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1  |  INTRODUC TION

Flexible modelling of responses for a variety of distributions (binary, 
count, bounded, continuous) is an indispensable tool for quantitative 
ecologists. Common applications include species distribution model-
ling (Golding & Purse, 2016), abundance estimation (Miller et al., 2022), 
dose–response modelling (Jacobson et  al.,  2022), movement (Aarts 
et  al.,  2012), ecosystem health (Augustin et  al.,  2009) and more. In 

each case what is important is incorporating the structure of the data 
and/or data collection process into the model (be that the form of re-
lationships, spatial correlation, blocking effects, etc.). Informally this 
structure can be thought of as imposing some prior on how we would 
like the terms in the model to behave. In this article, I regurgitate some 
results from the statistical literature emphasizing this (Section 2) and 
then show how these tools can be used (or are already used) by those 
engaged in ecological modelling (Section 3).
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Abstract
1.	 Generalized additive models (GAMs) are a frequently used, flexible framework 

applied to many problems in statistical ecology. They are commonly used to 
incorporate smooth effects into models via splines, including spatial components 
in species distribution models.

2.	 GAMs are often considered to be a purely frequentist framework (‘generalized 
linear models with wiggly bits’), however links between frequentist and 
Bayesian approaches to these models were highlighted early-on in the 
literature. From a practical perspective, Bayesian thinking underlies many parts 
of the implementation in the popular R package mgcv, so understanding these 
underpinnings can be informative during model building and assessment.

3.	 This article aims to highlight useful links (and differences) between Bayesian and 
frequentist approaches to smoothing, as detailed in the statistical literature, in 
accessible way, with a focus on the mgcv implementation. By harnessing these 
links we can expand the set of modelling tools we have at our disposal, as well as 
our understanding of how existing methods work.

4.	 Two important topics for quantitative ecologists are covered in detail: model 
term selection and uncertainty estimation. Taking Bayesian viewpoints for these 
problems makes them much more tractable in many applied settings. Examples 
are given using data from the NOAA Alaska Fisheries Science Center's groundfish 
assessment program.
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Generalized additive models (GAMs; e.g. Wood,  2017) are 
often taught as an extension of the linear model: adding wiggles 
(via smoothers) to make a (G)LM more flexible, often as a more 
principled step forward from adding polynomial terms. “Smooth” 
is often a synonym for spline (DeBoor, 1978), but there are many 
possible model terms that can be specified as basis functions sub-
ject to penalties: so-called “basis-penalty smoothers”. This class 
of models includes ranges from very simple structures (random 
effects), through to more structured penalties, obtaining more 
complex hierarchical random effects models. Having the pen-
alty encode spatial information about a graphical structure gives 
(Gaussian) Markov random fields (Rue & Held, 2005) or multivari-
ate spline models like thin-plate regression splines (Wood, 2003). 
We can also use tensor products of terms to construct multidi-
mensional interaction-type effects (Wood, 2000), allowing for dif-
ferent units to be used for each covariate (i.e. anisotropy). Here I 
use the word smooth to include all these possible flexible model 
terms and generally denote them as s().

Though the term “GAM” has significant baggage regarding the 
fitting method and type of terms, it really just describes the form 
of the linear predictor in the model (terms add together) and the re-
sponse distribution. For example, a model may look like:

where �i ≡ �
(
Yi
)
 and Yi ∼ EF

(
�i,�

)
, where Yi (i = 1, … , n) is the re-

sponse and EF
(
�i,�

)
 indicates an exponential family distribution 

with mean �i and scale parameter �. a⊺
i
 is a vector of slopes and inter-

cept covariates, where � are their associated coefficients. The sj are 
“smooth” functions of one or more of the covariates x1i, x2i, x3i, x4i. 

This definition can be adapted to generalized additive mixed models 
(GAMMs) and generalized linear mixed models (GLMMs), as we will 
see below.

The smooth terms are what makes GAMs an interesting and 
useful evolution of the generalized linear model. In a very gen-
eral sense, they are constructed from sums of simple basis 
functions (e.g. DeBoor,  1978). We can construct a complicated 
function by summing smaller, less complicated basis functions. In 
general for some smooth s of covariate x, we have the following 
decomposition:

where bk are fixed basis functions (with maximum complexity or 
basis dimension K) and �k are coefficients to be estimated. This 
basis function approach is extremely flexible, so to avoid overfit-
ting we penalize the flexibility of each smooth term according to its 
wiggliness. This means that we can let K be relatively large, and let 
the penalty remove the extra flexibility. The fitted model has much 
smaller effective degrees of freedom (EDF); that is the degrees of 
freedom actually used by the model, once the penalty is taken into 
account (usually defined as the sum of the diagonal elements of the 
hat matrix; Wood,  2017, section  5.4.2). Figure  1 illustrates these 
concepts. Generally such a penalty will be an integral (sometimes 
a sum) of squared derivatives of s (since derivatives measure the 
changes in s). The penalty can be written in the form 

∑M

m=1
�m�

⊺Sm�,  
where � is a vector of coefficients, Sm is a matrix of the fixed parts 
of the penalty (integrated, squared derivatives of the bks, which do 
not change) and �m are smoothing parameters to be estimated that 

(1)g
(
�i

)
= a

⊺

i
� + s1

(
x1i

)
+ s2

(
x2i

)
+ s3

(
x3i, x4i

)
,

(2)s(x) =

K∑

k=1

�kbk(x),

F I G U R E  1  The effect of smoothing parameters on the effective degrees of freedom (EDF) of a smooth. In each case, data were simulated 
from the true, blue, function with normal noise (with zero mean and standard deviation of 0.5) added. The data are shown as points. In each 
of the three plots, a thin-plate regression spline was fitted to the data with differing smoothing parameters. In the right plot, the smoothing 
parameter, �, was estimated from the data, giving an EDF of 8.3. In the middle plot, the smoothing parameter was set to zero, meaning the 
penalty has no effect, leading to a very wiggly fit (EDF is the maximum). In the left plot, the smoothing parameter was set to be (numerically) 
infinite, leading to a penalty that doesn't allow for any wiggles. This leads to an EDF of 1, leaving only a linear fit (since this has no second 
derivative, it lies in the nullspace of the penalty and is unpenalized; see Section 3.1).
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448  |    MILLER

control the influence of the penalty (where the Sms are padded with 
zeros so the sum forms a block matrix); see for example Wood (2017, 
section 4.2.2). Writing the penalty in this way means that we can 
compute the Sms once and during fitting the penalty is calculated by 
matrix multiplication only. Note that multiple penalty terms can cor-
respond to a single smooth or multiple smooths may share a single 
smoothing parameter so M is not necessarily the number of smooth 
terms in the model.

We want to estimate model parameters that describe the data 
best, in the sense that we want to draw lines (or surfaces, etc.) that 
are close to the data but do not interpolate them. Formally, we can 
set this up as a penalized log-likelihood (Hastie & Tibshirani, 2000) 
to find

where l  is the log-likelihood and there are M smoothing parameters 
to estimate. Here we are trading-off between fit (high log-likelihood 
giving smooths close to the data) and penalty (large penalty indicating 
smooths are too wiggly).

Conditional on the �ms, estimation of �̂ in (3) is relatively straight-
forward and the problem can be attacked with penalized iteratively 
re-weighted least squares (PIRLS) as for a GLM (Wood, 2017, sec-
tion  6.1.1). Estimating both �̂ and �̂ is more complicated, as the 
smoothing parameters will constrain the values that �̂ can take. 
There have been various proposals for methods to fit such models 
in a frequentist framework and these fall into two categories: pre-
diction error minimizing methods, like generalized cross-validation 
(GCV) or Akaike's information criterion (AIC), or likelihood based 
methods like restricted maximum likelihood and marginal likelihood 
(REML/ML) (see Wood, 2011, for a review). Prediction error mini-
mizing methods have been shown to overfit (undersmooth) at finite 
sample sizes (for GCV; Reiss & Ogden,  2009), especially when er-
rors are correlated (for AIC; Krivobokova & Kauermann, 2007), so 
REML/ML have become the preferred methods. REML and ML cast 
the smooth functions as random effects (Ruppert et al., 2003) and 
smoothing parameters as variance parameters, so we can think of � 
as being a multivariate normal random effect with a variance propor-
tional to � (with structure imposed by the penalty matrix/matrices).

When we talk about adding smooth functions to our model, we 
tend to concentrate on equations like (1), looking at the mean ef-
fects of including smooths rather than thinking about the penalty. 
We usually view the penalty as a way of constraining our fit, stop-
ping it from being too wiggly and ensuring that our model does not 
overfit. We can also think of the basis-penalty as the consequence of 
the problem definition, we have chosen them due to what we know 
about the dependencies and structures in the data (or data collec-
tion process). In practice, for univariate smoothing, switching be-
tween basis functions does not tend to make a big impact on results 
unless there are clear features that need to be accounted for (such 
as cyclic phenomena, boundary issues, etc.); it is certainly not the 
case that one should spend time searching for an ‘optimal’ basis. In a 

loose sense selecting the basis is equivalent setting-up a prior on the 
kinds of functions we want to fit. The rest of this article investigates 
this idea further and explores some useful applications in ecology.

2  |  BAYESIAN INTERPRETATIONS

We can quickly get to a convenient Bayesian formulation by expo-
nentiating the objective function in (3) (Wood,  2017, section  5.8), 
which in the frequentist case gives us a penalized likelihood ℒp:

We recognize this as Bayes theorem: we might better write 
ℒp(� ,�) as p(�|�, y) (the posterior for �) and the likelihood ℒ(�) as 
p(y|�,�). Finally, exp

(
−�⊺S��

)
 acts as a prior on �, p(�). This prior is 

proportional to a multivariate normal distribution with mean zero 
and think of S� (defined as S� =

∑
m�mSm) as a prior precision matrix.

2.1  |  Specifying priors

By using a smooth term for a given covariate in our model, we are 
specifying that observations which are close to each other (in some 
sense) in covariate space have similar values, the response var-
ies smoothly (according to some measure of smoothness) and that 
the true function we seek to estimate is more likely to be smooth 
than wiggly (hence penalizing wigglyness). The Bayesian formula-
tion allows us to be more explicit about these beliefs (Wood, 2017, 
section 5.8). In general, if we want to fit a model yi = s

(
xi
)
, there is 

no unique solution unless some restriction is put on the form of s 
(Watson, 1984).

Looking at (4), this says that � ∼ N
(
0, S

−
�

)
, where S−

�
 is the pseu-

doinverse of S�. Large penalty entries in S correspond to wiggly basis 
functions (we want to penalize those more strongly) which, when 
inverted, give small variances (our prior is that basis function's coef-
ficient is close to zero): this makes explicit our belief that smoother 
functions are more likely than wiggly ones (Wood, 2006).

Since often some of the elements of � are not penalized (e.g. 
slope or intercept terms, which do not have derivatives), this leads to 
improper priors as there are no constraints on the value of the slope 
or intercept for those terms. In this case, the pseudoinverse of S� is 
required. Some basis-penalty smoothers do lead to proper priors for 
all elements of � (e.g. the P-spline approach of Lang & Brezger, 2004) 
and generally a proper prior can be found for any smooth by using 
the methods in Section 3.1. Identifiability constraints (Wood, 2017, 
section 5.4.1) that need to be imposed on the model (e.g. that there 
is only one intercept in the model) may also lead to proper priors 
(Marra & Wood, 2011).

Various different basis function-penalty combinations available 
in the literature express different priors on how we want our model 
terms to behave. For example, cyclic smoothers give us terms which 
‘match’ up to a set number of derivatives at the start/end of the data 
and can be useful for temporal/seasonal effects. Many solutions 

(3)�̂ = argmax
�

{
l(�) −

M∑

m=1

�m�
⊺Sm�

}
,

(4)ℒp(� ,�) = ℒ(�) exp
(
− �⊺

S��
)
.
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    |  449MILLER

have been proposed to the issue of spatial smoothers in areas 
with complex coastlines (e.g. Miller & Wood, 2014 and references 
therein). Wood et al. (2008) propose the soap film smoother, which 
simultaneously estimates a boundary smooth while constraining val-
ues inside the boundary. These models can be fitted using normal 
GAM machinery, since effects are generated by transforms of the 
covariates (application of the basis functions) and the prior (penalty) 
on the corresponding coefficients.

REML and ML are referred to as empirical Bayes methods, as 
when we take the random effects interpretation of �, we can think 
of this as a prior and our fit criterion assesses the likelihood of the 
data given the implied prior on �, as in (4). The ‘empirical’ of the name 
indicates that there is no prior for the smoothing parameters (see 
Carlin & Louis,  2000 for an overview of empirical Bayes method-
ology). Taking a fully Bayesian (FB) approach, it is common to put a 
vague gamma prior on each element of � or uniform priors on their 
logarithm (Wood,  2016). Specifying priors on smoothing/variance 
parameters can be tricky (Simpson et al., 2017), this is especially the 
case for smoothing parameters as the true values of the smoothing 
parameter(s) could be infinite if the true smooth is linear (right plot in 
Figure 1). It can also be hard to come-up with informed priors about 
smoothing parameters, as we often do not have a direct interpreta-
tion of their values.

When using splines we must also decide on knot placement/
number and basis complexity/dimension [K in (2); these are usually 
linked]. Since S−

�
 involves basis functions (or at least their deriva-

tives), the number of basis functions (and/or number of knots) and 
knot placement will affect the posterior. Effects of placement can be 
mitigated to some extent by over-specifying the number of knots/
basis functions and allow wigglyness to be dictated by the smooth-
ing parameter (Pya & Wood, 2016; Wood, 2017, section 5.9). Eigen-
based approaches like thin-plate regression splines (Wood,  2003), 
make placement data-based in cases where regular grids are com-
putationally taxing. Other related approaches include the use of 
triangulation-based techniques to optimize placement based on data 
locations (Lindgren et al., 2011).

2.2  |  Obtaining posteriors

For a FB approach, we formulate a likelihood and attach priors to 
the smoothing parameters �, as well as the model coefficients �. 
We could then use MCMC to obtain a posterior. There are many 
software implementations which can achieve this, so here I only 
list R packages specifically tailored to GAMs: mgcv::jagam, which 
implements translation between mgcv and JAGS (Wood,  2016) 
or brms (Bürkner,  2017), which implements most mgcv models in 
Stan (Carpenter et al., 2017). Dedicated software packages such as 
BayesX (Brezger et al., 2005) can also be used. If one wishes to avoid 
MCMC, integrated nested Laplace approximations (INLA; often 
implemented via the R-INLA package) could be used instead (Rue 
et al., 2009; Wood, 2019). Packages that parameterize their multi-
variate normal distributions using precision matrices rather than 

variances allow us to side-step the pseudoinversion of the penalty 
discussed above.

As discussed above, if we take an empirical Bayes (EB) view of 
the world and do not put priors on �, we can still obtain posteri-
ors for �, conditional on �. For computational efficiency, the Laplace 
approximation is often used here. Both R-INLA (used in ‘empirical 
Bayes mode’) and mgcv use this approach.

Using either approach, we can get to the posterior marginal 
for �: � ∣ y,� ∼ N

(
�̂ ,V�

)
 where for the Gaussian likelihood case 

V� =
(
X
⊺
X+S�

)−1
�2 and for the exponential family the expression 

is approximate and we have V� =
(
X
⊺
WX+S�

)−1
�, where �2 is a 

variance parameter, � is a scale parameter, and W is a weight matrix 
(Wood, 2017, section 6.10). For FB, we can obtain a posterior for � 
and an unconditional posterior for �. For EB, we only have informa-
tion conditional on the value of the smoothing parameter(s). Wood 
et  al.  (2016) propose a correction to V� to account for the uncer-
tainty in the smoothing parameter(s) using a Taylor expansion to ap-
proximate the extra variability in the smoothing parameter.

In practice, we can fit our models using EB methods (such as 
using REML/ML in mgcv) then sample from their posteriors. As 
noted, this is as straightforward as plugging the mean coefficient 
estimates and covariance matrix into a multivariate normal random 
number generator when using a Gaussian likelihood, though in the 
exponential family case one may have to use a Metropolis-Hastings 
sampler and proposing from a t-distribution to get reasonable results 
(such a sampler can be accessed in mgcv using the gam.mh function).

3  |  SOME E X AMPLES

The Bayesian results above lead to some useful applications. Here, 
I highlight a couple of the more commonly used ones. To illustrate 
these techniques, data from the NOAA Alaska Fisheries Science 
Center's groundfish assessment program (https://​www.​afsc.​noaa.​
gov/​RACE/​groun​dfish/​​survey_​data/​defau​lt.​htm) was used. The sur-
vey consists of summer bottom trawls at set of stations from 1982 
through to 2018 and are shown in Figure S1. Response was catch per 
unit effort (CPUE; measured as individuals per hectare, effectively 
a density). Location (recorded as latitude/longitude but projected 
for analysis), date, surface temperature, bottom temperature (both 
recorded during the trawl, in degrees Celsius) and bathymetry (re-
corded in metres) were available as covariates. See Stevenson and 
Lauth (2019) (and references therein) for further details of the sur-
vey. The examples below are not intended to be a serious analyses of 
the data. Data were downloaded from the NOAA AFSC website and 
processed for this analysis.

3.1  |  Term selection

We begin by fitting a model to the CPUE data for walleye pollock 
(Gadus chalcogrammus) in the Eastern Bering sea for 2010 only. The 
model includes a bivariate smooth of location and then univariate 
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450  |    MILLER

smooths of surface temperature, bottom temperature and bathym-
etry. Expected CPUE was modelled as

where i  indexes the station-years. CPUE was assumed to follow a 
Tweedie distribution (see e.g. Shono, 2008, for previous applications 
in fisheries) with a log link. To model CPUE, we may not need all of 
the covariates: space (x, y), bottom depth (Depthi), bottom tempera-
ture (Bottomi) and surface temperature (Surfacei). Rather than using 
hypothesis testing for term selection, here I apply shrinkage/penalty-
type methods to remove terms during model fitting, effectively put-
ting different priors on how to deal with the slope and intercept in each 
smooth. Many approaches are possible (Marra & Wood, 2011) but here 
I focus on two approaches implemented in mgcv.

As described in Section  2.1, the prior placed on � can be im-
proper due to rank deficiency in S. This means that there are linear 
or intercept terms that are not penalized. We refer to these terms 
as being in the nullspace of the penalty (the rest of the terms being 
referred to as the range space). Figure  1 illustrates this. We can 
make our priors proper by simply adding an extra penalty term to 
the model for the nullspace components of each term (the double 
penalty approach of Marra & Wood, 2011). This is achieved by ei-
gendecomposing the penalty matrix, S = U⟶U

⊺. We can then form 
the additional penalty matrix S∗ = U

∗
U

∗⊺ where U∗ is a matrix of ei-
genvectors corresponding to the zero entries on the diagonal of ⟶
. Our original penalty S stays as-is, as the components in S∗ do not 
have an effect (since their entries in ⟶ are (almost) zero). This ap-
proach is implemented as the select = TRUE option in mgcv::gam, and 
includes one additional smoothing parameter for each smooth term 
in the model, corresponding to each term's nullspace. Alternatively 
one can form a basis where the terms that lie in the nullspace have a 
shrinkage penalty applied to them by simply adding a small value to 
their corresponding diagonal entries of ⟶ so that the resulting pen-
alty matrix is not rank-deficient (the shrinkage approach of Marra & 
Wood, 2011; implemented as the cs and ts bases in mgcv). One can 
think of this as adding a ridge regression penalty to the nullspace 
or, equivalently, as a regularization of the nullspace terms (see, e.g. 
Hooten & Hobbs,  2015 for further discussion of regularization in 
ecology).

These two approaches lead to rather different interpretations of 
how wigglyness should be penalized, or rather: the prior structure of 
the smooths. The shrinkage approach assumes that the terms in the 
nullspace should be penalized less than the other parts of the smooth 
(since their contributions are small), so as the smoothing parameter 
increases the model goes from very wiggly, to just the terms in the 
nullspace (e.g. back to a linear model), to having no effect (estimated 
as zero). This is appealing, as we can clearly see that increasing the 
smoothing parameter (decreasing the variance scaling) results in a 
less wiggly result, until the term is removed from the model. The 
double penalty approach treats the null and range spaces separately 
and makes no assumption about how much to smooth the nullspace 
components relative to the other parts of the smooth. This means 

that the nullspace components can be removed before the rest of 
the model, since there is a smoothing parameter for each part.

We can fit (5) in mgcv and see what the differences are between 
the results using these different prior specifications. Comparing the 
results from fitting all terms as thin-plate regression splines (no se-
lection), using the double penalty approach and shrinkage revealed 
that the two term selection methods completely removed the sur-
face temperature term from the model. When no selection method 
was used, the surface temperature term remained as a linear term 
in the model (though it was not different from 0 according to an F-
test). Figure 2 compares the resulting smooth terms, though there 
are some minor differences the other smooths remain the same be-
tween the three models (though this is not guaranteed in general).

3.2  |  Uncertainty around smooth terms

From Section 2.2, we could use the posterior of � to generate pos-
sible parameters then use these to generate possible smooths. From 
these simulated smooths, we could then consider pointwise intervals 
over the range of the covariate to build percentile confidence bands. 
Black lines in Figure 3 shows 1000 posterior samples of the smooth 
of depth for the shrinkage model in the previous section (black lines), 
and their 95% quantiles are the bounds of the blue band. We can take 
a shortcut and rather than simulating, we know that each smooth 
can be written as a linear combination (s

(
xi
)
= Xi� for a model with 

a single smooth in it). We can then use construct point-wise cred-
ible intervals as ŝ

�
xi
�
± z�∕2

√
vi, where ŝ  is our estimated smooth, 

vi is the variance of the smooth at point xi and z�∕2 is the usual ap-
propriate value from a normal CDF. Justification for these intervals 
was developed in Nychka (1988) for normal responses and expanded 
to the generalized case in Marra and Wood (2012). These intervals 
have good frequentist across-the-function properties: that is a 95% 
credible interval has close to 95% coverage, when coverage is aver-
aged over the whole function. There may be over and under cover-
age at the peaks and troughs of the function as we know less about 
the exact turning points than we do about the function on the way 
to that turning point (as by its nature we generally do not know if 
we have samples at exactly the corresponding covariate value at the 
turning point). The red band in Figure 3 shows these intervals. Since 
these intervals have good coverage and tell us about the whole func-
tion (by the across-the-function property), we can use them to test 
the hypothesis H0: s(x) = 0 ∀x—whether a term should be dropped 
from the model because it has no effect (the p-values presented in 
output of mgcv::summary). See Wood (2013) for more detail on how 
p-values are calculated for this test.

We use the posterior samples in Figure  3 simply to calculate 
the blue band in the figure here but they can be useful beyond this. 
Simulating from the posterior of smooth terms (via simulation from 
the posterior of �, conditional � or incorporating uncertainty via the 
approximation described in Section 2.2) can potentially reveal inter-
esting properties of the fitted smooth which are not reflected in the 
plotted bands.

(5)
�
(
CPUEi

)
= exp

[
�0 + s

(
xi, yi

)
+ s

(
Surfacei

)
+ s

(
Bottomi

)
+ s

(
Depthi

)]
,
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3.3  |  Posterior simulation/parametric bootstrap

Sometimes we want more than just uncertainty around individual 
terms in the model, we want to know about uncertainty either in 
the model's predictions or summary statistics generated from 
predictions. Since we can simulate from the posterior of the model 
parameters, we can use those parameters to calculate functions 
of the simulated parameters. Calculating summary statistics on 
the results to obtain uncertainties about those quantities. This is 
particularly powerful as it allows us to calculate uncertainty about 
any function of the predictions (including transformations which 
are non-linear, such as when applying link functions, where this is 
necessary), avoiding potentially tricky derivations needed to obtain 

analytical expressions for the variance (see, e.g. the derivations in 
the appendix of Miller et al., 2022).

A general algorithm (Wood, 2017, section 7.2.7) is as follows:

1.	 Let B be the number of samples to generate.
2.	 Form Lp, the matrix that maps the model covariates to the linear 

predictor (the prediction equivalent of the design matrix).
3.	 For b in 1, … ,B:

a.	 Simulate �b from the (approximate) posterior of �.
b.	 Calculate the linear predictor �b = Lp�b.
c.	 Apply the inverse link function, g, so �b = g−1

(
�b
)
.

d.	 Calculate and store the required summary of �b.
4.	 Perform inference on the B summaries (e.g. calculating empirical 

variance, percentile intervals, etc).

F I G U R E  2  Comparison using the shrinkage and double penalty approaches for term selection, with no selection for reference. Models 
including bottom temperature, depth and surface temperature (left to right) and spatial terms (see Figure S2) were fitted to the walleye 
pollock CPUE data for 2010. Plots are on the linear predictor (log) scale. Both the shrinkage and double penalty approaches remove the 
surface temperature term (right), whereas the no selection method (thin-plate regression splines) leave a linear term. Bottom temperature 
uncertainty is estimated to be much smaller at the upper data range for the extra penalty method. Other terms have minimal differences. 
Note that confidence bands are generated including uncertainty in the intercept for the top row.
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F I G U R E  3  Comparison of posterior 
samples and Nychka-type credible 
intervals for the shrinkage model 
discussed in Section 3.1. Dashed black line 
gives the mean smooth. 1000 posterior 
samples were generated (black lines) using 
the algorithm given in Section 3.3, 95% 
pointwise quantiles of the black lines are 
given by the green ribbon. 95% (Nychka-
type) credible interval is also shown (red 
ribbon) using the procedure in Section 3.2.
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As an example of where we need to take summaries of non-linear 
functions of the linear predictor, we can fit a spatiotemporal model 
to all years (1982–2017) of walleye pollock CPUE data. Our model 
is then �

(
CPUEi

)
= exp

[
s
(
xi, yi, ti

)]
 (where ti indicates year). Now the 

smooth s() is constructed as a tensor product of a two dimensional 
thin-plate regression spline smooth of x and y, and a one dimensional 
cubic spline smooth of year. We want to obtain a time series of total 
predicted abundance at the stations per year. So we need to predict 
at each year and sum over the stations (i.e. space) at 3. (d) in the 
above algorithm. Figure 4 shows the predictions for the model, made 
by summing the predictions over space for each year. For simplicity 
here abundance is calculated by summing over the grid of all trawl 
station locations, it might be more appropriate to sum over a finer 
spatial grid and since surveys are in the summer only, abundance 
estimates were only made once per year (hence the piecewise linear 
nature of Figure 4). Increasing the spatial or temporal resolution in-
volves modifying Lp and recalculating steps 3. (c), 3. (d) and 4. (simu-
lation from the posterior does not have to be repeated).

4  |  DISCUSSION

This article has highlighted the Bayesian interpretation of GAMs 
(specifically as implemented in mgcv), which are often thought of 
as a frequentist method. The article has emphasized that “GAM” 
only describes a (very flexible) model structure and that there 

are alternative ways to fit and interpret these models. Taking a 
Bayesian interpretation gives us many ways in which these links can 
exploited in practice for applied statistical work: they are not only of 
mathematical interest.

Several topics have been excluded in this paper for reasons of 
brevity and clarity, but curious readers may be interested in follow-on 
topics. In (1) we only consider the case where we are interested in 
�
(
Yi
)
 where Yi ∼ EF

(
�i,�

)
 but we need not restrict ourselves to these 

situations. There are several additional distributions available within 
mgcv which may be of use, including survival models (cox.ph), scaled 
t-distributions (scat) and ordered categorical response (ocat), as de-
scribed in Wood et al. (2016) (see the ?family.mgcv manual page for a 
full description of all available distributions). We can also extend our 
models to GAMs for location, shape and scale (GAMLSS; per Rigby 
& Stasinopoulos, 2005), allowing for the specification of linear pre-
dictors for the shape and scale parameters for many distributions 
including: normal (gaulss), generalized extreme value (gevlss) and 
zero-inflated Poisson (ziplss). Of some potential interest in ecology, 
are shape-constrained splines which can be used to ensure that re-
sulting smooths are, for example monotonically increasing/decreas-
ing. These smoothers are implemented in the mgcv-adjacent scam 
package (Pya & Wood, 2015).

The Bayesian interpretations discussed here have been help-
ful to construct more reasonable estimates of uncertainty (includ-
ing smoothing parameter uncertainty) and in order to understand 
how to construct confidence intervals that have good coverage 

F I G U R E  4  Per-year estimates of total abundance at stations for the walleye pollock data from a spatiotemporal model. Black dots 
indicate the observed values (summed per year). Black dashed line shows the mean of the samples from the posterior, summarized at the 
year level. The green band shows a point-wise 95% quantile interval. Note these are not very smooth, as predictions are only made at the 
yearly level.
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properties. In practice, Miller et al. (2022) use the posterior simula-
tion approach outlined here to obtain uncertainty estimates for var-
ious aggregations of a complex spatiotemporal model of fin whale 
abundance (including time series within and between years and 
uncertainty maps). Since these uncertainty estimation schemes are 
constructed in simulation-based approach, they can be significantly 
easier to reason about and much easier to estimate uncertainty from 
data subsets than traditional analytic estimates. Fitting the GAM via 
REML/ML is fast (allowing for exploration), then uncertainty estima-
tion procedures are constructed by replacing appropriate steps in 
from the simulation recipe given above.

Given the multivariate normal prior on the smoother parameters, 
�̂, we can view a GAM as a Gaussian processes (GP; Rasmussen & 
Williams, 2006). Kimeldorf and Wahba (1970) give the general the-
ory for the theoretical link between stochastic processes (such as 
GPs) and Kent and Mardia  (1994) provide further details on links 
between thin-plate regression splines and one specific type of GP: 
kriging. Considering random effects as a specific type of basis func-
tion, Hefley et al. (2017) provide a more practical guide to this equiv-
alence, specifically with regard to highly structured spatiotemporal 
data.

These links can surely be used further to develop other new 
methodology and enhance our understanding of the models that we 
fit. This approach has already been exploited to show that the sto-
chastic partial differential equation approach proposed by Lindgren 
et al. (2011) can be viewed as a basis-penalty smoother and imple-
mented in mgcv (Miller et  al.,  2019). It is a shame that these con-
ceptual links have not been better recognized and exploited further; 
even a very popular textbook (Ruppert et al., 2003) describes the 
mixed model representation of the GAM as a “convenient fiction”. 
Coming from the other direction, Fahrmeir et al.  (2010) expand on 
the idea of Bayesian regularization and its interpretation, deriving 
corresponding priors for ridge regression, lasso, Lp regularization, 
elastic net, and so forth.

The jagam function (from mgcv) and the brms package allow 
ecologists to quickly build models using familiar syntax very similar 
to that for linear models, then transplant these into whatever FB 
computation system they prefer (see the recipe provided by Miller 
et  al.,  2019). The models fitted in Section  3 could be fitted in for 
example JAGS or Nimble, using jagam to create necessary code. The 
main difference between those models and the ones presented here 
would be the priors on the smoothing parameters, which are not ter-
ribly interesting in these cases. Where these ideas really shine are in 
allowing smooths to be included as linear predictors for parameters 
in for example FB occupancy or mark-recapture models. A general 
strategy that might be useful is using the GAM as a spatial distri-
bution process for the study species, but building more complex 
observation processes (possibly from multiple data sources) in FB 
framework such as the one provided by Nimble. In this way, the com-
plex spatial structure is automatically generated and custom code 
is only required to interface this part to the observation processes.

Moving beyond mere computational convenience and harnessing 
the broader Bayesian framework implicit in this modelling strategy 

can help increase understanding and synthesis, as well as providing 
further modelling extensions within a familiar framework.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Plot of the raw CPUE in space per year for walleye pollock.
Figure S2. Comparison using the shrinkage and double penalty 
approaches for term selection, with no selection for reference.
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