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A B S T R A C T

Groundwater contamination is a considerable threat to public health in many regions of the world. Strong 
seasonal variation in monsoon-affected regions can have significant effects on groundwater quality, yet these 
variations are not fully understood. Using excitation-emission matrix (EEM) fluorescent spectroscopy, we explore 
the seasonal dynamics of dissolved organic matter (DOM) composition along a transect in West Bengal, India. 
Groundwater, river water and ponds were sampled (n = 59) on a weekly/fortnightly basis, from the onset of 
monsoon to late-July, to gain an understanding of DOM temporal dynamics in aquifers at a critical point in 
seasonal hydrological conditions. Several fluorescent DOM (fDOM) components and indices were used to infer 
the source and nature of DOM. Although dissolved organic carbon (DOC) remained consistent throughout the 
sample timeframe, precipitation-associated spikes in fluorescence index (FI), specific ultraviolet absorbance 
(SUVA254) and redox potential (Eh) likely point towards rainfall-induced increase of autochthonous DOM and the 
increase of microbial metabolic activity in response to oxygenated recharge. We suggest that observed fluctu
ations in organics were associated with concomitant changes in redox- and solubility-controlled elements (e.g. Fe 
and Mg), thus having wider implications on groundwater geochemistry and particularly the mobility of redox- 
and organic-sensitive solutes.

1. Introduction

Deterioration of groundwater quality presents a significant threat to 
global water security (Lapworth et al., 2022; McDonough et al., 2020). 
Compounds that comprise dissolved organic matter (DOM) play a 
fundamental role in aqueous systems by providing a substrate for 
microbially mediated processes (Aftabtalab et al., 2022; Postma et al., 
2007; Rowland et al., 2007; Wallis et al., 2020) and altering water 
chemistry (Brailsford et al., 2017; Qualls and Richardson, 2003). Of 
particular relevance to human health, DOM can alter the mobility of 
organic pollutants (Evans et al., 2019) and trace metal(loid)s (Aftabtalab 
et al., 2022; Benedetti et al., 1996; Farooq et al., 2010; Islam et al., 2004; 
Kwak et al., 2024; Lawson et al., 2016; Mladenov et al., 2010; Postma 

et al., 2007; Ren et al., 2015; Richards et al., 2019a; Rowland et al., 
2007; Schaefer et al., 2016; Wallis et al., 2020). Therefore, exploring the 
behaviour of DOM in aqueous systems proves to be an important step in 
understanding the quality of groundwater resources.

Understanding DOM in the environment is impeded due to its 
inherent chemical complexity and non-specific nature. Traditionally, 
DOM has been quantified by bulk methods, e.g. total organic carbon 
(TOC) or biological oxygen demand (BOD), and further characterised by 
spectrometry and/or chromatography, e.g. liquid chromatography-mass 
spectrometry (LC-MS), Fourier transform infrared (FTIR) spectroscopy 
(Berthomieu and Hienerwadel, 2009) or nuclear magnetic resonance 
(NMR) spectroscopy (Dittmar and Paeng, 2009; Matilainen et al., 2011), 
but these methods are resource-intensive (Leenheer and Croué, 2003).
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Recent analytical advance based on the fluorescent properties of 
DOM under UV light, namely fluorescence spectroscopy, has proven to 
be an insightful, comparatively inexpensive and rapid method for DOM 
characterisation (Kulkarni et al., 2017; McKnight et al., 2001; Mladenov 
et al., 2010; Murphy et al., 2013; Niloy et al., 2021; Osburn et al., 2017; 
Sgroi et al., 2017; Stedmon and Markager, 2005; Wünsch et al., 2019) 
and also an auspicious in-situ method of groundwater quality monitoring 
of DOM (Sorensen et al., 2020, 2021). Fluorescent DOM (fDOM) can be 
measured by recording the intensity of emission wavelength as a func
tion of excitation; the resultant three-dimensional excitation-emission 
matrix (EEM) can be used to characterise DOM source and nature 
(McKnight et al., 2001; Stedmon and Markager, 2005; Wünsch et al., 
2019). Importantly, this characterisation method can distinguish be
tween autochthonous (produced in-situ by microorganisms and aquatic 
macrophytes) and allochthonous (from degraded terrestrial material) 
DOM, for example (McKnight et al., 2001; Pagano et al., 2014).

The influence of seasonality on aqueous systems is well documented 
(Farooq et al., 2010; Jameel et al., 2023; Kulkarni et al., 2018; Luzius 
et al., 2018; Yang et al., 2020). However, while temporal changes in 
DOM composition in rivers have been extensively studied (Niloy et al., 
2021; Singh et al., 2020; Yamashita et al., 2011), groundwater has 
received comparatively less attention. Notably, certain studies have 
reported the prevalence of humic-derived components in groundwater 
following the onset of monsoon, compared to the non-monsoon season 
(Chen et al., 2018; Kulkarni et al., 2018; Wilson et al., 2023; Yang et al., 
2020). Evidence suggests that DOM alteration may be induced after 
precipitation events, as surface-derived substrates required for primary 
productivity are introduced into aquifers (Howard et al., 2003; Kuzya
kov, 2010; Sorensen et al., 2018b, 2021; Ward et al., 2021; Worrall and 
Burt, 2004; Worthington and Smart, 2017). This effect may be particu
larly pronounced in aquifers where there is substantial flow rate and 
surface-derived bacteria can travel hundreds of meters from source 
before attenuation takes place (Sorensen et al., 2018b; Worthington and 
Smart, 2017). Indeed, surface-derived ingress to groundwater has been 
demonstrated to be highly dependent on lithology (e.g. clay-versus 
sand-dominant; Richards et al., 2019b, 2017; Uhlemann et al., 2017) 
as well as borehole-induced bypass flow (Banks et al., 2021; Ercumen 
et al., 2017).

Deteriorating water quality presents future challenges for water 
supplies in India, particularly in the drought-prone eastern state of West 
Bengal (Bhunia et al., 2020; CGWB, 2023; Chatterjee, 2024; Dangar 
et al., 2021; Jain et al., 2021; Jana et al., 2009; John et al., 2018; Rodell 
et al., 2009; Sarkar and Ray, 2015). Here, increasing frequency of 
drought calls for the sustainable management of water resources for 
drinking and irrigation purpose (Bhunia et al., 2020; Roy et al., 2023). In 
West Bengal, monsoon-attributed variations in geochemistry were re
ported (Farooq et al., 2011; Kulkarni et al., 2018; Majumder et al., 2016; 
Mohanta and Goel, 2014). However, these studies have been limited in 
sampling frequency, making it difficult to comprehend groundwater 
DOM variability during periods of distinct hydrological change, such as 
the onset of the monsoon season.

In this study, we examine DOM (bulk and fDOM) and inorganic 
geochemistry to quantify and elucidate temporal changes in ground
water DOM composition in a transect of groundwater and surface water 
sites in West Midnapore district, West Bengal, covering a period of rapid 
increase in well hydraulic head (i.e., at the onset of monsoon; Jameel 
et al., 2023). We aim to test the hypothesis that at the onset of monsoon 
there will be precipitation-associated compositional changes in DOM 
and geochemistry and that this is influenced by the underlying lithology.

2. Methodology

2.1. Site description

Groundwater and surface water samples were collected in the water- 
stressed West Midnapore district along a 40 km NE-SW-orientated 

transect (Fig. 1b). The transect intersects the Kansabati and Sub
arnarekha rivers in the north and south, respectively, and lies parallel to 
the Medinipur-Farraka (MFF) basement fault (Singh et al., 1998). The 
sub-surface between Kharagpur and Nayagram, has previously been 
characterized by vertical electrical sounding (Fig. 1a; Panda et al., 
2018). Younger alluvial sediments prevail at 0–15 m depth in the 
southern part of the transect, such that the southern part of the transect 
has been earmarked for use as an artificial recharge site (Panda et al., 
2018), whilst laterites at shallow depth create an impervious layer above 
older platform sediments around Kharagpur (Chowdhury et al., 2010; 
Ghosh et al., 2015; Panda et al., 2018). Below the alluvium, an uncon
solidated to semi-unconsolidated layer of sand and gravel exists 
(Chowdhury et al., 2010). The net groundwater flow direction in West 
Midnapore is NW–SE (CGWB, 2022). West Midnapore experiences a 
humid sub-tropic climate with an average rainfall of 1527 mm (1127 
mm in monsoon and 400 mm during non-monsoon; CGWB, 2022). Daily 
rainfall data was obtained from Mohanpur station, West Bengal (30–50 
km from the transect) from the Indian Meteorological Department (IMD) 
Grid Model dataset, for the duration of the sampling period (Pai et al., 
2014).

2.2. Groundwater and surface water sampling

Samples (n = 59) were taken from private and government pumps (n 
= 10; 14–91 m depth), rivers (n = 2) and surface ponds (n = 3) at the 
onset of the monsoon season (18 June to 27 July, 2022) at a weekly or 
fortnightly interval (Fig. 1). Sampling of sites depended on the compli
ance of landowners and the accessibility of the water source. Samples for 
i) total organic carbon (TOC), ii) EEM, iii) stable water isotopes and iv) 
anions/cations were filtered with Sartorius regenerated cellulose 
membrane filters (0.45 μm) and stored in amber glass (organics), clear 
glass (anions/cations and isotopes) bottles at 4 ◦C until analysis. 
Chemical preservation was not undertaken due to dangerous goods re
strictions on the transportation of nitric acid. All bottles were acid- 
washed (10% HNO3) and furnaced before use. Measurements of pH 
and oxidation-reduction potential (ORP) were made with HI98128 and 
HI98120 m (Hanna Instruments, UK), calibrated daily with a 2-point 
calibration at pH 7 and 10 and HI 7021 ORP solution, respectively.

2.3. DOC measurements

Bulk DOC was quantified using a Shimadzu® Total Organic Carbon 
Analyser (TOC-VCPN) with an ASI-V autosampler at the Manchester 
Analytical Geochemical Unit (MAGU) laboratory (The University of 
Manchester). Dissolved organic carbon (DOC) as non-purgeable organic 
carbon (NPOC), was quantified using the 680 ◦C combustion catalytic 
oxidation method.

To characterise the source and nature of DOM, fluorescence spec
troscopy measurements were made using a Varian Cary Eclipse fluo
rescence spectrophotometer, at the British Geological Survey 
(Wallingford, UK) during September 2022. Samples were scanned at an 
excitation wavelength from 200 to 400 nm with 5 nm increment and an 
emission wavelength of 250–500 nm with 2 nm increment, in a quartz 
cuvette with 1-cm path length. The EEM data was reported following 
blank subtraction and removal of Rayleigh scatter lines. The reported 
intensity was normalised to Raman Units (RU) by dividing by the Raman 
peak of ultrapure water (Murphy, 2011). Ultraviolet absorbance at 254 
nm (Abs254) was measured using a Varian UV–vis spectrophotometer 
with the same sample aliquot and cuvette used for fluorescence analysis. 
ASTM type I reagent grade ultrapure water was used for blanks and to 
clean the glass cuvette between samples. Data was absorbance-corrected 
to account for inner filter effect (IFE) using a method from Lakowicz 
(1994).

The resultant excitation-emission matrix (EEM) was analysed by 
quantifying specific wavelength regions: i) fulvic acid-like (FA-like), ii) 
tryptophan-like (Tryp-like), iii) Tryp:FA – the ratio of Tryp-like to FA- 
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like fluorescence, which differentiates between labile and recalcitrant 
sources of DOM (Baker, 2002; Sorensen et al., 2018a), iv) fluorescence 
index (FI) – used to distinguish between microbial and terrestrial DOM 
(Cory and McKnight, 2005; McKnight et al., 2001), v) the beta to alpha 
(β:α) ratio, indicating the degree of DOM ‘freshness’ (Kulkarni et al., 
2017; Parlanti et al., 2000), vi) humification index (HIX) to determine 
the degree of humification (Ohno, 2002) and vii) specific ultraviolet 
absorbance at 254 nm (SUVA254) as an indicator of DOM aromaticity 
(Weishaar et al., 2003). Data processing and index calculations were 
performed using R (R Core Team, 2023) according to Lapworth and 
Kinniburgh (2009).

2.4. Quantification of anions and cations

Quantification of anions (F− , Cl− , Br− , NO2
− , NO3

− , SO4
2− and PO4) 

was carried out using ion chromatography (IC; Dionex ICS5000 Ion 
Chromatograph and Dionex IonPac AS18 columns) at MAGU. Selected 
major elements (Ca, Fe, K, Mg, Na, S and Si) were quantified by 
inductively coupled plasma optical emission spectrometry (ICP-OES, 
PerkinElmer Optima 5300 dual view) at MAGU. Sr was quantified using 
inductively coupled plasma mass spectrometry (ICP-MS; Agilent 
7500cx) at MAGU. Samples for ICP-OES/MS were acidified to 2 % HNO3 
(Aristar®, VWR Chemicals BDH®, UK) before analysis to ensure ana
lytes were fully dissolved in solution at the time of analysis. Cation data, 
including calculations of the standard deviation were instrument- 
corrected using a weighted calibration regression according to Miller 
and Miller (2010). Alkalinity as HCO3

− was estimated solely from the 
difference between the total cationic (Σ+) and anionic (Σ–) charge 
([HCO3

− ] = Σ+ – Σ–; Boyd et al., 2011). Multi-element Certified Refer
ence Materials (CRMs; LGC6020, LGC6026, LGC6027 and 
VHG-ICM1-500, LGC Standards, UK and QC1364, Sigma Aldrich, USA) 
were used to verify the quality of the data.

2.5. Isotopic analysis

Stable isotopes (O and H) for all sites (n = 15) were quantified using 
cavity ring-down spectroscopy (CRDS; Picarro L2120-i). Due to resource 
constraints, only one timepoint at the end of July was sub-sampled for 
stable isotopes to identify possible mixing processes between surface 
water and groundwater. Samples were stored in 1.5 mL airtight glass 

vials and were analysed on the same day of sampling at the School of 
Environmental Science and Engineering, Indian Institute of Technology 
Kharagpur (IITKGP). Stable isotopic fractions of hydrogen are denoted 
by δ18O (18O/16O) and δ2H (2H/1H) expressed as parts per thousand (‰) 
depletions relative to the Vienna Standard Mean Oceanic Water 
(VSMOW; Gonfiantini, 1978). Analytical errors of the isotope mea
surements were reported to 1-σ.

3. Results

3.1. Data quality

A number of measurements were made to assess the quality of the 
data and the variation between sub-samples. The mean analytical repeat 
(n = 7) error for anions quantified by IC (F− , Cl− , Br− , NO2

− , NO3
− , 

SO4
2–and PO4) was 1.6 %, 1.1 %, 4.0 %, 10.6 %, 5.7 %, 2.7 % and 1.5 %, 

respectively, whilst the sampling repeat (n = 3) error was 1.9 %, 0.7 %, 
2.2 %, 25.0 %, 1.4 %, 1.5 % and 10.7 %. The mean CRM (QC1364, 
LGC6020 and ICM1-500) bias for listed anions was 3.6 %, 0.8 %, 1.3 %, 
7.1 %, 4.4 %, 1.9 % and 11.5 %, respectively.

For cations measured by ICP-OES (Ca, Fe, K, Mg, Na, S and Si), the 
analytical repeat (n = 7) error was 1.0 %, 33.1 %, 9.5 %, 1.2 %, 5.7 %, 
3.8 % and 4.5 %, respectively, whilst the sampling repeat (n = 3) error 
was 2.6 %, 145.0 %, 21.9 %, 1.1 %, 0.9 %, 5.3 % and 1.6 %, respectively. 
We note that the repeated samples for Fe were all below 0.1 mg/L, which 
may explain the relatively large sampling and analytical errors for Fe. 
The average CRM (LGC6026 and LGC6027) bias for Ca, Fe, K, Mg and Na 
was 0.2 %, 3.6 %, 39.9 %, 2.4 % and 27.7 %, respectively. A high 
observed CRM bias for K (71.8 %) for LGC6027 was likely because the 
expected concentration of the standard (0.63 mg/L) was close to the 
analytical detection limit.

The analytical repeat (n = 7) and sampling repeat (n = 3) error for 
NPOC was 17.6 % and 52.5 %, respectively. The analytical repeat (n = 7) 
error of fDOM measurements (FA-like, Tryp-like, FI and β:α) was 47.8 %, 
85.0 %, 33.5 % and 102.9 %, respectively, whilst the sampling repeat (n 
= 2) error was 19.1 %, 63.5 %, 122.0 % and 25.3 %, respectively. The 
repetition of samples with low NPOC (<1 mg/L) and calculations of 
indices at regions of very low fluorescence intensity likely gave rise to 
substantial reported sampling and analytical errors.

The reported accuracy of the pH and ORP meters was ±0.01 and ±

Fig. 1. Groundwater (14–91 m depth) and surface water sampling sites between Nayagram and Midnapore a) overlain on the transect geology as a block diagram 
and b) in the state of West Bengal, India. Samples were taken from private and government pumps (n = 10; borehole symbol), rivers (n = 2; blue dots) and surface 
ponds (n = 3; blue dots) at the onset of the monsoon to late July. The subsurface was extrapolated from resistivity and geological observation reported in Panda et al. 
(2018) and Chowdhury et al. (2010). The sites were named ‘K(site number)_(reported depth in m; R1 = Kansabati River; R2 = Subarnarekha River)’. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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0.2 mV, respectively, according to the manufacturer. The repeat mea
surement error in the field was typically ±0.1 for pH and ±15 mV for 
ORP.

3.2. Temporal changes in groundwater DOM and geochemistry

A time series sampling approach was used to identify potential 
rainfall-induced changes in (f)DOM and selected geochemical parame
ters at the onset of monsoon. There were three major rainfall events of 
increasing intensity during the sampling period (Fig. 2c). Large spikes in 
redox potential (Eh) were observed in K5_67 and K5_34 around the 
second rainfall period (Fig. 2a) and corresponded to a spike in NO2

− in 
K5_34 (Fig. S1c) that may indicate partial nitrification of NH4

+. These 
observations point towards the presence of rapid recharge of more 
oxygenated water around the K5 sampling area. Eh generally decreased 
throughout the 1.5-month time series, potentially indicating oxygen 
consumption during the oxidation of DOM.

Bulk DOC remained consistent in groundwater and pond samples 
during the timeframe, except K4_Pond which decreased notably from 
8.3 to 5.5 mg/L throughout the time series. Kansabati (KR1) and Sub
arnarekha (KR2) river samples exhibited a large increase in fulvic-like 
DOC in the latter half of the time series (Fig. 2b–j; orange lines), plau
sibly as mobilisation of upstream sediments increased in response to 
increased river stage. Groundwater at K5_67 also exhibited a 4-fold in
crease in DOC on 27 July. The β:α was consistently ~1 for surface water 

sites, although there were substantial spikes in β:α in groundwater 
samples K5_34 and K4_21 (Fig. 2h). In fact, site K4_21 displayed in
creases in β:α, FI and Tryp:FA markers following rainfall, noting very 
low apparent resistivity reported around this site (Panda et al., 2018). 
Site K5_34, K6_79, K2_15, K8_24, K5_67 also observed an increase in FI 
which seemed to track major rainfall events, suggesting a 
precipitation-induced increase in autochthonously produced DOM 
(McKnight et al., 2001). Similarly, increased FI was also observed from 
pre-to post-monsoon groundwater in Bihar, northern India (Wilson 
et al., 2023).

In groundwater, FA-like DOM displayed consistency in all sites 
throughout the time series, though a spike was observed in site K5_34 
around the second and third rainfall events. A spike in FA- and Tryp-like 
fDOM in site K5_67 in July in conjunction with a spike in Eh, following a 
large rainfall event on 02 July, could indicate the ingression of 
allochthonous DOM and surface-derived substrates into groundwater 
(Figure S1e, f and Fig. 2a; Chen et al., 2022; Luzius et al., 2018). Site 
K5_67 also exhibited a 50-fold increase in SUVA254 on 05 July from 28 
June, suggesting that the reactivity of DOM increased following rainfall 
(Fig. 2g; Weishaar et al., 2003). Whilst plausible, both FA-like and 
tryptophan-like may be produced by autochthonous microbial process
ing (Fox et al., 2017). A spike in Tryp-like and β:α in K5_34 during a dry 
period (Figure S1f and Fig. 2h) was not seen elsewhere in the data.

Piper classification revealed a predominant Ca–HCO3
– water type 

(Fig. 3), which is consistent with pre-monsoon/monsoon/post-monsoon 

Fig. 2. Time series plots of groundwater characteristics at the onset of monsoon revealed consistency in chloride and NPOC, though Eh, total iron and fluorescence 
DOM markers revealed systematic changes in the sampled period. Fluorescence measurements were normalised to Raman Units (RU) according to Murphy (2011). 
Rainfall is displayed in c as cumulative rainfall (grey line) and as daily rainfall (blue bars) at Mohanpur, West Bengal from the Indian Meteorological Department 
(IMD) Grid dataset (Pai et al., 2014). Daily rainfall is superimposed on all plots. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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groundwater in the Murshidabad District, West Bengal (Farooq et al., 
2011; Piper, 1944). Though major geochemistry was reasonably con
stant across the sampling time period, a large decrease in Fe was 
observed in site K5_67, potentially as a result of oxidation from soluble 
Fe(II) into insoluble Fe(III) oxide. Interestingly, semiquinone-like moi
eties, measured by FI (Cory and McKnight, 2005), have been shown to 
drive fluctuations in redox-sensitive elements such as iron (Fig. 2e; Jiang 
et al., 2015), though a time lag between increase in FI and decrease in 
total Fe remains unexplained. Chloride, as a conservative tracer for 
dilution/evaporation was reasonably consistent in all sites throughout 
the time series, except for K2_Pond which exhibited a two-fold increase 
in chloride from June–July (Fig. 2d).

Dissolved organics have been shown to be interconnected with 
calcite-water reactions (Kerr et al., 2021; Kim and Lee, 2009). A 
reduction in proportion of Ca compared to Mg in sites such as K5_67 
(Fig. 3) plausibly suggest precipitation of Ca (Pracný et al., 2019; Sin
clair et al., 2012). Changes in ln(Mg/Ca) compared to ln(Sr/Ca) in K2_15 
resemble a gradient of 0.85 (Fig. 4), which Sinclair et al. (2012) have 
suggested to indicate prior calcite precipitation (PCP). This localised 
observation could arise from an increase in alkalinity and consequential 
increase to calcite saturation states (Sulpis et al., 2022). Although 
inferred alkalinity was relatively constant in most sites, a few sites 
exhibited an increase (Fig. 3), which could plausibly expedite carbonate 
precipitation. Importantly, DOM may fundamentally contribute to 
alkalinity as organic alkalinity (Kerr et al., 2021) and through oxidation 
of organic compounds into carbon dioxide. Thus, a plausible explanation 
is that the degradation or processing of DOM contributes to changes to 
solubility-controlled dissolved species.

3.3. Temporal changes in geochemistry as a function of depth and 
geological setting

Geochemistry was characterised as a function of reported depth to 
understand hydrogeology-associated temporal changes across the 

Fig. 3. Piper diagram of groundwater (GW), river water (RW) and ponds in West Bengal reveals consistency in major geochemistry of Ca–HCO3
– type albeit a 

reduction in Ca proportion in some sites at the onset of monsoon (grey arrow; Piper, 1944). Major anions and cation were measured using ion chromatography (IC) 
and inductively coupled plasma optical emission spectrometry (ICP-OES), respectively. HCO3

− and CO3
2− as alkalinity was estimated from the discrepancy in the 

charge balance of major positive and negative ions.

Fig. 4. Ratios of ln(Mg/Ca) and ln(Sr/Ca) showed that incongruent dissolution 
and prior calcite precipitation could have occurred in K2_15 during the sam
pling time series. The black line plots ln(Mg/Ca) = 0.85*ln(Sr/Ca) from 
(Sinclair et al., 2012). Samples were taken from private and government pumps 
(n = 10; squares), rivers (n = 2; triangles) and surface ponds (n = 3; circles) at 
the onset of the monsoon to late July.
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sampling timeframe. Temporal changes in groundwater DOC and FI did 
not seem to be associated with depth (Fig. 5a–c). On the other hand, 
decreases in groundwater Eh, Tryp-like and FA-like fDOM over the time 
series were more pronounced in shallow sites associated with laterites 
(Fig. 5b, d, e), compared to groundwater derived from predominantly 
sand and gravel lithology (Panda et al., 2018). This observation could 
suggest a rapid oxidation of DOM at shallower depths during the sam
pling period.

3.4. Stable water isotopes

Analysis of stable isotopes was conducted at the end of the sampling 
period to disentangle possible mixing processes between surface water 
and groundwater (Fig. 6). Pond samples (n = 3) exhibited elevated δ18O 
(mean = 1.9 ± 0.2 ‰) and δ2H (mean = − 11.3 ± 0.5 ‰) compared to 
groundwater and river water sites, suggesting water from sampled 
ponds has undergone a relatively large degree of evaporative enrich
ment. Sites K5_67, K6_79 and K9_20 plot closest to the GMWL and 
LMWL, suggesting these samples could be comprised of a larger pro
portion of recent rainfall, compared to water which has undergone 
evaporative enrichment (e.g. soils and ponds). Interestingly, dry season 
groundwater from the Murshidabad district, West Bengal, exhibited a 
much more precipitation-dominated signature than samples in this 
study (Datta et al., 2011). This could indicate that precipitation-derived 
infiltration in West Midnapore is not pervasive and may suggest that 
rapid recharge occurs on a localised (i.e. borehole) scale and that the 
phenomena are not aquifer-wide.

A distinct similarity between river (KR1 and KR2; mean = − 1.9 ±
0.2 ‰ δ18O and − 23.5 ± 0.4 ‰ δ2H) and near-bank groundwater sites 
adjacent to the Kansabati (K3_18 and K2_15; mean = − 2.0 ± 0.2 ‰ δ18O 
and − 22.7 ± 0.45 ‰) may suggest a strong baseflow component to the 
Kansabati and Subarnarekha rivers and/or a monsoon reversal in hy
draulic head causing water to flow from the Kansabati to near-bank 
shallow groundwater, potentially expedited by groundwater abstrac
tion from Midnapore and Kharagpur (Fig. 1; Benner et al., 2008; Lu 
et al., 2022; Richards et al., 2017).

4. Discussion

This study investigated the compositional changes in groundwater 
DOM and geochemistry at the onset of monsoon. Sudden availability of 
surface-derived substrates has previously been thought to increase the 

productivity of microbial communities on a scale of days to weeks 
(Hofmann et al., 2020; Kuzyakov, 2010), though limited evidence has 
supported this claim in the literature (Hofmann et al., 2020). It has been 
suggested that the addition of reactive carbon may increase primary 
production in aquifers by increasing microbial metabolism of sedimen
tary organic carbon (SOC; Bianchi, 2011; Fang et al., 2023; Fontaine 
et al., 2007; Schmidt et al., 2011). Whilst groundwater DOC remained 
constant across the time series in the present study, fluorescence 
markers revealed compositional changes at the onset of monsoon.

The observed association between rainfall, spikes in fDOM and Eh 
suggest that monsoonal recharge oxygenates the aquifer and promotes 
microbial metabolism. This likely drives the production of semiquinone- 

Fig. 5. Temporal shifts in West Bengal groundwater in organics and geochemical parameters: a) dissolved organic carbon (DOC) as non-purgeable organic carbon 
(NPOC), b) redox potential (Eh), c) Fluorescence Index (FI; McKnight et al., 2001), d) Tryptophan-like fluorescent DOM (Tryp-like) and e) Fulvic acid-like fluorescent 
DOM (FA-like), as a function of reported depth. Fluorescence measaurements were normalised to Raman Units (RU) according to Murphy (2011). The pink shaded 
region represents an approximated depth of lateritic-dominated geology whilst the grey shaded region represents coarse sand and gravel in the sample transect 
(Panda et al., 2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. δ18O (18O/16O) and δ2H (2H/1H) cross-plot of groundwater, pond and 
river water sampled from the studied transect in West Midnapore (West Bengal) 
in late July 2022. Isotopic signatures of δ18O and δ2H are expressed as parts per 
thousand (‰) depletion relative to the Vienna Standard Mean Oceanic Water 
(VSMOW; Gonfiantini, 1978). LMWL = Local Meteoric Water Line (red dashed 
line) from Bengal basin precipitation (Jameel et al., 2023). GMWL = Global 
Meteoric Water Line (black dashed line; δ2H = 8 *δ18O + 10; Craig, 1961). 
Three rain samples (black crosses) were from monsoon season (2022) in Kol
kata (IAEA/WMO, 2017). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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like fluorescent components, associated with increased FI (Cory and 
McKnight, 2005), plausibly through the activation of oxygen-dependent 
enzymes (Worrall and Burt, 2004, 2007). A sustained ~50 mm rainfall 
event between 02 and 03 July appeared to influence many parameters 
(Eh, FI, SUVA254, NO2

− and FA-like DOM), but only in specific ground
water sites and this can plausibly be explained by hydrogeology.

In West Midnapore, groundwater vulnerability to bacterial contam
ination is likely reduced by unconsolidated aquifers, which facilitate 
sorption and filtration via intergranular flowpaths (Chowdhury et al., 
2010; Panda et al., 2018; Worthington and Smart, 2017). In contrast, 
consolidated laterite rock around Kharagpur may exhibit more macro
pore flow, as this geology may be more susceptible to cracking, 
compared to alluvium (Groeneveld et al., 2020; Liu and She, 2020). 
Indeed, sites overlying laterites, particularly K5, expressed fluctuations 
in Eh, Fe, NO2

− , FA-like and Tryp-like fDOM and DOC (Fig. 2; Fig. S1) 
along with a more precipitation-derived isotopic signature (Fig. 6). 
Although the ingress of meteoric water may be affected by the deposi
tional environment (McArthur et al., 2010; Mukherjee, 2022; Neidhardt 
et al., 2013), the geophysical study did not identify paleochannels 
around Kharagpur (Panda et al., 2018). Based on this rationale, the 
physical characteristics of the wells or fractures in the rocks are perhaps 
more likely to contribute to rapid surface-derived ingress into ground
water, as opposed to pervasive recharge through lateritic cover (Banks 
et al., 2021; Ercumen et al., 2017; Hynds et al., 2012). Although this 
study did not assess the borehole annulus (Takavada et al., 2022), 
ineffective borehole sealing could provide a potential and substantial 
mechanism for microbial contamination to bypass intergranular filtra
tion (Klose et al., 2021; Worthington and Smart, 2017). Additionally, 
pumping-induced shear stress on sediments may contribute to biofilm 
sloughing and the release of SOC (Graham et al., 2015). Indeed, Mid
napore and Kharagpur are most likely to be most affected by intensive 
pumping regimes (CGWB, 2023).

The formation of insoluble Fe(III) oxides from microbially induced 
laterization may be expedited by aquifer re-oxygenation (Ghosh et al., 
2015; Li et al., 2017), which was substantiated by rainfall-associated 
spikes in Eh and evidence from stable water isotopes (Fig. 6). The 
possible production of microbially derived semiquinone-like DOM, as 
indicated by increases in FI (Cory and McKnight, 2005), plausibly alters 
the redox state of Fe (Jiang et al., 2015). However, no evidence sug
gested that total Fe was a major control on the system leading to the 
production of autochthonous DOM. Whilst some changes in geochem
istry were observed (e.g. Ca and Fe; likely from precipitation/dissolution 
and redox changes, respectively; Figs. 2–4), these reactions appeared 
kinetically slow, limiting their impact on major geochemistry during the 
study period (Gillon et al., 2012).

This study also highlights the inadequacy of deploying grab-style 
sampling to capture transient shifts in fDOM parameters, particularly 
tryptophan-like fluorescence and FI. This is an important consideration 
for future studies, particularly as many have demonstrated that trypto
phan detection can serve as method of bacterial metabolic activity, with 
the potential as a rapid in-situ microbial quality detection method in 
aqueous environments (Baker, 2002; Fox et al., 2017; Sorensen et al., 
2016). Though, it is inherently difficult to disentangle confounding 
variables affecting DOM-related water quality in groundwater poten
tially affected by numerous (hydro)geological factors.

5. Conclusion

This study offers novel insight into the compositional changes to 
organic geochemistry in groundwater of West Bengal at the onset of 
monsoon. This study highlights large shifts in fDOM parameters, 
particularly tryptophan-like fluorescence and FI, over relatively short 
periods of time. Whilst total DOC remained fairly constant in ground
water, rainfall-associated fluctuations in FI alluded to an increase in 
metabolic activity and thus an activation of microbes following rainfall 
events. Geochemical indicators (e.g. Eh and FI) demonstrated that the 

laterite-capped and pumped area around Kharagpur and Midnapore 
exhibited a more intermittent signal that was characteristic of 
macropore-dominated flow, which could be associated with cracking in 
laterites or ineffective borehole sealing, rather than aquifer-wide phe
nomena. Evidence from isotopes suggested that near-bank groundwater 
(e.g. at K2_15 and K3_18) was similar to local rivers, whilst some water 
(e.g. at K9_20 and K5_67) exhibited a signal typical of rapid surface- 
water ingression mixed with groundwater subject to evaporative 
enrichment. Major geochemistry was broadly consistent across the 
sampling timeframe, though a reduction in Ca could be a result of an 
increase to organic-derived alkalinity. Our findings provide novel in
sights into rainfall-DOM associations in aquifers in northern India and in 
similar geochemical settings. This research has application in water- 
stressed and/or groundwater-reliant regions of the world and ad
vances knowledge in the field of groundwater quality monitoring.
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