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Abstract

Climate models are increasingly used to derive localised, specific information

to guide adaptation to climate change. Model projections of future scenarios

are conferred credibility by evaluating model skill in reproducing large-scale

properties of the observed climate system. Model evaluation at fine spatial and

temporal scales and for rare extreme events is critical for provision of reliable

adaptation-relevant information, but may be challenging given significant

internal variability and limited observed data in this setting. Comparing distri-

butions of physical variables from historical simulations of Coupled Model

Intercomparison Project models against observed distributions provides a com-

prehensive, concise and physically-justified skill measure. Calculating diver-

gence between distributions requires aggregation of data spatially or

temporally. The spatial and temporal scales at which a divergence measure

converges to a consistent value can indicate the scales at which a well-defined

climate signal emerges from internal variability. Below this threshold, there

may be insufficient data for robust evaluation, particularly for rare extremes.

Here, the behaviour of several divergence measures in response to spatial and

temporal aggregation is analysed empirically to give a novel evaluation of

CMIP6 daily maximum temperature simulations against reanalysis. Some key

insights presented here can inform methodological choices made when deriv-

ing adaptation-relevant information. Convergence varies according to model,

geographic region and divergence measure; selection of the level of precision

at which models can provide reliable information therefore requires a context-

specific understanding. For this purpose, an interactive tool provided alongside

this study demonstrates scale-dependent evaluation across several geographic

regions. Commonly applied measures are found to be only weakly sensitive to

discrepancies in the tails of distributions.
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1 | INTRODUCTION

Continuous improvement of General Circulation Models
(GCMs) over successive generations of the Coupled
Model Intercomparison Project (CMIP) has enabled
robust detection and attribution of global climate change
and provision of long-term projections of future warming
scenarios to guide emissions reduction targets (Bock
et al., 2020; Edwards, 2013). Models have been developed,
calibrated and validated for their ability to reproduce
large-scale average physical properties of the observed cli-
mate system. However, GCMs are necessarily imperfect,
finite-resolution representational tools of an inherently
uncertain target system; the range of questions they may
be expected to answer adequately is limited, and these
limits are not well established.

Increasing urgency under intensifying climate risk
has shifted emphasis towards adaptation in recent
decades (Klein et al., 2007; Seneviratne et al., 2021).
Impact assessment for adaptation typically requires more
precise information at local spatial scales and sector-
relevant timescales at which adaptation measures can be
implemented and concerning the occurrence of high-
impact extremes rather than average quantities (Oreskes
et al., 2010). “Climate scientists have an intuitive feeling
for [the scales at which models are reliable] and use it
when interpreting results” (Masson & Knutti, 2011).
However, it is increasingly not only climate scientists
interpreting and applying model output but also stake-
holders across climate-sensitive sectors concerned with
assessing and adapting to risk (Vaughan & Dessai, 2014).
This leaves open the possibility that models may be
applied to answer questions more specific than those for
which robust assessment of their historical skill lends
future projections credibility.1 There is a need to establish
best practices when deriving adaptation-relevant predic-
tions from GCMs to ensure the trustworthiness of infor-
mation provided and to avoid sub-optimal allocation of
limited adaptation resources (Nissan et al., 2019). Widely
used model evaluation approaches may not be up to date
with the needs of users of climate information in the
adaptation-driven context. Here, two limitations of exist-
ing approaches are highlighted.

First, model evaluation does not routinely consider
dependence on spatial and temporal scales. On one hand,
precise grid-point, time-step-level comparison of model
output against observations gives a misleadingly pessi-
mistic assessment given the dominance of internal vari-
ability at this scale, particularly for extremes. GCMs are
not weather forecast models that might be expected to
provide calibrated, synchronous weather predictions, but
rather models that should capture the statistical proper-
ties of the climate at some aggregate scale. On the other

hand, standard approaches evaluating model output aver-
aged over large scales succeed in extracting a signal from
internal variability but do not retain the specificity
required by decision-makers. Additionally, the onset and
severity of climate impacts are often highly geographi-
cally heterogeneous, and effective adaptation information
should convey this.

Second, standard evaluation approaches (Seneviratne
et al. (2021)) often compare summary statistics (mean,
variance or higher-order moments) of model output
physical variables to corresponding observed quantities.
Perkins et al. (2007), Guttorp (2011) and others assert
that summary statistics are insufficient for assessing vari-
ability and the underlying processes driving extremes and
argue for evaluation based on full simulated distribu-
tions. Capturing the full shape of an observed
distribution is a more stringent criterion than matching a
summary statistic and can therefore warrant greater con-
fidence that a model scores highly for physically justified
reasons. A skilled simulator of the mean and variance of
a physical variable may not capture other attributes
(Kharin & Zwiers, 2000); relationships between changes
in the mean and changes in extremes are potentially
complex and nonlinear (Mearns et al., 1984). Capturing
the observed non-Gaussian tails of surface temperatures
(Linz et al., 2018) is important for simulation of future
changes in extreme temperatures (Catalano et al., 2020).

To address these two limitations, we propose a
scale-dependent evaluation approach using divergence
measures to compare the full simulated distributions of
physical variables against observational reanalysis. This
gives insight into the spatial and temporal scales at which
models can be considered reliable. Divergence measures
are widely used to quantify discrepancies between distri-
butions. To demonstrate, three divergence measures are
used to evaluate CMIP6 daily maximum surface air tem-
perature simulations. Increasing prevalence of tempera-
ture extremes in recent years is associated with severe
societal hazards including increased human morbidity
and mortality (Handmer et al., 2012). The Hellinger,
Wasserstein and Integrated Quadratic (IQ) distances are
selected to reflect some different possible approaches to
distribution comparison (see Appendix B.1). Scale depen-
dence of model skill is studied by aggregating data spa-
tially and temporally.

1.1 | Related work

Few studies evaluating summary statistics of GCM-
simulated physical variables have explicitly analysed
scale dependence.2 Papalexiou et al. (2020) evaluate sum-
mary statistics of CMIP6 temperatures including higher

2 of 18 VIRDEE ET AL.

 1530261x, 2025, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1290 by B
ritish A

ntarctic Survey, W
iley O

nline L
ibrary on [04/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



distributional moments at several temporal scales. Saka-
guchi et al. (2012) evaluate spatial and temporal scale-
dependence of annual surface air temperature trend in
CMIP3 and CMIP5, finding general improvement with
scale, abrupt improvement at spatial scales larger than
30� � 30�, and finer-scale improvements between succes-
sive CMIP generations. Masson and Knutti (2011) study
spatial scale dependence of CMIP3 temperature and pre-
cipitation by applying smoothing with a variable-scale
parameter. Optimal smoothing scales vary by variable
and location, and improvements in model resolution are
found to not necessarily yield better agreement with
large-scale observed temperatures.

Recent studies increasingly take a distribution-
based evaluation approach. Abdelmoaty et al. (2021)
assess simulation of CMIP6 regional extreme precipi-
tation distributions using the Hellinger distance, find-
ing that models may capture shape properties of the
observed distribution better than mean and variance,
and that best-performing models according to assess-
ment of summary statistics may differ from best-
performing models according to distribution compari-
son. Vissio et al. (2020) evaluate CMIP6 temperature,
precipitation and sea ice cover using the Wasserstein
distance, demonstrating that this approach can help
pinpoint model weaknesses. Thorarinsdottir et al.
(2020) use the IQ distance to evaluate CMIP5 and
CMIP6 temperature extremes, ranking models and
providing model selection guidelines. To our knowl-
edge, a distribution-based evaluation that explicitly
considers scale dependence has not previously been
conducted.

2 | DATA

To demonstrate the proposed methodology, historical
simulations of daily maximum surface air temperature
from 5 GCMs contributing to the latest model intercom-
parison phase, CMIP6, are evaluated. These GCMs
(GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-
ESM2-0 and UKESM1-0-LL) are the primary models
selected for the Inter-Sectoral Impacts Model Intercom-
parison Project (ISIMIP) meeting criteria of performance,
structural independence and spanning the CMIP6 Equi-
librium Climate Sensitivity (ECS) range (Lange, 2021;
Warszawski et al., 2014). For each model, daily maxi-
mum temperature simulations are taken from one reali-
sation from the historical experiment simulating the
recent past period 1850–2014. Model details are included
in Table A1.

Reanalyses are constructed by assimilating observa-
tions into models to provide gridded, physically consis-
tent data. W5E5 (Lange et al., 2021), treated as the
ground truth against which models are evaluated, is a
high-resolution reanalysis originally compiled to support
bias adjustment of simulations for ISIMIP impact assess-
ments. Hereafter W5E5 is referred to as the reference. A
second reanalysis, MERRA2 (Gelaro et al., 2017), is trea-
ted as an additional pseudo-model, providing an indica-
tion of the best possible model performance that could be
expected and giving an estimate of the relative contribu-
tions of model error and internal variability. Details of
W5E5 and MERRA2 are included in Table A2.

The temporal overlap of these datasets gives a 35-year
period spanning 1980 to 2014 for analysis. Bilinear

FIGURE 1 Map showing boundaries of 11 30� � 30� latitude � longitude regions chosen for analysis. The full region names and

boundaries are included in Table A3.

VIRDEE ET AL. 3 of 18

 1530261x, 2025, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1290 by B
ritish A

ntarctic Survey, W
iley O

nline L
ibrary on [04/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



interpolation of all data onto a 1� � 1� spatial grid is
applied to facilitate intercomparison following standard
practice in impact-relevant studies (Almazroui
et al., 2020; Shi et al., 2018). Eleven 20� � 30� geographic
regions, derived from the widely used Giorgi regions

(Christensen et al., 2007; Giorgi & Francisco, 2000;
Houghton et al., 2001), are selected as shown in Figure 1;
region details are included in Table A3. Regional distri-
butions of daily maximum temperature for CMIP6
models, MERRA2 and W5E5 are shown in Figure 2. In

(a) (b) (c)

(g)

(j) (k)

(h) (i)

(d) (e) (f)

FIGURE 2 Distributions of daily maximum surface temperature simulations from 5 CMIP6 models, MERRA2 reanalysis and W5E5

reanalysis for 11 geographic regions for the period 1980–2014.
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some regions, particularly ALA, CNA, MED and NAS,
distributions exhibit a 0�C spike. This may reflect a
snow-melt-related modelling bias in the land surface
model (e.g., see Qiao et al. (2022)); full analysis of this
behaviour is beyond the scope of this study.

3 | METHODOLOGY

3.1 | Spatial and temporal aggregation

Figure 2 shows distributions of 1� � 1� daily maximum
temperatures aggregated over each 30� � 30� geographic
region for the full time period 1980–2014. At these scales,
most models broadly capture the shape of the reference
distribution. This approach aims to understand how the
discrepancy between models and reference evolves as
data is aggregated from the most precise grid-point, time-
step level up to the full region and time period. Several
possible useful notions of spatial and temporal aggrega-
tion of data may be defined; in previous studies, the
method used may be implicit. As illustrated in Table 1,
three methods are intercompared here:

1. Centred zoom: Data are aggregated (a) spatially by
including s � s contiguous grid cells from the region
centre, or (b) temporally by including t contiguous
days from the start date. This enables localisation of
model errors and is informative if considering a spe-
cific date or location such as a city. However, this
method depends on a central point or start date and
localised inhomogeneities as data are aggregated – it
therefore does not give a generalised indication of
error over the region or time period.

2. Regular subdivision: Data are divided into increasingly
large regular, equally-sized (a) s � s spatial subsets or
(b) t-day time subsets. A model subset is compared
against the corresponding reference subset; results are
calculated by averaging over subsets. This gives a

generalisation of the centred zoom that does not cen-
tre on a particular location or date, instead sampling
many different localised spatial and temporal contexts
and taking into account all data at every aggregation
step. However, aggregation steps are irregular as they
are limited to regular subdivisions of the data.

3. Random subdivision: N increasingly large, equally
sized (a) s � s spatial subsets or (b) t-day time subsets
are sampled at random.3 This gives a generalisation of
regular subdivision not limited to regular subdivisions
of the data.

3.2 | Metrics

A divergence measure quantifies distance or discrepancy
between distributions, a central task within many prob-
lems in statistical modelling and machine learning
(Markatou et al., 2021). Here, the Hellinger, Wasserstein
and Integrated Quadratic (IQ) distances are calculated.4

Definitions, properties and a review of relevant applica-
tions of these measures are included in Appendix B.1. In
the absence of a theoretical basis on which to assert the
advantages or disadvantages of a particular measure for
any given task, it is useful to develop an empirical under-
standing of their behaviour. For this purpose, the first
four L-moments, λ1 (L-location or mean), λ2 (L-scale or
variance), τ3 (L-skewness) and τ4 (L-kurtosis)5

(Appendix B.2) are also calculated.

4 | RESULTS

4.1 | Spatial aggregation

In this section, the dependence of divergence of daily
maximum temperature distributions from the reference
on spatial aggregation is considered. Figure 3 shows an

TABLE 1 Three methods of

aggregating gridded time series data (a)

on a spatial grid and (b) on a timeline

into increasingly large subsets.

(a) Spatial (b) Temporal

1: Centred
zoom

2: Regular
subdivision

3: Random
subdivision

Note: The black and grey lines indicate (a) spatial grid or (b) time-step of model output. Grey lines indicate
data that is not selected. Each red square (a) or red interval (b) represents a data subset which is
intercompared with the corresponding subset in the reference data.
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example for the Mediterranean Basin (MED). The distribu-
tion broadens with spatial aggregation, and distinct peaks
in the full regional distribution become better defined
(Figure 3a,b). Divergence between MERRA2 and the refer-
ence quickly decreases to a small value according to all
three measures (Figure 3c–e, dashed black lines). Corre-
spondingly, the L-moments for MERRA2 closely match the
reference as data are aggregated spatially (Figure 3f–i,
dashed black lines). In contrast, for the models
(Figure 3c–e, coloured lines), increasing aggregation does

not necessarily yield decreasing divergence. Across mea-
sures, divergence for GFDL-ESM4 and IPSL-CM6A-LR
remains highest with aggregation (yellow and red lines);
according to the Wasserstein and IQ distances, divergence
for several models begins to increase at 10�15

�
. Compari-

son to L-moments indicates that GFDL-ESM4 and IPSL-
CM6A-LR, which rank lowest across divergence mea-
sures, also simulate the mean furthest from the reference
(Figure 3f–i, yellow and red lines). The increasing trend
in the reference mean at 10�15

�
is not well-represented

(a) (b)

(c)

(f) (g) (h) (i)

(d) (e)

FIGURE 3 MED, spatial centred zoom. (a) and (b): Distributions of daily maximum temperature in the region Mediterranean Basin

(MED), aggregated at the smallest (1) and largest (30�) spatial scales respectively using aggregation by centred zoom. (c)–(e): Hellinger,

Wasserstein and IQ distance between the model and reference distributions for increasing spatial aggregation by centred zoom. (f)–(i): First
four L-moments λ1 (mean), λ2 (variance), μ3 (skewness) and μ4 (kurtosis) for increasing spatial aggregation.
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by models except MRI-ESM2-0 (Figure 3f, blue line).
However, MRI-ESM2-0 significantly positively overesti-
mates skewness as aggregation increases (Figure 3h, blue
line), but nonetheless performs relatively well according
to all three divergence measures (Figure 3c–3e, blue line).
This highlights that the divergence measures primarily
reward closeness of means whilst insufficiently account-
ing for discrepancies in higher-order moments.

Figure 4 shows a further example of spatial aggrega-
tion by centred zoom for Southern South America (SSA).
Figure 4a,b shows the distributions at 1� and 30�

aggregation, respectively. As before, divergence between
MERRA2 and reference (Figure 4c–e, dashed black line)
quickly decreases to a small value, whilst for some
models – particularly IPSL-CM6A-LR and MRI-ESM2-0
(Figure 4c–e, red and blue lines) – divergence remains
high or begins to increase at 5�10

�
. Comparison against

L-moments (Figure 4f–i) again indicates that these mea-
sures primarily reflect that these models rank poorly in
capturing the fluctuating mean of the reference
(Figure 4f), rather than the discrepancy in higher-order
moments.

(a) (b)

(c)

(f) (g) (h) (i)

(d) (e)

FIGURE 4 SSA, spatial centred zoom. (a) and (b) Distributions of daily maximum temperature in the region Southern South America

(SSA), aggregated at the smallest (1�) and largest (30�) spatial scales respectively, using aggregation by centred zoom. (c)–(e): Hellinger,

Wasserstein and IQ distance between the model and reference distributions for increasing spatial aggregation by centred zoom. (f)–(i): First
four L-moments λ1 (mean), λ2 (variance), μ3 (skewness) and μ4 (kurtosis) for increasing spatial aggregation.
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It is informative to further examine the results for
SSA by subdividing the region. In Figure 4, for several
models, error initially decreases but begins to increase at

5–10�, particularly IPSL-CM6A-LR (Figure 4c–e, red
line). In Figure 5, subdivisions of the SSA region are
selected, taking diagonal quarters over ocean or land.

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIGURE 5 SSA sub-regions, spatial centred zoom. Further analysis of the spatial centred zoom aggregation example in Figure 4 for

region SSA, subdividing the region into ocean-centred and land-centred sub-regions.

(a)

(d) (e) (f) (g)

(b) (c)

FIGURE 6 MED, spatial regular subdivision. (a)–(c): Hellinger, Wasserstein and IQ distance between the model and reference

distributions for increasing spatial aggregation by regular subdivision for region MED. (d)–(g): First four L-moments λ1 (mean), λ2
(variance), μ3 (skewness) and μ4 (kurtosis) for increasing spatial aggregation.
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The increase of divergence for some models can be attrib-
uted to significant differences in model skill over ocean
versus land, most pronounced for IPSL-CM6A-LR
(Figure 5, red line). When separated, divergence gener-
ally decreases smoothly with aggregation, and decreases
more smoothly over ocean. This highlights the utility of
the spatially centred zoom approach for diagnosing loca-
lised model biases.

Figure 6 shows the analysis for MED, as in Figure 3,
but instead using spatial regular subdivision (see
Section 3.1). Divergence for models and MERRA2
(Figure 6a–c, coloured lines and black dashed line)
decreases with aggregation. As may be expected, the
mean remains constant with increasing size of regular
subdivisions (Figure 6d), whilst variance and tail heavi-
ness increase (Figure 6e,g). At 30� � 30� aggregation over
the full region, regular subdivision and spatially centred
zoom (Figure 3) are equivalent. As before, MRI-ESM2-0
positively overestimates skewness as aggregation
increases (Figure 6f, blue line) but performs well accord-
ing to divergence measures (Figures 6a and 3c, blue line).
However, localised effects are smoothed as error is aver-
aged over the whole region at every step. Divergence for
all models and MERRA2 decreases with aggregation and
in many cases converges to a steady value (Figure 6a–c,
coloured lines and black dashed line). This indicates the

scale at which the data sampled within each subset ade-
quately resolve the reference distributions.

Convergence scale differs across the three measures.
The Wasserstein and IQ distances converge by 10–15� for
most models, whilst the Hellinger distance continues to
decrease. In general, of the three measures, the Wasser-
stein distance is found to be most sensitive to the mean,
which can be estimated with relatively few samples – it
tends to converge quickly to a steady value with aggrega-
tion. The Hellinger distance is found to be sensitive to
outliers and is therefore strongly affected by the reduced
contribution of internal variability with aggregation.

Spatial random subdivision (Section 3.1), yields nois-
ier but broadly similar results, omitted here for concise-
ness, to regular subdivision if the number of samples N is
sufficient.

4.2 | Temporal aggregation

In this section, the dependence of divergence of daily
maximum temperature distributions from the reference
on temporal aggregation is considered. Figures 7 and 8
show examples for Central North America (CNA) and
Southeast Asia (SEA) for temporal regular subdivision.
Divergence of MERRA2 and all models from the

(a) (b) (c)

(d) (e) (f) (g)

FIGURE 7 CNA, temporal regular subdivision. (a)–(c): Hellinger, Wasserstein and IQ distance between the model and reference

distributions for increasing temporal aggregation by regular subdivision for region CNA. (d)–(g): First four L-moments λ1 (mean), λ2
(variance), μ3 (skewness) and μ4 (kurtosis) for increasing temporal aggregation.
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reference (Figure 7a–c and Figure 8a–c) smoothly
decreases with aggregation according to all three mea-
sures. The temporal scale of convergence varies across
measures and between regions. As before, models that
capture the reference mean relatively poorly, here GFDL-
ESM4 and IPSL-CM6A-LR (Figure 7d and Figure 8d, red
and yellow lines), are penalised according to the diver-
gence measures. Meanwhile, discrepancies in higher
moments (Figure 7d–g and Figure 8d–g)) are not repre-
sented consistently. It is notable in Figures 7e and 8e that
variance λ2 is significantly larger for CNA than SEA (see
also 2d and 2i). Additionally, λ2 increases more rapidly
with aggregation in CNA than in SEA, reflecting a stron-
ger seasonal cycle, which is captured as the annual time-
scale is reached. Each divergence measure converges
more quickly for SEA than CNA, as might be expected
given a relatively simpler single, strong distributional
peak for SEA, whilst greater aggregation may be required
to resolve the wider, multi-modal CNA distribution
(2d and 2i).

Temporal centred zoom shows fluctuations in diver-
gence with aggregation. However, these effects are sensi-
tive to a start date and less useful for the diagnosis of
model errors than the spatial localisation demonstrated
in Figure 5. Temporal random subdivision yields noisier
but broadly similar results to regular subdivision if the
number of samples N is sufficient.

4.3 | Interactive demonstration

Scale-dependent evaluation for all regions and for the
three spatial and temporal data aggregation methods
proposed in Section 3.1 can be accessed in an interac-
tive tool, as shown in Figure 9 - see Appendix C for
details.

5 | DISCUSSION AND
CONCLUSIONS

Divergence-based evaluation of climate simulations
against reanalysis is sensitive to spatial and temporal
scale. This is not routinely considered when deriving
adaptation-relevant information. This study yields several
methodological recommendations for evaluation and
application of GCM simulations of physical variables.

The examples in Sections 4.1 and 4.2, which can be
explored further using the interactive tool in Section 4.3,
demonstrate dependence of model skill on both aggrega-
tion scale and method. Scale-dependent evaluation can
enable selection of an appropriate precision level and
guide post-processing steps including spatial
interpolation and selection of a subset of the CMIP model
ensemble, since a ranking of model skill may be scale-
dependent.

(a)

(d) (e) (f) (g)

(b) (c)

FIGURE 8 SEA, temporal regular subdivision. (a)–(c): Hellinger, Wasserstein and IQ distance between the model and reference

distributions for increasing temporal aggregation by regular subdivision for region SEA. (d)–(g): First four L-moments λ1 (mean), λ2
(variance), μ3 (skewness) and μ4 (kurtosis) for increasing temporal aggregation.

10 of 18 VIRDEE ET AL.

 1530261x, 2025, 2, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1290 by B
ritish A

ntarctic Survey, W
iley O

nline L
ibrary on [04/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The three aggregation methods defined in Section 3.1
answer different questions; the most appropriate method
depends on the nature of the task. Centred zoom aids
diagnosis of spatially localised model errors, particularly
where an increase in error with aggregation is observed.
This may be apt if a studying central point such as a
city – the scale of aggregation required for model skill to
improve adequately and can be determined in a way that
is tailored to the location in question. It may also aid the
definition of geographic boundaries for regional analysis
by highlighting where results may be impacted by loca-
lised errors or the inclusion of different neighbouring cli-
mate regimes.

Regular subdivision can indicate scales at which repre-
sentative distributions emerge from internal variability
within a particular geographic region. This gives a means of
answering a critical question not often asked when post-
processing GCM output: at what scales are models reliable?
Divergence is typically high for small spatial and temporal
scales where internal variability dominates and converges
to a steady value with aggregation. Convergence scale varies
by model and region and is sensitive to choice of divergence
measure. It may be misleading to use climate models to

derive information below the scales at which they can be
robustly evaluated and below which the evaluative measure
would be dominated by localised effects. Regional intercom-
parison indicates convergence typically occurs more rapidly
for regions where the distribution of daily maximum tem-
peratures is more normal – in other words, in regions
where temperature is more homogeneous. Therefore, if con-
ducting a regional analysis, it may be important to consider
that strong seasonal cycles and inhomogeneity of geo-
graphic features give rise to more complex distributions that
may require a larger spatial or temporal scale to be ade-
quately resolved.

Intercomparison of three divergence measures tested
gives several insights. Firstly, divergence-based evalua-
tion is sensitive to choice of measure; in several examples
(Figure 6) skill-based model ranking would change based
on divergence measure as well as scale. It may be infor-
mative to test sensitivity to choice of measure during
model evaluation. Secondly, the measures are only
weakly sensitive to discrepancies in higher-order
moments relevant for assessing tails of distributions.
Commonly used measures may be inadequate if the pri-
ority is assessing extremes. Development and application

FIGURE 9 Screenshot of interactive demonstration for all regions and data aggregation methods, available to access online.
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of measures such as kernel-based divergences which
allow emphasis to be placed on particular parts of distri-
butions is a potential direction for future research.

A limitation of this study is the use of reanalysis as
ground truth for model evaluation. Reanalyses contain
compound errors from imperfections of data assimilation,
model uncertainty, and limited availability of input data
outside well-observed regions and beyond the recent past.
Errors are likely shared across reanalyses and particularly
affect the representation of extremes (Bosilovich
et al., 2013; Donat et al., 2014). Daily maximum tempera-
ture is relatively well-represented in reanalyses; these
limitations may therefore present a greater challenge
when evaluating other physical variables such as
precipitation.

Areas for future work include evaluation of other
physical variables – including those where distributions
are less normal and behaviour with aggregation is more
complex – and multivariate analysis. Aggregation of mul-
tiple realisations from each GCM could be considered,
particularly given the growing availability of large single-
model initial conditions ensembles designed to estimate
internal variability. Whilst this study did not include a
comprehensive evaluation or ranking of the CMIP6
ensemble, future work could determine whether
particular models consistently perform best within a
scale-dependent evaluation framework. Analysis
enabling generalised conclusions about the sensitivity of
divergence measures to distributional shape and com-
plexity is another valuable direction for future
consideration.
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ENDNOTES
1 Further complications are added by a growing range of post-
processing methods (e.g., bias correction, statistical and dynami-
cal downscaling – added precision may be misleading without
careful evaluation of underlying models (Maraun et al., 2017;
Stainforth et al., 2007).

2 For a review of model evaluation methods used in the context of
climate impact modelling, see Raju and Kumar (2020).

3 For illustration purposes, Table 1 shows N ¼ 4; in practice,
(a) N ¼ S2

s2 or N ¼ T
t samples are used at each step to give for equiv-

alence to Method 2, where S�S is the full region size and T is the
full time period length. Note that overlapping samples may be
selected.

4 Whilst the Wasserstein and IQ distances can both be interpreted
in physical units of degrees Celsius, they encode different con-
cepts of divergence; intercomparison of relatively larger or smaller
values for different scales or regions is informative rather than
direct comparison of values. The Hellinger distance is dimension-
less, taking values between 0 and 1.

5 L-moment ratios, τr ¼ λr
λ2
,r¼ 3,4, give dimensionless measures of

skewness and kurtosis independent of scale and satisfy τr <1.
6 A metric has the properties of non-negativity: d P,Qð Þ≥ 0; symme-
try: d P,Qð Þ¼ d Q,Pð Þ; obeying the triangle inequality
d P,ð Þ≤ d P,Qð Þþd Q,ð Þ and obeying the identity of indiscern-
ibles: d P,Qð Þ¼ 0 if and only if P¼Q

7 A scoring rule s for a probabilistic forecast  of an event x is said
to be proper if s ,ð Þ≤ s ,ð Þ for all possible forecasts ,; the
scoring rule is strictly proper if the equality occurs if and only if
¼. Note that here s is defined such that a smaller score indi-
cates a better forecast. In other words, if a forecaster predicts dis-
tribution , the scoring gives no incentive to quote an alternative
distribution .

8 [?] refer to the IQ distance as the Cramér distance.
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APPENDIX A: DATA

A.1 | CMIP6 models

A.2 | Reanalysis
W5E5 combines WFDE5 (WATCH (Water and Global
Change project) Forcing Data methodology applied to
European Centre for Medium Range Weather Forecast-
ing Reanalysis, version 5 (ERA5) reanalysis data over
land, with data from ERA5 over the ocean. MERRA2 is
the Modern-Era Retrospective analysis for Research and
Applications, version 2. Details and references for W5E5
and MERRA2 are shown in Table A2.

TABLE A2 Reanalysis datasets

and properties.
Reanalysis Reference Spatial resolution Temporal coverage

W5E5 Lange et al. (2021) 0.5� � 0.5� 1979–2019

MERRA2 Gelaro et al. (2017) 0.5� � 0.625� 1980–present

TABLE A1 CMIP6 models and properties.

Model Reference Modelling institute, country
Atmosphere
resolution (�)

Ocean
resolution (�) Realisation

GFDL-ESM4 Dunne et al.
(2020)

Geophysical Fluid Dynamics
Laboratory, USA

1.0� 0.4� r1i1p1f1

IPSL-CM6A-
LR

Boucher et al.
(2020)

Institut Pierre-Simon Laplace, France 1.8� 0.7� r1i1p1f1

MPI-
ESM1-2-HR

Müller et al.
(2018)

Max Planck Institute for
Meteorology, Germany

0.9� 0.4� r1i1p1f1

MRI-ESM2-0 Yukimoto et al.
(2019)

Meteorological Research Institute,
Japan

1.1� 0.7� r1i1p1f1

UKESM1-0-LL Sellar et al.
(2019)

Met Office Hadley Centre, UK 1.5� 0.7� r1i1p1f2

Note: Resolutions are calculated from number of latitude Nlat and number of longitude Nlon points in grid as 360
Nlon

180
Nlat

� �0:5
. Note that resolutions are nominal and

vary with latitude.
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A.3 | Regions

APPENDIX B: METRICS AND MOMENTS

B.1 | Metrics
A divergence measure d P,Qð Þ is used to quantify the dis-
tance or discrepancy between probability measures P and
Q. This is a central task within many problems in statisti-
cal modelling and machine learning (Markatou
et al., 2021). Many notions of distance between probabil-
ity measures have been developed and applied in various
contexts; the choice of metric should be based on consid-
eration of the requirements of a task. Gardner et al.
(2018), Maupin et al. (2018), Ferson et al. (2008) and
others suggest some desirable properties for a divergence
measure to be used to validate probabilistic predictions
against data, which are useful to consider before intro-
ducing the measures used in this analysis.

A divergence measure used for validation should be a
metric in the formal sense.6 It should in some sense gen-
eralise the comparison between scalar values, such that
the divergence between point probability measures
should reduce to the absolute distance
d δP,δQð Þ¼j δP�δQ j. It should reflect differences in the
full statistical distributions of predictions and data, not
just the mean and variance, and should have a task-
appropriate level of sensitivity to tails without sacrificing
robustness. A metric which is expressed in physical
units – for instance, a metric having units of degrees Cel-
sius if the prediction and data are in degrees
Celsius – can be more intuitive to interpret. Along similar
lines, unbounded metrics are able to grow to an arbi-
trarily large value as discrepancy increases, whereas some
metrics are bounded or normalised such that
0≤ d P,Qð Þ≤ 1; boundedness or unboundedness may var-
iously be useful for interpretability and intercomparison

in different contexts. Assessing the quality of a
probabilistic forecast of an event, for instance in probabi-
listic weather forecasting, is often concerned with the
notion of propriety of scoring rules7 (Gneiting &
Raftery, 2007). Thorarinsdottir et al. (2013) extend the
notion of proper scoring rules to divergence metrics
between probability measures and argue that assessment
of climate model skill should use a score divergence
which obeys these rules. In the following sections, the
properties of three divergence metrics applied in this
analysis are briefly outlined in light of these
considerations.

B.1.1. | Hellinger distance

The f-divergences (Csisz�ar, 1967) are a family of diver-
gences based on the ratio between probability measures
P and Q with the general form:

df P,Qð Þ¼
Z

ϕ
dP
dQ

� �
dP:

Different f-divergences are obtained depending on the
choice of the function ϕ, notably including the Kullback–
Leibler (KL) divergence, Hellinger distance and Total
Variation Distance. The Hellinger distance dH between P
and Q is

dH P,Qð Þ¼ 1
2

Z ffiffiffiffiffiffiffiffiffi
p xð Þ

p
�

ffiffiffiffiffiffiffiffiffi
q xð Þ

p� �2
dx

� �1
2

,

or, for discrete probability measures:

TABLE A3 Names, abbreviations

and boundaries of 11 geographic

regions used for analysis.

Abbreviation Region West East North South

ALA Alaska �151 �121 81 51

AMZ Amazon Basin �73 �43 11 �19

AUS Australia 117 147 �13 �43

CNA Central North America �109 �79 55 25

EAF Eastern Africa 22 52 18 �12

MED Mediterranean Basin 0 30 54 24

NAS North Asia 95 125 75 45

SAS South Asia 67 97 32 2

SEA Southeast Asia 141 111 19 �11

SSA Southern South America �73 �43 �23 �53

WAF Western Africa �14 16 18 �12
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dH P,Qð Þ¼ 1
2

Xc
i¼1

ffiffiffiffi
pi

p � ffiffiffiffi
qi

p� �2 !1
2

,

with a value of zero indicating exact agreement between
P and Q. The Hellinger distance is a metric in the formal
sense and has the property of boundedness
0≤ dH P,Qð Þ≤ 1. However, Thorarinsdottir et al. (2013)
note that it fails to be a score divergence obeying proper
scoring rules.

In previous studies, Arnold et al. (Arnold et al., 2013)
use the Hellinger distance for verification of the probabi-
listic climate predictions from a stochastically parame-
terised forecast model, finding that it gives a smoother
measure of climatological skill than a summary statistic.
The Hellinger distance is selected for its robustness and
interpretability by Papalexiou et al. (2021) and Abdel-
moaty et al. (2021) to evaluate historical CMIP6 extreme
precipitation and drought simulations, respectively. It
has also been used to develop a physically based evalua-
tion approach assessing the relation between land surface
variables simulated by a regional climate model against
the corresponding relation in reanalysis (S�anchez de Cos
et al., 2013).

B.1.2. | Wasserstein distance

Integral Probability Metrics (IPMs) (Müller, 1997) are a
class of divergence measures based on finding the maxi-
mum difference between expectations over a space of
continuous functions F :

dIPM P,Qð Þ¼ sup
f �ℱ

jP f xð Þ½ ��Q f yð Þ½ � j ,

with different IPMs resulting from the choice of F
including the Wasserstein Distance, Maximum Mean
Discrepancy and Total Variation Distance. Unlike the
f-divergences, IPMs have the advantage that they are able
to reward closeness of outcomes rather than only the
ratio between probability of outcomes (Bellemare
et al., 2017). The 1-Wasserstein distance dW , hereafter
referred to as the Wasserstein distance, can be defined in
terms of the inverse distribution functions F�1

P and F�1
Q :

dW P,Qð Þ¼ sup
f � FL

jP f xð Þ½ ��Q f yð Þ½ � j

¼
Z 1

0
jF�1

P uð Þ�F�1
Q uð Þ j du:

The Wasserstein distance, also referred to as the
Earth-mover's distance, is central to the field of optimal

transport (Villani et al., 2009), where it is conceptualised
as the minimum cost of transporting mass from distribu-
tion P to obtain distribution Q. It enables the comparison
of distributions of different shapes and supports and the
intercomparison of continuous and discrete distributions.
However, Thorarinsdottir et al. (2013) note that it is also
not a score divergence – or equivalently in the terminology
of machine learning, Bellemare et al. (2017) point out that
it has biased sample gradients, such that when minimising
the distance using stochastic gradient descent, it may not
converge or may converge to the wrong minimum.

Ghil (2016) first proposed the use of the Wasserstein
distance alongside standard distributional moments in a
climate modelling context, analysing parameter depen-
dence of thermocline depth in an El Niño–Southern
Oscillation (ENSO) model. Vissio et al. (2020) applied the
Wasserstein distance as a more rigorous approach to
global and regional ranking of CMIP6 model simulations
of surface temperature, precipitation and sea ice cover.

B.1.3. | Integrated quadratic distance

The Integrated Quadratic (IQ) distance is calculated
based on the squared distance between cumulative distri-
bution functions FP and FQ as

dIQ P,Qð Þ¼
Z ∞

�∞
FP xð Þ�FQ xð Þð Þ2dx:

Thorarinsdottir et al. (2013) propose the IQ distance
for evaluation of climate simulations on the basis that it
is a score divergence obeying proper scoring rules, dem-
onstrating its relationship with the proper Continuous
Ranked Probability Score used to measure probabilistic
forecasts of a ground-truth scalar observation. It is simi-
larly proposed8 by Bellemare et al. (2017) as a metric that
combines the advantages and overcomes the limitations
of the Wasserstein distance and the KL divergence in that
it has unbiased sample gradients and can also account for
closeness between outcomes.

Thorarinsdottir et al. (2020) apply the IQ distance to
evaluate North American and European extreme heat
indices derived from CMIP5 and CMIP6 surface air tem-
perature simulations. Vrac and Friederichs (2015) and
Yuan et al. (2019) also use the IQ distance to evaluate the
performance of novel bias correction and downscaling
methods.

B.2 | Moments
The above divergence measures are used to quantify the
distance between simulated and reanalysis distributions.
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For comparison and to aid interpretation of these measures,
it is useful to simultaneously characterise the location, dis-
persion and shape of the distributions being compared using
some summary statistics. Conventional moments have some
well-known limitations including oversensitivity to outliers,
poor sampling efficiency and unsuitability for non-normal
distributions (Wallis et al., 1974). Hosking (1990) proposed
the alternative L-moments based on linear combinations
of order statistics. Subsequent studies have demonstrated
their superior empirical performance and sampling
behaviour (Royston, 1992; Sankarasubramanian &
Srinivasan, 1999). They are central to extreme value anal-
ysis (Silva Lomba et al., 2020) and are a standard
approach for shape characterisation and parameter

estimation of climatological distributions (Abdelmoaty
et al., 2021; Papalexiou et al., 2020; Simolo et al., 2010).

APPENDIX C: CODE AND INTERACTIVE TOOL

Code and instructions to download data and reproduce
the results presented in this paper can be accessed at:
https://github.com/mvirdee/divergence_metrics. The
interactive tool in Section 4.3 can be accessed in a Google
Collaboratory notebook at: https://colab.research.google.
com/drive/1DazaztOwLCdaIvonP944UEULc11yha-T.
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