus making the most

of the continuous data collection (Scott et al., 2023); Secondly,

helping select sampling parameters and intensity at location

depending on changes noted, the dashboard being the first point

where changes are noted as they are happening. This is the concept

of adaptive sampling, where data collection can be adapted to target

parts of the ecosystem at certain time and space according to

changes noted in real-time. For example, a surge in the

abundance of Copepods and/or their size distribution could

indicate changes in the conditions of prey for commercial fish

(Pitois et al., 2021) and for which further data collection (fish and

others) might be required to understand what is happening.

Thirdly, to inform the selection of data to be further processed

via cloud computing post survey. This last point is connected to the

previous one: when changes are happening, it may be decided to

fully process the images to understand any potential cause and

process behind those changes. For example, running an expanded

classifier on the cloud computing platform on a selected relevant

subset of the entire dataset. Equally, if no change is noted at all,

there may be little interest or need for further processing post-

survey in the short term at least.

A key advantage of the use of our Edge AI system is its relatively

low cost and ease of use: the Jetson is compact, requires low

financial investment and is easy to deploy. There is also no

financial cost associated with image processing, as is the case

when operating in a cloud computing environment. In this

particular study, processing our entire datasets of 128 million

images using Azure cloud computing took 5 days on a $4/hr

compute instance, equivalent to a total of ~$500. While this

appears relatively small, and good value for money, it would

likely not be regarded as sustainable as a continuous use or use as

default for all surveys. That being said, it is important to archive all

images collected. As technologies improve and become more

affordable, it will be possible to process or reprocess those

datasets using the latest data analytics tools.
5 Conclusion

We have demonstrated a system capable of collecting and

processing plankton images from a flow-through system in real

time, with online visualisation within a few minutes of processing.

Expanding the resolution of the classifier in real-time to include

more detailed taxonomic groups could improve its value for

biodiversity studies. This would require addressing issues such as

the availability of high-quality labelled data, imbalanced class

distributions, and the increased computational demands of a

more complex model. Additionally, incorporating methods to

handle uncertainties in predictions and adding a dedicated class

for bubbles could help mitigate noise and further enhance accuracy
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in real-time applications. While applications of the systems are

currently limited to non-biodiversity studies, gradual improvement

of classifier models seems both unavoidable and inevitable given the

rapid pace of improvement in AI tools. It is anticipated that more

performant computer processors will be soon available that can

cater for an expanded classifier to be deployed as part of our Edge

AI pipeline. The Plankton Imager has been used for several years

and its value for application to ecological studies has already been

evidenced (Pitois et al., 2018, Pitois et al., 2021; Scott et al., 2021,

Scott et al., 2023). The use of imaging and AI tools is still in its

infancy, but early results suggest that technological advances in this

field have the potential to revolutionise how we monitor our seas

(Giering et al., 2022). Further industrial and scientific applications

of this instrument are open-ended. It is only by continuing to collect

and better classify image data from this new instrument that we will

uncover the insights it offers, especially at the near-metre resolution.
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