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Abstract 

A large body of literature is available quantifying microplastic contamination in freshwater and marine systems 
across the globe. “Microplastics” do not represent a single analyte. Rather, they are usually operationally defined based 
on their size, polymer and shape, dependent on the sample collection method and the analytical range of the meas-
urement technique. In the absence of standardised methods, significant variability and uncertainty remains as to how 
to compare data from different sources, and so consider exposure correctly. To examine this issue, a previously com-
piled database containing 1603 marine observations and 208 freshwater observations of microplastic concentrations 
from across the globe between 1971 and 2020 was analysed. Reported concentrations span nine orders of magni-
tude. Investigating the relationship between sampling methods and reported concentrations, a striking correlation 
between smaller sample unit volumes and higher microplastic concentrations was observed. Close to half of the stud-
ies reviewed scored poorly in quality scoring protocols according to the sample volume taken. It is critical that suf-
ficient particles are measured in a sample to reduce the errors from random chance. Given the inverse relationship 
with particle size and abundance, the volume required for a representative sample should be calculated case-by-case, 
based on what size microplastics are under investigation and where they are being measured. We have developed 
the Representative Sample Volume Predictor (RSVP) tool, which standardises statistical prediction of sufficient sample 
volumes, to ensure microplastics are detected with a given level of confidence. Reviewing reports in freshwater, 
we found ~ 12% of observations reported sample volumes which would have a false negative error rate > 5%. Such 
sample volumes run the risk of wrongly concluding that microplastics are absent in samples and are not sufficient 
to be quantitative. The RSVP tool also provides a harmonised Poisson point process estimation of confidence intervals 
to test whether two observations are likely to be significantly different, even in the absence of replication. In this way, 
we demonstrate application of the tool to evaluate historic data, but also to assist in new study designs to ensure 
that environmental microplastic exposure data is relevant and reliable. The tool can also be applied to other data 
for randomly dispersed events in space or time, and so has potential for transdisciplinary use.
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Graphical Abstract

Introduction
The number of studies reporting the global occurrence 
of microplastic particles (MPs) in marine waters and 
sediments is reportedly 52 times greater in 2021 than 
in 2010, with an exponential increase in the publica-
tions between 2015–2021 [1]. The increase in the rate 
of publications is observed to coincide with the listing 
of microplastics as one of the top 10 global environ-
mental problems by the United Nations Environment 
Programme (UNEP) in 2014 [2]. Although there is an 
increasing awareness of the extent of plastic pollution, 
particularly in the marine environment, there remain 
continuing concerns regarding the relative quality of 
the data being generated. There remains an urgent need 
to develop standardised sampling and analytical meth-
ods to assist the evaluation of exposure and risk asso-
ciated with microplastic exposure to both humans and 
wildlife [1, 3, 4].

Microplastic concentrations in seawater are observed 
to range over 8 orders of magnitude, from between 
0.006 and 660,000 particles/m3, with a mean concentra-
tion of 20,400 particles/m3 (standard deviation: 98,300 
particles/m3, [1]). No single analytical technique can 
quantify microplastics across their diversity of size, 
shape and polymer types [5, 6], whilst microplastic par-
ticle abundance typically increases dramatically in the 
smaller size ranges as larger items disintegrate into ever 
smaller fragments [7]. This complicates comparisons of 
particle number concentrations across studies report-
ing on different particle size ranges.

Results presented by Tang et  al., [1] demonstrate 
significant spatial heterogeneity in the concentrations 
of microplastics reported across the world’s oceans. 
A general observation, however, is that regions with 
higher concentrations are typically associated with 
semi-enclosed bays located near intensive human activ-
ities, which include fishing, shipping, and emissions 
from wastewater treatment plants. There is a correla-
tion between human activity and relative abundance 
of microplastics. However, differences with respect to 
how samples were collected and analysed, as well as 
inconsistencies in how data are reported (e.g. mass- 
or particle-based concentrations), make it difficult to 
compare data collected between different studies [8].

While there are currently several activities aimed at 
the development of harmonizing sample collection, 
analysis and reporting [8–15], there is also a need to 
strengthen overall confidence and reliability of the data 
that are reported in the scientific literature [16–18]. 
Koelmans et al., [16], developed and applied a suite of 
basic quality assurance and quality control criteria that 
could be used to provide a transparent critical evalu-
ation of the reliability of microplastic concentrations 
reported in surface and drinking waters. Others have 
also proposed similar guidance for measuring micro-
plastics in soils [19], sediments [20] air [21] and biota 
[22]. In addition to ensuring that monitoring data are 
reliable, there is also a need to ensure that the data gen-
erated are relevant and fit-for-purpose.
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When considering the relevance of data, it is first 
necessary to review the original aim associated with 
the study. Quantitative exposure assessment allows 
hotspots to be identified, critical environmental pro-
cesses to be understood and key sources of microplas-
tics into the environment identified. However, the types 
of study which are relevant to underpin these different 
purposes are not one and the same. Identifying which 
data are relevant for a specific purpose represents an 
important step when compiling available information 
[11]. A simple example would be data reporting only 
particle numbers should not be used to inform a mass 
balance calculation if the necessary information on 
particle sizes, and thus mass is absent. Similarly, data 
that report microplastics > 300 µm are unlikely to give 
a complete picture of exposure, meaning the risks from 
smaller particles cannot be assessed without extrapola-
tion (e.g. [23]).

When considering the representativeness of data, the 
volume of sample represented in an observation is criti-
cal. Sufficient volume must be taken to capture enough 
microplastic particles to be representative of the wider 
environment sampled. In a patchy, heterogenous world, 
many assumptions are made when extrapolating from a 
few millilitres in the laboratory to thousands of meters 
cubed of water say, in the coastal zones around a coun-
try. Whilst such considerations are beginning to be 
acknowledged in various efforts to standardise methods 
for microplastic quantification, these necessarily typi-
cally focus on sufficient sample volumes for a given sam-
pling method or analytical technique (e.g. including but 
not limited to [24–28]). A more generic standardised 
approach to predicting representative sample volumes 
would allow for harmonisation across the diverse range 
of methods in use.

We developed the Representative Sample Volume 
Predictor (RSVP) tool, to assist in standardising sam-
ple volume predictions to allow microplastics to be 
detected with a known level of confidence. The method 
was developed from a review of historical data in marine 
and freshwaters (Sect. “Why are environmental observa-
tions so variable?”). The methodology behind the RSVP 
tool (Sect. “RSVP – a tool for representative sample vol-
ume predictions”) and demonstration of its application 
in the design of new sampling strategies is presented 
(Sect.  “How can a standardised approach to predict-
ing representative sample unit volumes help resolve 
outstanding issues with data variability?”). In addition, 
application of the tool  is demonstrated, in this example, 
to review relevant historic data based on achieving pre-
dicted minimum sample volumes to detect microplastics 
at a given level of confidence (Sect. “Using the RSVP tool 
to screen for relevant data”).

Methods
RSVP – a tool for representative sample volume predictions
The distribution of microplastics within a mixed body 
of water can be estimated based on an assumption of a 
random distribution pattern driven by processes such as 
turbulent dispersion where particles are independent of 
each other. This random distribution can be estimated 
following a Poisson point process as demonstrated in 
[29].

This is not unique to microplastics. These principles 
apply widely to predicting the number of any discreet 
objects or “events” that act independently in a fixed 
period of time or space, such as shooting stars in the 
night sky, the daily telephone calls received on a hotline, 
or particular flowers in a quadrat. The chance of counting 
a specific number in all of these scenarios can be mod-
elled statistically using the Poisson distribution, a discrete 
probability distribution, that expresses the probability of:

• a given number of discrete events, in this case cap-
turing a given number of microplastic particles;

• occurring in a fixed interval, here a fixed volume of 
water;

• if these events occur at a known or expected rate, in 
this case, equivalent to an expected concentration of 
microplastic particles in the sampled environment.

Adopting the Poisson distribution, the probability (P) 
that exactly k number of microplastic particles are cap-
tured in a given volume is calculated following Eq. 1:

where P(k) is the probability that k particles will be cap-
tured, k! is the factorial of k, e is Euler’s number and λ, the 
rate parameter is the expected number of particles in a 
given volume i.e. the concentration multiplied by the vol-
ume sampled.

In our case, it is not the probability of capturing k par-
ticles that is the focus of the RSVP tool, but the predic-
tion of how much volume must be taken to capture at 
least k particles with a given probability. To perform this 
assessment, it is convenient to use the related continu-
ous Gamma distribution function. If the shape param-
eter of the Gamma distribution is set to α = k + 1 and rate 
parameter to β = 1 the Gamma distribution forms a con-
tinuous extension of the Poisson distribution [29].

To make an analogy for the relationship between the 
Poisson and Gamma distribution, we can think about 
randomly distributed events in time. The probability of 
seeing k shooting stars during a night follows a Poisson 
distribution (where k is an integer ≥ 0), whilst the time 

(1)P(k) =
�
ke−�

k!
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between these independent events (the minutes between 
seeing one shooting star and the next) can be described 
by a Gamma distribution function (a continuous dis-
tribution). To return to measuring microplastics in the 
environment, the Poisson Distribution describes the 
probability of finding k microplastics in a given volume, 
whilst using the Inverse Gamma Cumulative Distribu-
tion Function it is possible to calculate how much volume 
you need to take to capture at least k particles at a given 
probability.

The assumptions of the Gamma (and Poisson) Distri-
bution are that the events are independent (in this case 
events referring to microplastic particles captured), and 
that the mean and variance remain constant. The for-
mer is likely to apply unless the particles aggregate, but 
the latter is violated at low numbers because negative 
counts are not possible, and zeros become more fre-
quent. Thus, these calculations are only recommended 
for target particle numbers above around 10 particles 
[29]. In the RSVP tool, an Inverse Gamma Cumulative 
Distribution Function is implemented to calculate the 
expected value λ needed to catch at least k particles 
with a given level of confidence 1-α, i.e. with alpha at 
0.05, this would provide 95% confidence that we cap-
ture at least k particles.

The output to the user is the volume (v=λ/c) required 
to capture the target number of microplastics k at the 

given level of confidence α, assuming the numerical 
microplastic concentration at the sampling location is c.

The target number of microplastic particles (k) depends 
on the purpose of the assessment and should be decided 
a priori by the user. For example, if you wish to determine 
presence or absence of microplastics in a location with 
99% confidence, the user would set k to 1, and α as 0.001. 
The target number of microplastics (k) to be measured 
for different purposes have been proposed elsewhere e.g. 
k required to quantify total microplastics [29] or multiple 
characteristics of microplastics in a sample (e.g. [30], see 
Sect.  “Using the RSVP tool to screen for relevant data”, 
Table 1).

The expected number of particles in a given volume of 
water λ should be estimated by identifying the most rel-
evant existing data to inform on expected concentrations 
at the sampling location. Details of the selection criteria 
used and justification of the relevance of the data should 
always be clearly reported. Some key criteria to identify 
relevant data to inform λ are to select data that:

• represents a similar test system to that under investi-
gation (e.g. similar sized river or catchment)

• represents/ integrates similar environmental fate 
processes

• collected samples using a similar methodology
• processed samples using a similar methodology

Table 1 Examples of target number of particles required to evaluate data for specific purposes

Purpose Target 
number of 
particles

Reference

            

Monitoring presence/absence at a given level of confidence 1 e.g. Figure 4

     

To calculate the sampling error using the Poisson point process 10 [29]

    

To achieve a predicted 95% confidence interval to be within ± 30% of the total concentration 
estimates

50 [29]

              

To allow for one additional property such as polymer identity to be evaluated with an error of 
10%

96 [30]

              

To allow for one additional property such as polymer identity to be evaluated with an error of 
5% or less

384 [30]

           

To simultaneously estimate polymer, colour, size, and morphology distributions with an error 
of 5% or less

620 [30]
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• analysed samples using the same analytical technique 
and so represents the same “analytical window” i.e. 
region of the microplastic size continuum, polymer 
types etc.

• scores highly following quality criteria (e.g. for water 
samples, [16])

• using the arithmetic mean of suitable data is likely 
to overestimate the concentration in a given sample 
because one or more very high values can influence 
the mean unduly. Ideally one would choose a typical 
value from a large distribution. In most cases there 
is not enough data to do this, so either erring on the 
side of caution or choosing a value less influenced by 
outliers such as the median or the geometric mean is 
recommended.

We acknowledge that in the absence of data represent-
ing microplastic particles in the same size range it is chal-
lenging to predict the expected number of microplastic 
particles in a given volume of water. This is why the first 
recommendation is to use data from analogous analyti-
cal methods to inform λ. Mathematical re-scaling meth-
ods have been prosed (e.g. [31]) and have been applied 
to estimate microplastic concentrations within default 
size ranges e.g. 1 – 5000 μm, from measurements taken 
within a restricted size range, using power law distribu-
tions (e.g. [20, 32]). The applicability domain of these pre-
dictions and the calculated exponents appear dependent 
on the environmental matrix and as such, particle size/
frequency relationships will always be most accurate if 
calibrated for a specific compartment and set of condi-
tions [33].

The level of confidence α is set by the user, but some 
common values are automatically provided in the tool. In 
practical terms the equation above allows the user to ask:

How much sample must I collect to capture a given 
target number of microplastic particles at a given 
level of confidence?

In addition, [29] converting the Poisson and related 
Gamma distribution from “what is the probability to 
catch exactly k particles in a volume v, when the concen-
tration and thus the expected value λ was known (calcu-
lated by multiplying the concentration with the sampled 
volume)?” to “what is the probability that λ has a certain 
value, given that it is known that exactly k particles were 
captured?”. For example, if 10 particles were captured in 
one litre of water, one might assume that the concentra-
tion in the sampled water body was 10 particles/L. If the 
real concentration was actually 8.1 particles/L, there is 
still a fairly high chance of catching exactly 10 particles 
(~ 10.2%) and a higher chance of capturing at least 10 
particles (~ 29.6%). However, the probability of catching 

exactly 10 particles would be very low if the real con-
centration was either a lot higher or a lot lower than 8.1 
particles/L. For example, the probability of capturing 
exactly 10 particles in a sample if the true concentration 
was 3 particles/L is only 0.08%. As can be seen, captur-
ing exactly 10 particles is possible at a whole range of 
actual environmental concentrations, but gets less likely 
the further away from 10 the expected value λ is. Thus, 
for any possible environmental concentration it can be 
calculated how likely it would be to capture exactly k (in 
this example exactly 10) particles. From this, a confidence 
interval of expected values λ around the captured num-
ber k can be calculated, provided you know the volume 
of sample represented in the analysis. To illustrate, if a 
sample of 5L was analysed and 45 particles captured (i.e. 
k = 45), we can calculate the 95% confidence interval in 
which the true river concentration λ is stochastically con-
tained as being between 6.57 and 12.04 particles/L. For 
more detail of the principles and equations used to cal-
culate these confidence intervals, please refer to [29]. An 
explanation of this example, along with illustrative figures 
are provided in Supplementary Material 3, Chapter  1, 
and in Tab 3 of the excel file, Supplementary Material 
1: the RSVP Tool “3. Illustration”. These calculations are 
implemented in the RSVP tool to estimate the confidence 
intervals around single observations without replication 
and provide an indication of whether these were likely to 
differ significantly at given levels of confidence. This part 
of the tool may be used to screen for significance of dif-
ferences between observations in the absence of replica-
tion, a useful tool when range testing a sampling design, 
or interpreting existing data.

Ultimately, the RSVP tool provides for several useful 
functions:

1. How much sample must I collect to capture at least 
a given target number of microplastic particles at a 
given level of confidence?

2. In the absence of replication, are two values likely to 
differ at a given level of confidence?

3. Both functions can be applied either to the total 
number of microplastics when that is of interest, or 
to subsets of interest, e.g. by polymer, shape, size col-
our etc.

A downloadable Excel Worksheet of the tool is pro-
vided in the Supplementary Information which guides 
the user in performing these calculations and interpret-
ing the results.

This does of course only deal with the mathematical 
implications related to the Poisson process and not with 
the various other issues of to do with sampling, process-
ing/cleanup, detection/quantification. While the RSVP 
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tool is designed in the context of predicting representa-
tive sample volumes for microplastic exposure assess-
ment, its principles can be applied to any count-based 
data, provided the assumptions behind the Poisson dis-
tribution are met.

A database of marine and freshwater microplastic 
concentrations
As a proof-of-concept, we have applied the RSVP tool 
to evaluate data that have reported microplastics in 
marine and freshwater environments. A previous lit-
erature search was leveraged including all dates up to 
June 2020, using the PubMed search engine, provided 
by the National Center for Biotechnology Information 
(Bethesda, United States of America), and the keyword 
‘microplastic’ was used, for which > 2600 publications 
were obtained. The search ended in 2020 as this pre-
existing dataset is being leveraged here to demonstrate 
the research need and the tool, rather than conclude 
on the current status of the literature. Adoption and 
initial definition of the term ‘microplastic’ in the sci-
entific literature, however, only emerges in 2004 [34], 
whereby microplastics are defined as synthetic plastic 
particles < 5mm [35]. Recognizing that synthetic plas-
tic particles < 5mm in size have been reported in various 
environmental matrices since the 1960’s, additional refer-
ences are included based on a review of relevant citations 
used in review articles after 2004. As of 30 September, 
2020, an Endnote database of 3417 publications had been 
assembled, including studies related to ecotoxicology 
and human health effects, monitoring data, environmen-
tal fate and distribution, and other microplastic and/or 
particle-relevant research. This represents the primary 
source of information used in summarizing monitoring 
data of microplastics in the aquatic environment.

From the literature review of microplastic research, 
168 studies have reported concentrations of microplastic 
particles in various marine and estuarine systems, with 
concentrations above limits of detection ranging from 
around 0.001 to 1.5 ×  105 MPs/m3. Data reported include 
all major oceans and seas. When considering freshwa-
ter systems, 75 studies were identified in the literature 
review, including lakes, rivers, and ponds. Concentra-
tions of microplastics above limits of detection were 
reported as ranging from 0.0001 to 2.08 ×  106 MPs/m3.

Statistical analysis of the existing data
Regression analysis was conducted between sample vol-
ume and the concentration of MPs, as well as with respect 
to the minimum reported particle size and concentra-
tion. All data were log-transformed for the analysis, with 
subsequent observations grouped by collection method 
(i.e., grab, pump and net sampling) and differentiated 

between marine and freshwater systems. Redundancy 
Analysis (RDA, “vegan” and “ggfortify” packages) was 
performed on the full dataset (marine and freshwater), 
with an emphasis on evaluating whether sample volume 
or minimum reported particle size represented possible 
parameters that could be used to explain the variation in 
concentrations reported. Microplastic concentrations, 
sample volume and particle size were log-transformed 
prior to running constrained ordinations.

As an additional level of assessment, we also consid-
ered the relationship between the relative quality of stud-
ies, based on results obtained from an evaluation using 
the quality scoring criteria [16] and the concentrations 
of microplastics reported in both marine and freshwater 
systems. Full details of the QA/QC criteria are provided 
in the original publication and are therefore not repeated 
here. Briefly, however, there are nine separate QA/QC 
criteria, with each criterion assigned a score of ‘0’, ‘1’, or 
‘2’ depending on how a specific criterion is reported in 
the study. Guidance on assigning a score is provided in 
[16]. All criteria are assigned equal weight, with a fully 
reliable study being defined when all nine criteria receive 
a score of at least ‘1’. Using the results of the scoring for 
each of the nine criteria, we performed a Levene’s test for 
homogeneity of variance with a Nemenyi post hoc test. 
The results of which are then complemented using Prin-
cipal Components Analysis (PCA, “devtool” and “ggfor-
tify” packages). This considered the relationship between 
concentration and the quality scoring data, as well as 
with respect to various sampling parameters (e.g. sample 
volume and minimum particle size), which are grouped 
by collection method, water body type and analytical 
identification method used. All statistics were performed 
in RStudio, version 4.3.2.

Results and discussion
Why are environmental observations so variable?
Consistent with the recent review by [1], the concentra-
tion of microplastics compiled as part of the literature 
review (with no data treatment or alignment, thus repre-
senting different size regions across studies) reveals that 
reported concentrations across both marine and fresh-
water environments span ten orders of magnitude, from 
0.0001 MP/m3 to 2,083,500 MP/m3.

Three major sample collection methods are identified. 
These include the use of various types of trawling nets, 
pumped filtration, and grab samples. Nets and pumped 
filtration introduce lower size limits of particles cap-
tured based on the mesh sizes. Grab samples in bottles 
may allow for the entire size continuum to be captured, 
but are usually limited in the volume of sample that can 
be captured to a few litres. Whilst this may be sufficient 
to be representative of very small and more abundant 
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particles, it is unlikely to be representative of larger parti-
cles that may be the focus of analysis of samples captured 
with nets or pumped filtration. The relevance and reli-
ability of different sample collection methods is therefore 
dependent on the purpose of the assessment and in par-
ticular the size of particles for quantification.

Most analytical techniques were count based meas-
urements, consisting of vibrational spectroscopy (FTIR, 
NIR, Raman), and visualisation approaches which do 
not confirm polymer identity e.g. SEM or stereomicros-
copy. These techniques can resolve particle size, and in 
some cases, shape and polymer identity. Each of these 
techniques quantifies microplastics within different, but 
sometimes overlapping regions of the size distribution. 
The polymers quantified also depends on the analyti-
cal technique, the sample preparation, and the librar-
ies of known polymers used in the data analysis. Other 
analytical instruments, such as gas chromatography—
mass spectrometry (GC–MS), do not provide size infor-
mation, although coupled with a sample fractionation 
method such as a series of sieves, some size information 
by fractions can be inferred. Occasionally, the measure-
ment technique was not reported. It is the combination 
of both the sample collection method and analytical 
instrument which determines the definition of a micro-
plastic in a given study, and further complicates the 
challenge of interpreting data generated using different 
methodologies.

The significant variability in total reported concen-
trations raises the question of why? This may be a true 
reflection of the existence of hotspots and cold spots 
globally of microplastic pollution, or it could be due to 
differences in study design, quality, and analytical capa-
bilities. Quality criteria have been proposed for moni-
toring and measuring microplastics in waters [16]. The 
marine and freshwater databases were quality scored 
according to this system (Supplementary Material 2).

Reliability scores are weakly correlated with microplastic 
concentrations
To understand whether data quality and reliability influ-
ence the high variability observed in freshwater and 
marine observations, an assessment of critical criteria 
relating to sample collection, preparation and analysis are 
reviewed. These criteria are found to be only weakly cor-
related with microplastic concentrations (Supplementary 
Material 3, Chapter 1). Principle component analysis pro-
vides insights into which explanatory variables combine 
to best explain the variance in the data (Supplementary 
Material 3, Figure SI2). The concentration of micro-
plastics is observed to be negatively correlated with the 
sample method and volume scores, implying that higher 
concentrations of microplastics are reported in studies 

with lower quality scores for these critical aspects of 
sample collection and sample volume (i.e. smaller vol-
ume samples). It is not possible to conclude whether this 
is due to studies which took smaller sample volumes, 
targeting smaller and so more abundant microplastics. 
Interestingly, the results suggest that the strength in rela-
tionship between the different quality criteria and the 
factors is generally quite low, indicating that the various 
QA/QC criteria only weakly correlate with the reported 
concentrations of MPs.

Observations are influenced by the volume of sample 
captured and the size of microplastics analysed
Redundancy analysis of the explanatory variables con-
cluded that the sample volume and minimum particle 
size explain 73% of the variance in the reported micro-
plastic concentrations across marine and freshwaters 
(Supplementary Material 3, Figure SI4). To understand 
whether data can be interpreted across different studies 
it is therefore important to consider the implications of 
variable sampling volume and the targeted microplastic 
size on the reported concentration.

A significant negative correlation between the sam-
ple volume and the reported concentration is observed 
in both marine and freshwaters (Fig. 1, marine: adjusted 
R2 = 0.4, p < 0.01; freshwater: adjusted R2 = 0.66, p < 0.01).

On closer inspection, it is notable that this correlation 
between sample volume and concentration is not appar-
ent for net samples. Samples collected by nets seem to be 
in quite good agreement, typically reporting < 100 micro-
plastics/m3, irrespective of the volume captured. Nets 
typically capture larger particles, usually > 300 μm in size, 
which relates to the pore size of most nets used for such 
sampling. The relative consistency in the observations for 
net data with sample volume (adjusted R2 = 0.03, p = 0.17) 
may be due to these observations generally quantifying 
similar sized microplastic particles. The restriction of 
most net measurements to quantification of quite large 
microplastics > 300 μm suggests they are less susceptible 
to the correlation between smaller particles and more 
frequent detections that are observed in the grab and 
pumped filtration samples.

Indeed, when considering the entire data set, there is 
a negative correlation between minimum particle size 
and the reported concentration of microplastics in both 
marine waters, adjusted R2 = 0.37, p < 0.01 and in fresh-
waters, adjusted R2 = 0.31, p < 0.01 (Fig.  2 and Supple-
mentary Material 3, Table SI2). When the same sample 
collection method was used, and the same minimum 
particle size analysed, reported concentrations are typi-
cally within around 4 orders of magnitude of one another 
(Fig. 2). It is challenging to conclude whether this reflects 
true differences between hotspots and more background 
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concentration locations, or if this is due to analytical 
uncertainties. Such assessment is possible between spe-
cific studies through detailed evaluation and compari-
son of study designs. Adhering to reporting criteria such 
as [16] will assist in making the relevant data and meta 
data around microplastics monitoring available for such 
detailed assessments.

Assuming that the concentration of microplastics is 
expected to follow a power law relationship between 
decreasing size and increasing concentration (see for 
instance, [33]), it would be anticipated that a significant 
negative correlation between these size and concen-
tration would be observed across all sample collection 

methods and in both environments. When split by 
sample collection method,  results obtained only sug-
gest a  significant negative correlation for net samples 
in marine waters (adjusted R2 = 0.26, p < 0.01), and 
for pump samples in freshwater (adjusted R2 = 0.44, 
p < 0.01). Results for all other combinations of collec-
tion method in marine and freshwater are observed to 
be not significant at p > 0.05, with respect to decreas-
ing particle size and concentration (Supplementary 
Material 3, Table SI2). This result is surprising and 
speaks once more of the challenges when comparing 
data from different sources. There are various sources 
of uncertainty which may contribute to this rather 

Fig. 1 Regression plots of concentration against the sample volume captured in marine and freshwaters. The collection method is denoted 
by different coloured points, for grab, net and pumped filtration sampling. Modelled fits for the regressions are presented for each of the three 
collection methods. Solid lines represent statistical significance (* = p < 0.05, ** = p < 0.01) whilst dotted lines were not statistically significant

Fig. 2 Regression plots of concentration against the minimum microplastic particle size captured in marine and freshwaters. The collection 
method is denoted by different coloured points, for grab, net and pumped filtration sampling. The regression lines represent the regression for all 
datapoints, irrespective of the sampling method
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weak correlation between particle size and reported 
concentration:

• In the assessment it is not possible to interrogate 
the sensitivity of each analytical technique across 
the range of sizes measured and reported in each 
study. No comprehensive assessment of sensitiv-
ity of analytical techniques across particle sizes is 
available and so the impact of analytical sensitiv-
ity differences between studies is unknown. Cur-
rent efforts to generate representative test materials 
with consistent and known properties (e.g. [36–38]) 
represent an opportunity for future systematic 
recovery and sensitivity assessments across ana-
lytical techniques through interlaboratory compari-
sons (e.g. [15, 39–41]).

• In some cases, minimum particle size quanti-
fied could be extracted from the data. Where such 
information was not available, the minimum par-
ticle size was assumed equivalent to the physi-
cal limits of the sampling method e.g. net mesh 
size or filter pore sizes are used in the assessment. 
There may be some uncertainty introduced by this 
assumption.

• The ability of different analytical techniques to 
resolve aggregated particles and report on their con-
stituent particle number is unknown.

• Whilst it is evident that degradation and fragmenta-
tion processes will lead to ever more abundant smaller 
particles in the environment, it may be that very small 
fragments are generated preferentially. For example, if 
weathering causes particles to shed small fragments 
from their surfaces, rather than breaking up into a con-
tinuous distribution of particle sizes (e.g. [7, 42]). Such 
fragments may be underrepresented in the data due to 
analytical techniques being unable to quantify these 
sizes to date in environmental samples, with most 
reports concerned with microplastics > 10 µm in size.

How can a standardised approach to predicting 
representative sample unit volumes help resolve 
outstanding issues with data variability?
Microplastic particles in the environment are heterog-
enous, exhibiting a variety of physicochemical properties 
such as polymer type, size, and shape. Particles may also 
be distributionally heterogenous, experiencing variations 
in concentrations across time and space due to environ-
mental fate processes. It is therefore necessary to mini-
mise the influence of these two sources of variability in 
order to generate a representative understanding of the 
environmental exposure when designing any sampling 
strategy (Fig. 3).

In traditional theory of sampling, “comminution” of the 
collected particles through cutting, crushing, or grind-
ing is often used to resolve constitutional heterogeneity 
[43]. However, this solution is not suitable when quan-
tifying microplastic particle number concentrations, as 
disintegration of the existing microplastic particles into 
smaller fragments would mean they no longer have integ-
rity to the original sampled environment. An alternative 
is needed. Increasing the number of particles that can 
be quantified in a single sampling unit can reduce the 
impact of this constitutional heterogeneity inherent to 
environmental microplastic samples.

The sample unit volume must be optimised to achieve 
a sufficient number of particles analysed in the meas-
urement to be representative of the constitutional het-
erogeneity of the population/environment targeted. 
Statistical guidance is provided elsewhere on the num-
ber of particles needed to be captured to describe the 
constitutional variability in microplastic samples e.g. 
[30]. To generate representative data for more than one 
aspect of microplastic characteristics, for example to 
measure sufficient particles to describe not only poly-
mer identities but also shapes and colour with a given 
level of error, increasing numbers of particles must be 
measured within a sample. It should be noted, that as 
no single analytical technique can be quantitative of the 
constitutional diversity of microplastic in its entirety, 
any such analysis is constrained by the analytical win-
dow of the technique and so an operational definition 
of “microplastics” in each study must be reported.

In the laboratory, the influence of distributional het-
erogeneity of microplastics can be reduced through 

Fig. 3 Predicting representative sample volumes is critical to resolve 
constitutional and distributional heterogeneity of microplastics
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mixing or blending of the sample. However, in the 
field, the only recourse is through sampling design and 
increasing the sample volume collected. For systems in 
which particles are expected to be randomly distrib-
uted, for example in a turbulent river sample, this ran-
dom distribution can be estimated following a Poisson 
point process. This has been used to estimate sampling 
errors when counting microplastic particles (e.g. [29]), 
whilst others have also used bootstrapping methods 
to estimate sampling error when only characterising a 
subsample of microplastics in a population (e.g. [44]). 
In all cases, increasing the number of particles quanti-
fied in an analysis reduces the sampling error and thus 
provides a more robust estimate of the total particle 
number concentration of microplastics.

From this understanding of both the constitutional and 
distributional heterogeneity of microplastics in aquatic 
samples, it may be assumed that the smaller the volume 
taken, the larger the impact of these heterogeneities on 
the reported concentration. Thus, higher variability can 
be expected in data where lower sample unit volumes 
were collected. Indeed, in our analysis, the absolute vari-
ance in data was reduced for data associated with higher 
quality scores for sample volume size and better docu-
mentation of sample preparation methods (Supplemen-
tary Material 3, Figure SI3), both of which are key factors 
to address the constitutional and distributional heteroge-
neity of microplastics in aquatic dispersions.

Using the RSVP tool to screen for relevant data
As an example of the application of the RSVP tool as a 
screening tool for historic data, here we predict the mini-
mum volume required to detect microplastic particles 

with a given confidence of 95%, using the concentration 
reported in the study as the nominal concentration in the 
sampled environment (Fig. 4). 

Data points in the graph are scaled to cube-root trans-
formed concentrations, as reported concentrations 
range across many orders of magnitude and could not 
be visualised without transformation. Of 97 datapoints 
that reported the sample volume captured for freshwa-
ters, 84 data points captured sufficient volume to report 
detections (presence/absence) of microplastics with 95% 
confidence. For 13 datapoints the probability of catching 
at least 1 particle in the given volume was < 95%. Inter-
estingly, two of these studies would have scored 2 in the 
quality scoring system for sample volumes. This demon-
strates the utility of the tool in providing a retrospective 
assessment of sample volume sizes on a case-by-case 
basis, enabling a more robust evaluation of study qual-
ity. For those datapoints which did not pass the minimum 
sample volume requirement, this does not mean that 
the reported microplastic in those studies are not “real” 
observations of microplastic presence. Rather, there is a 
greater than 5% chance of false negatives, i.e. of collect-
ing no microplastic particles at all, even though they 
are present in the sampled environment. Thus, were the 
researchers to repeat this sampling many times from an 
environment with the reported concentration, on more 
than 5% of the occasions, they would wrongly conclude 
there were no microplastic particles.

Further considerations are:

• Blank correction and limits of detection: In this 
calculation the reported data was taken as given. 
Whether reported data is statistically significantly 

Fig. 4 Captured sample volumes versus predicted minimum sample volume requirements. Blue circles indicate studies which sampled a volume 
sufficient to detect microplastics with > 95% confidence, whilst red circles indicate data which did not meet this requirement. The size of the circles 
represents the concentration reported. Note for visualisation purposes, the cube-root of the concentration was used to scale the size of the circles
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different from the background is a separate ques-
tion, commonly addressed by calculating detec-
tion limits with regards to the standard deviation 
of the blanks. In some cases, contamination is not 
(adequately) accounted for when using procedural 
blanks. The reported concentration is inclusive of 
an unaccounted-for background contamination and 
may not be truly above the limits of detection of the 
study. Only one of the six studies where datapoints 
did not pass the minimum required sample volume 
scored highly for clean air, with all others scoring 0. 
There were mixed quality scores for negative controls 
across these studies.

• Confidence level: Here we applied a confidence level 
of 95% for presence/absence in the sampled volume. 
A less stringent level of confidence may be accept-
able, depending on the purpose of the assessment.

• Complete mixing and independence of events: The 
study area may not conform to the assumptions of 
the RSVP tool. The tested system should represent 
microplastics that are behaving independently of one 
another and randomly distributed within the envi-
ronment sampled, for example through turbulent dis-
persion in a flowing river. Under conditions that vio-
late the assumptions of the Poisson distribution (e.g. 
independence of events) the RSVP prediction will be 
invalid.

The desired number of particles to detect is dependent 
on the purpose of the assessment. There are additional 
costs with increasing the sample volume, particularly in 
the clean-up and extraction of microplastics from envi-
ronmental samples. Therefore, it is not always desir-
able to capture the maximum possible sample size for a 
study, rather the representative volume required may be 
tailored to the purpose of the study. Some general rules 
of thumb can be found in contemporary studies that are 
useful as a guide to the number of particles required to be 
captured and analysed for a given purpose (Table 1).

As can be seen, the desired or target number of parti-
cles to obtain in a sample is a critical parameter in the 
RSVP tool and is dependent on the purpose of the assess-
ment (Table 1). Equally the level of confidence required 
in the assessment could also foreseeably be dependent on 
the purpose of the assessment (as has been proposed for 
health-based thresholds for risk management [45]). For 
example, for environmental managers, detection or quan-
tification of microplastics at a lower level of confidence 
might trigger exploratory work, whilst higher levels of 
confidence might be needed to trigger routine monitor-
ing or for compliance of other more defined activities.

It should be cautioned that the RSVP tool is applicable 
only when the assumptions underpinning the Poisson 

distribution are adhered too. In particular, assumptions 
that particles are randomly distributed and acting inde-
pendently must be met. These conditions have been 
demonstrated to be met when randomly sampling rivers 
under turbulent flow (e.g. [46]). Validation in other sce-
narios is needed. Justification is required when using the 
tool in other environments, for example in soils to under-
stand terrestrial risks or air when evaluating human 
exposure. Providing access to the underlying data such 
as the volume captured and the total number of particles 
quantified as standard practice in future studies would 
allow for such conditions to be tested and would further 
increase the applicability of the RSVP tool.

Conclusions
A review of historic data reporting on microplastic con-
centrations in marine and freshwater environments 
revealed concentrations spanning several orders of mag-
nitude. Less variance is observed in data with larger 
sample volumes. It is necessary to have a harmonised 
approach to estimate representative sample volumes in 
any given environment which can be tailored to the study 
needs and environment sampled.

To help support future studies and to evaluate histori-
cal data we recommend applying the RSVP tool, which 
allows for a documented approach to predict representa-
tive sample volumes when quantifying microplastics in 
the environment. This can be used both prospectively to 
aid the design of new studies, or retrospectively, to review 
the relevance of existing data for a given purpose. The 
considerations when using the RSVP tool are as follows:

1. Problem formulation – define your problem. What 
do you want to measure in the environment? Where 
do you want to measure? What sample collection and 
analytical techniques do you have at your disposal?

2. Identify relevant data – using the analogy of the 
analytical window, select the most relevant exist-
ing data for your purpose. Consider the relevance 
of the system that is sampled, the hypothesis that is 
addressed, the sampling collection method, and the 
analytical technique used in existing studies. Each 
of these aspects define the analytical window of a 
measurement and operationally define “microplas-
tics” in a study. Relevant data must be representative 
of a similar operational definition of microplastics 
in the source data as your new study design. Find 
the closest analogous study to your own design you 
have described during the problem formulation and 
assess against quality criteria (e.g. [16, 20, 21]) to best 
inform study design a priori.
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3. Evaluate selected data in the RSVP tool – two options 
present themselves, a prospective evaluation of a new 
study design or a retrospective evaluation of existing data:

a. Prospective prediction of representative sample 
volumes – calculations for representative sam-
ple volumes required to capture a given number 
of particles at a given level of confidence are pro-
vided. Guidance on target number of particles for 
analysis and the level of confidence required are 
proposed, linking to other relevant contemporary 
approaches.

b. Retrospective evaluation of existing data – these 
same calculations can be used to review and 
screen existing data. For example, they can iden-
tify relevant data which achieved a desired level 
of confidence or predicted sampling error, based 
on the volume captured and the total number of 
particles quantified. Or they can be used to esti-
mate whether two concentrations are likely to dif-
fer at a given level of confidence.

It is hoped that these steps will help the community 
generate more reliable monitoring data on microplas-
tics in the environment.
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