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Tipping point-induced abrupt shifts in East
Asian hydroclimate since the Last Glacial
Maximum

Fuzhi Lu 1, Huayu Lu 1 , Yao Gu1, Pengyu Lin 1, Zhengyao Lu 2,
Qiong Zhang 3, Hongyan Zhang 1, Fan Yang1, Xiaoyi Dong1, Shuangwen Yi1,
Deliang Chen 4, Francesco S. R. Pausata 5, Maya Ben-Yami 6,7 &
Jennifer V. Mecking 8

Multiple tipping points in the Earth system could be triggered when global
warming exceeds specific thresholds. However, the degree of their impact on
the East Asian hydroclimate remains uncertain due to the lack of quantitative
rainfall records. Here we present an ensemble reconstruction of East Asian
summermonsoon (EASM) rainfall since the Last GlacialMaximum (LGM) using
nine statistical and machine learning methods based on multi-proxy records
fromamaar lake in southernChina. Our results definefive tipping points in the
EASM rainfall since the LGM, which are characterized by abrupt and irrever-
sible regime shifts with a median amplitude of 387 ± 73mm (24 ± 5 %). Com-
bined with multi-model simulations and existing records, we attribute these
tipping points to cascades of abrupt shifts in the Atlantic meridional over-
turning circulation (AMOC) and Saharan vegetation. Our findings underscore
the nonlinear behavior of the EASM and its coupling with other tipping
elements.

The tipping point is a critical threshold beyond which a small pertur-
bation can qualitatively transform the state or evolution of a system1. A
climate tipping point happens when a minor variation in forcing trig-
gers a profound nonlinear response in the dynamic processes within
the climate system, leading to an abrupt and irreversible regime shift2.
There has been increasing awareness and concern that global warming
could trigger tipping points in the climate system, introducing far-
reaching influence on natural ecosystems and human societies3, which
call for urgent political and economic actions to reduce greenhouse
gas emissions and keep atmospheric CO2 concentration below a safe
level to mitigate the risk4. Several components of the Earth system
have been identified as tipping elements that may reach or pass a
tipping point when global warming exceeds a critical threshold such as

1.5 °C above preindustrial temperature1,3. The Earth system is a com-
plex dynamical system with different components highly inter-
connected and interdependent, thus tipping in one element can lead
to cascading changes in another5–7, and even could trigger a planetary-
scale tipping point8,9.

The global hydrological cycle, particularly the global monsoon
system, has been suggested to be vulnerable to climate tipping points
and may experience abrupt shifts in the future10. However, the direc-
tion and amplitude of abrupt shifts are unclear, mainly because the
available observational records are too short to provide useful
information11, and rainfall response is usually more difficult to con-
strain than temperature12. Paleoclimate records can provide the only
long-term context for evaluating the impact of climate tipping points11.
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However, the precision, resolution, and spatial coverage of paleocli-
mate records are insufficient and need to be improved11. In the EASM
domain, our understanding of paleomonsoon evolution mainly
depends on the precisely-dated speleothem δ18O records13. However,
the interpretation of speleothem δ18O records in East Asia remains
debated, excluding it as a local rainfall proxy13–16. For instance, a spe-
leothem trace-element record from Haozhu Cave in central-eastern
China suggested wetter conditions during North Atlantic cold stadials
when speleothem δ18O records indicated aweaker summermonsoon15.
The situation is further complicated by inconsistent results of other
proxy records in the same region17–21. Besides, the nonlinear behavior
of the EASM is understudied, making it unclear whether changes in the
EASM rainfall are gradual or abrupt. The potential for abrupt shifts in
the EASM rainfall under excessive global warming were largely over-
looked in both assessment reports and academic literature1,3,22,23.
Absent from these debates is an independent quantitative recon-
struction of past rainfall changes in the EASM realm, particularly in
southern China. Southern China is the core region of EASM influence
where annual rainfall exceeds 800mm and rainfall variability is the
largest (Fig. 1).

In this study, we aim to provide a robust reconstruction of the
EASM rainfall in southern China and use it to detect tipping points in
the EASM rainfall since the LGM and assess the cascading impacts of
climate tipping points on the EASM rainfall. The first goal is achieved
by applying nine statistical and machine learning methods to retrieve
rainfall signals from multi-proxy records of a maar lake in southern
China. Our analysis indicates that the rainfall variability at the lake
location is representative of rainfall variability in southern China
(Supplementary Fig. 1). The second goal is realized by comparing a
large number of proxy recordswithmulti-model simulations.We focus
on two well-known tipping elements, the AMOC and Saharan vegeta-
tion cover1,3. The AMOC has a strong impact on global climate by
conveying surface warm water northward and deep cold water
southward, redistributing the solar energy received by the Earth24.
Through its impact on the interhemispheric thermal gradient, the
AMOC can alter the position and intensity of low-latitude rainfall sys-
tems, including the intertropical convergence zone (ITCZ) and the
EASM25,26. In situ observations indicate that the AMOC has weakened
during recent decades27, and the sea surface temperature (SST) fin-
gerprint suggests that this weakening trend extends back to the mid-
20th century28. Climate models further project the AMOC to weaken
under future anthropogenic warming29. Recent studies even warn that
the AMOC may collapse in the coming decades30,31. However, the cli-
matic impact of AMOC collapse in the context of anthropogenic

warming remains unclear. The last deglaciation is characterized by a
large increase in the atmospheric CO2 concentration and abrupt shifts
in the AMOC32, providing an ideal analog for examining its future
influence. The Sahara is currently the largest hot desert and source of
dust emission on Earth, which plays a crucial role in regulating global
climate and biophysical feedbacks33. Paleoenvironmental records
indicate the greening of the Sahara during the African Humid Period
(AHP) when the African summer monsoon intensified and rainfall
increased in response to higher summer insolation34. Conversely, the
termination of the AHP and collapse of Saharan vegetation during the
mid- to late Holocene are an abrupt event occurring faster than orbital
forcing10,34,35, which is a paradigm for going through climate tipping
points1. Recent studies suggest that the changes in Saharan vegetation
cover and dust emissions can not only influence local climate in
northern Africa36 but also the distant climates ranging from the
tropics37,38 to the Arctic39. The Asian summer monsoon could be
affected by Saharan vegetation changes through large-scale atmo-
spheric circulation such as the upper-level Rossby wave train and the
Pacific Walker circulation40,41. However, the timing, amplitude, and
structure of EASM rainfall changes in response to the end of the Green
Sahara and AHP are not well defined due to the lack of high-resolution
quantitative rainfall records. Given that the Sahara/Sahel vegetation
and the West African monsoon have been identified as a tipping ele-
ment that may experience abrupt shifts under future anthropogenic
warming1,3, investigating the effect of Saharan vegetation change
during the past will have practical implications for better under-
standing of vegetation feedback on future climate.

Results and discussion
Ensemble reconstruction of the EASM rainfall
Quantitative paleoclimate reconstructions are closely related to cli-
mate proxy and reconstruction methodology42,43. We, therefore,
employ a multi-proxy, multi-method probabilistic framework to gen-
erate a large ensemble for robust reconstruction of the EASM rainfall.
The reconstruction target is anomalies in the annual rainfall (Pann)
relative to 1961–1990 CE. The period 1953–2005 CE was chosen for
calibration because it has themost complete climate data and overlaps
with the proxy data. The period before 1953 CE was not used for cali-
bration due to significant uncertainty in the climate data. However,
gridded rainfall data from the Global Precipitation Climatology Centre
(GPCC)44 was utilized as an additional independent validation of our
reconstructions. Because annual rainfall in East Asia is dominated by
summermonsoon rainfall and their changes are highly correlated with
similar amplitudes (Supplementary Fig. 2), we only reconstruct the
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Fig. 1 | Spatial pattern of annual rainfall and its variability in East Asia. a Spatial
distributionof themeanof annual rainfall (Pann) in theperiod 1951–2020CE.bSpatial
distribution of the standard deviation (SD) of annual rainfall in the same period. The

hexagons indicate the location of QingtongyangMaar Lake in this study. The gridded
monthly rainfall data version 2022 from the Global Precipitation Climatology Centre
(GPCC) with a spatial resolution of 0.5° ×0.5°44 were used for analysis.
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annual rainfall. To preserve the full amplitude of rainfall variability and
avoid spurious signals, both rainfall observations and proxy records
were decadally smoothed with a cubic-smoothing spline45 to have
roughly the same frequency (Supplementary Fig. 3), following the
suggestion of previous studies46–48. Smoothing can also enhance the
signal-to-noise ratio and stabilize the relationship between climate and
proxies, reducing the impact of age model uncertainty (Supplemen-
tary Fig. 4). From a sedimentological perspective, smoothing is
necessary because climate signal is naturally smoothed during the
deposition of lake sediments, and lake records are unable to capture
the year-to-year climate variability as precisely as tree-ring records47,48.

In November 2016, a sediment core (QTY-2-1) was recovered from
the center of the Qingtongyang Maar Lake (110°10′E, 20°34′N, 131m
above sea level) in the Leizhou Peninsula, southern China. This lake is a
closed-basin crater lake with a very small catchment and lack of river
input, making it a natural gauge for past rainfall amount change. The
core was split and subject to high-resolution color extraction and X-ray
fluorescence (XRF) element scanning (Methods). The agemodel of the
core is based on linear interpolation and extrapolation of the median
values of sixteen AMS (accelerator mass spectrometry) 14C dates with
two outliers excluded, which have been calibrated to calendar years
before present (BP), where present refers to 1950 CE (Methods, Sup-
plementary Table 1, and Supplementary Fig. 5). The agemodel over the
past 150 years is constructed by the piecewise constant rate of supply
(CRS) model49 of 210Pb dates constrained by the 137Cs peak at 1963 CE
and two post-bomb 14C dates at 1955 CE and 2014 CE (Supplementary
Fig. 6). The full ranges of thesepost-bomb 14Cdates are only 2 to 3 years
(Supplementary Table 1), ensuring aprecise agemodel and allowing for
meaningful calibration with rainfall observations on the decadal time-
scale. Even when assuming a larger age uncertainty by treating the full
age range as one standard error and applyingBayesian agemodeling to
assess its impact, the rainfall-proxy relationship remains robust,
regardless of changes to the age model (Supplementary Fig. 4).

Four climate-proxy records with nearly annual to decadal time-
resolution were used as predictors for quantitative rainfall recon-
structions, including the color b* and the concentrations of iron (Fe),
manganese (Mn), and calcium (Ca) (Fig. 2). Color b* is a proxy for the
concentration of goethite and hematite in lake sediment50. Fe and Mn
concentrations are sensitive proxies for redox conditions in the lake at
the time of sediment deposition51. Ca concentration indicates the
content of carbonate in lake sediment52. Therefore, they are excellent
indicators of past rainfall changes (Supplementary Discussion). Both
correlation and partial-correlation analyses indicate a significant cor-
relationwith rainfall (P <0.02) but a poor correlationwith temperature
during the calibration period 1953–2005CE when accounting for the
degrees of freedom (Supplementary Table 2), demonstrating that
rainfall is the dominant controlling factor of changes in these proxy
records and thus can be faithfully reconstructed. We used the
expressed population signal (EPS)53 and mean inter-series correlation
(Rbar)53 to evaluate the common variance of these proxy records over
timewith a sliding window of 3000 years. The EPS is ameasure of how
well a finite number of proxy records represents an infinite population
chronology53. The Rbar indicates the average correlation between all
possible pairs of proxy records53. The persistent positive values of
sliding EPS and Rbar quantitatively indicate that these proxy records
respond to a common climate signal and the proxy-climate relation-
ships remain stable over time (Fig. 2e). Our results indicate that the
four proxy records from the Qingtongyang Maar Lake exhibit syn-
chronous changes over the past 22,000 years, especially during the
last deglaciation and mid-to-late Holocene when abrupt climate
changes occurred, which is supported by higher EPS and Rbar values
(Fig. 2). All proxy records show low values during the Bølling–Allerød
(BA) interstadial and the early to middle Holocene, which qualitatively
indicates anaerobic conditions in the lake and increased freshwater
input (Supplementary Discussion).

Our rainfall reconstruction ensemble consists of 14,850members
that account for uncertainties in the reconstruction method, proxy
measurement, proxy selection, calibration period, weighting scheme,
and regression residual. We use nine statistical and machine learning
methods to reconstruct rainfall: composite plus scaling (CPS) and
principal component regression (PCR) and their variants, i.e., optimal
information extraction (OIE) and point-by-point regression (PPR),
partial least squares (PLS) regression and two regularization methods,
i.e., ridge regression (RIG) and elastic net (ELN), as well as twomachine
learning methods, i.e., artificial neural network (ANN) and convolu-
tional neural network (CNN) (Methods). All methods use the same
proxy matrix as input and each generates 1650 members of recon-
struction. Cross-validations indicate that thesemethods have excellent
performance in reconstructing rainfall variability, with the regulariza-
tion and machine learning methods showing superior performance
and a narrower range of uncertainties (Supplementary Table 3 and
Supplementary Fig. 7). The rainfalls reconstructed by these methods
closely track station-based rainfall observations during the period
1953–2005CE and the GPCC rainfall during the period 1891–2005CE
(Supplementary Fig. 8).

Abrupt shifts in the EASM rainfall since the LGM
The rainfall reconstructions obtained by the nine methods exhibit
similar oscillations on the decadal to millennial timescales over the
past 22,000 years (Fig. 3 and Supplementary Figs. 8, 9), indicating that
our reconstruction is robust to the methodology used. Based on the
framework of ensemble reconstruction, we consider as many uncer-
tainties as possible when quantitatively reconstructing the EASM
rainfall (Methods). The influence of age model uncertainty has also
been considered. The age model uncertainty mainly affects the
weights of proxy records and the timings of abrupt climate changes
(Supplementary Fig. 4). Therefore, we addressed this uncertainty by
randomly adjusting proxyweights during reconstruction and applying
Bayesian age modeling to ascertain the timings of abrupt shifts
(Methods). Even after accounting for these uncertainties, the ampli-
tudes of rainfall changes in our reconstructions during the past 22,000
years are still larger than the total uncertainties (Fig. 3 and Supple-
mentary Figs. 8, 9), demonstrating that the reconstructed rainfall
changes are significantly better than the stochastic process.

Consistent with the physical and chemical interpretations of the
proxy records (Fig. 2 and Supplementary Discussion), all the quanti-
tative reconstructions indicate that the EASM rainfall was most abun-
dant during the BA interstadial and the early-middle Holocene, with
rainfall amounts being ~440mm (28%) higher than the modern value
of 1592mm in the period 1961–1990 CE. The rainfall was substantially
lower during the LGM, Heinrich Stadial 1 (HS1), Younger Dryas (YD),
and late Holocene, with the lowest rainfall occurring during the HS1.
The general trend of the EASM rainfall evolution revealed by our
reconstructions is consistent with the pattern of summer insolation
change in the Northern Hemisphere, which peaked during the early
Holocene (Fig. 3). However, unlike the gradual change in summer
insolation, our rainfall reconstructions strongly suggest that the EASM
rainfall was characterized by contrasting stable states and abrupt
transitions between these states. Based on the regime shift analysis54,55

(Supplementary Fig. 10), the evolution of the EASM rainfall over the
past 22,000 years can be divided into six major climate states (or
periods) that have different characteristics and internal dynamics,
aligning with the LGM, HS1, BA, YD, early-middle Holocene, and
late Holocene. The rainfall anomalies relative to the mean of
1592mm in the period 1961–1990 CE during these periods are
141 ± 97mm, −1 ± 98mm, 447 ± 86mm, 53 ± 89mm, 440 ± 75mm, and
102 ± 105mm, respectively. Between two adjacent climate states are
abrupt and irreversible shifts in rainfall amounts. Here, “abrupt” indi-
cates that the change in a system is substantially faster than the rate of
its past change, while “irreversible” indicates that the system does not
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recover to its previous state immediately after shift, but remains in a
new state for a long time (>1000 years in this study) until its next
shift10. Based on the Bayesian age modeling of our 14C dates from the
QingtongyangMaar Lake (Methods), the timings of these abrupt shifts
are estimated tobecentered at 18860 ± 310, 14640 ± 400, 12870 ± 290,
11360 ± 170, and 4370 ± 60 yr BP (Supplementary Table 4). The tran-
sition from the HS1 to the BA is characterized by an abrupt increase in
rainfall by 448mm, while the transitions into and out of the YD are
characterized by abrupt changes in rainfall by 394mm and 387mm,
respectively. The transition from middle to late Holocene is char-
acterized by a decrease in rainfall by 338mm. The amplitude of rainfall
decrease from the LGM to theHS1 is relatively small, with an amplitude

of 142mm, possibly because the rainfall amount during the LGM was
low. Nonetheless, all rainfall changes are statistically significant at the
95% confidence level based on the two-tailed two-sample t-test (Sup-
plementary Fig. 10). These abrupt shifts can be identified by another
objective method, the Bayesian change-point analysis56, which further
supports our finding based on the regime shift analysis (Supplemen-
tary Fig. 10). These two independent methods are consistent in
revealing the timings and structures of abrupt shifts in the EASM
rainfall in most cases, but the Bayesian method can provide more
details about the abrupt shift during the mid-to-late Holocene transi-
tion. Based on the Bayesian change-point analysis, the mid-to-late
Holocene transition is characterized by an abrupt drop of rainfall with
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Fig. 2 | Multi-proxy records from the Qingtongyang Maar Lake over the past
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an amplitude of ~140mm at 4370 ± 60 yr BP and a subsequent less
abrupt but persistent decrease in rainfall with an amplitude of 416mm
until 3290 ± 70 yr BP (Supplementary Fig. 10 and Supplementary
Table 4). Therefore, our reconstruction reveals a two-step abrupt shift
in the EASM rainfall during the mid-to-late Holocene transition, which
has implications for a better understanding of the forcingmechanisms
and cultural consequence of the well-known 4.2 ka event41,57.

To test the representativeness of our rainfall reconstruction, we
compare our reconstruction with other proxy records from the same
region, including the Huguangyan and Tianyang maar lakes (Supple-
mentary Fig. 11). Although the proxy records from Huguangyan and
Tianyang have much lower temporal resolution, millennial-scale
events such as the HS1 and YD are clearly identified, supporting that
the abrupt shifts in our rainfall reconstruction are regional phenomena
rather than local noises.We alsomake a comprehensive compilation of
paleoclimate records from the whole EASM domain (Methods), which
consistently indicate that abrupt shifts in the rainfall regime are a
continental-scale feature and intrinsic mode of the EASM rainfall
variability since the LGM (Supplementary Tables 5–9 and Supple-
mentary Figs. 12, 13). To help better understand the climatic sig-
nificance of speleothem δ18O records in East Asia, we compare our
rainfall reconstruction with the speleothem δ18O records fromDongge
andHulu caves in southernChina (Supplementary Fig. 11d). The strong
similarity between them during the last deglaciation indicates that the
speleothem δ18O records in East Asia might be indeed related to
hydroclimate changes during this period. After accounting for the
effect of global ice volume change, the speleothem δ18O values during
the LGMare slightly lighter than thoseduring the lateHolocene. This is
consistent with our reconstruction indicating higher rainfall amounts
during the LGM than in the late Holocene. However, the changes in
speleothem δ18O records during the Holocene aremuchmore gradual,
indicating decoupled changes between speleothem δ18O records and
the East Asian hydroclimate. Previously, the speleothem δ18O records
in East Asia were interpreted as monsoon wind intensity, which is
positively (negatively) correlated with monsoon rainfall in northern

(southern) China58. However, the decoupled changes between spe-
leothem δ18O records and our rainfall reconstruction, as well as other
hydroclimate records in East Asia, indicate that speleothem δ18O
records are not a direct signal of monsoon rainfall.

AMOC forcing of EASM rainfall during the last deglaciation
The EASM rainfall change can be driven by both dynamic and ther-
modynamic components59, with the former related to monsoon cir-
culation and the latter related to atmospheric water vapor. The global
mean temperatureduring the LGMwas 6.1 °C (95%confidence interval:
5.7–6.5 °C) cooler than that during the late Holocene60, and the asso-
ciated thermodynamic effect was expected to reduce atmospheric
water vapor content and thus lead to less rainfall in East Asia. However,
our reconstruction indicates that the rainfall amount in southernChina
during the LGMwas similar to or even higher than that during the late
Holocene (Fig. 3). This finding suggests that the global mean tem-
perature changemay not be the dominant control of the EASM rainfall
anomaly during the LGM, at least in the core monsoon region. More-
over, the reconstructed rainfall changes during the last deglaciation
did not follow the gradual increasing trend in the global mean
temperature61,62 and atmospheric CO2 concentration

63 (Fig. 4). There-
fore, the observed variability in EASM rainfall is likely caused by other
mechanisms, rather than a simple response to the thermodynamic
effect of changes in the global mean temperature.

The only climatic forcing that shared similarity between the LGM
and late Holocene is the local summer insolation at 20°N64 (Fig. 3). We,
therefore, attribute the similar rainfall amounts to the dynamic effect
of nearly identical summer insolation, which could compensate for the
thermodynamic effect of globalmean temperature through changes in
the land-sea thermal contrast and latitudinal temperature gradient.
However, insolation forcing alone cannot explain the EASM rainfall
changes during the last deglaciation when the EASM rainfall was
punctuated by twomillennial-scale drought events (i.e., HS1 and YD) at
times of high summer insolation (Fig. 3). In contrast, the oscillation of
deglacial EASM rainfall was in parallel with the AMOC strength65 and
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the interhemispheric temperature gradient61 (Fig. 4), indicating a
dominant role of the AMOC forcing. The AMOC has experienced tip-
ping points for abrupt transition between strong states and weak
states during the last deglaciation65, which could have strong impacts
on the EASM rainfall15,66. For instance, remarkable weakening of the
AMOC during the HS1 and YD65 reduced northward heat transport and
generated a bipolar temperature seesaw pattern, with cooling in the
Greenland67 and Northern Hemisphere and warming in the Antarctic68

and Southern Hemisphere, which diminished the interhemispheric
temperature gradient61 and forced the ITCZ to move southward,
reducing rainfall in East Asia (Fig. 4). Comparison of our rainfall
reconstructionwith hydroclimate records along anorth-south transect
across the East Asian-Australian monsoon system reveals an opposite
rainfall pattern between the two hemispheres during the last degla-
ciation (Supplementary Fig. 14), supporting a southward migration of
the ITCZ mean position during the HS1 and YD in response to the

weakening of the AMOC during the HS1 and YD26,69. The cooling of the
North Atlantic during the HS1 and YD can also influence the EASM
rainfall via changes in the intensity and position of the westerlies15,66,70.

However, the spatial pattern of EASM rainfall response to abrupt
shifts in the AMOC during the last deglaciation remains ambiguous
due to the lack of a systematic analysis of both proxy records and
climate simulations. For instance, a recent study based on a trace-
element record from Haozhu Cave and a hosing experiment under
preindustrial conditions suggests that central-eastern China was wet
(dry) during the times of a weak (strong) AMOC and the rainfall
anomaly in East Asia exhibited a tripole mode15. The Haozhu record
further indicates that the climate during the LGMwas wetter than that
of the earlyHolocene15. However, awetter central-easternChinaduring
North Atlantic cold events and LGM is challenged by other proxy
records from the same region17–21, including two trace-element records
from Heshang Cave17 and Hulu Cave21. Moreover, another hosing
experiment under the LGM boundary conditions indicates rainfall
decrease rather than increase in central-eastern China in response to
the weakening of the AMOC66, which highlights the need for multi-
model comparison. Previous studies mainly focused on the response
of EASM rainfall to the weakening of the AMOC but overlooked the
impact of AMOC strengthening. However, the responses of climate to
the weakening and strengthening of the AMOCmay not be a reversed
process. In particular, abrupt shifts in the AMOC during the last
deglaciationwere accompanied by variations in other climatic forcings
such as solar insolation, ice sheet, and greenhouse gas concentrations.
Therefore, it is necessary to analyze the individual characteristics of
EASM rainfall response during both the transitions into and out of HS1
and YD, which has not yet been done. Here we collect a large number
of hydroclimate records in East Asia based on rigorous criteria
(Methods, Supplementary Tables 5–8) and compare themwith a state-
of-the-science isotope-enabled transient climate experiment
(iTRACE)16 and an earlier version without isotope module (TRACE-
21ka)71 (Methods). Although continuous records with good age control
and high temporal resolution are scarce for the last deglaciation, the
general trend of hydroclimate change can be roughly inferred from
these proxy fragments.

From LGM to HS1, the majority of proxy records, including the
trace-element record from Haozhu Cave15, indicate a drying climate
over East Asia, except for two proxy records from southeastern
China72,73, which indicate a wetting climate (Fig. 5a–c and Supple-
mentary Table 5). In contrast to the proxy records, the iTRACE simu-
lation indicates that both annual and summer rainfalls increased
during the HS1 relative to the LGM over Mongolia and eastern China
(Fig. 5a, b). In the TRACE-21ka simulation, the annual and summer
rainfalls increased in northern China and northeastern China but
decreased in southern China (Supplementary Fig. 15a, b). Since it has
been suggested that autumnrainfall couldcontribute to the changes in
East Asian hydroclimate74, we also analyze the response to autumn
rainfall. Indeed, the magnitude of autumn rainfall variability is com-
parable to that of summer rainfall and even larger (Fig. 5c). The
decrease in autumn rainfall in northeastern China can partly explain
the discrepancy between proxy records and model simulations in this
region, but not for that in northern China and southern China. As
revealed by sensitivity experiments, the summer rainfall variability in
northern China is driven primarily by summer insolation and secon-
darily bymeltwater,while summer rainfall variability in southernChina
is driven primarily by meltwater and secondarily by summer
insolation16. In the iTRACE simulation, the increasing summer insola-
tion during the HS1 tends to increase summer rainfall in northern
China and northeastern China but decrease summer rainfall in south-
ern China, while the weakened AMOC tends to decrease summer
rainfall in northernChina andnortheasternChinabut increase summer
rainfall in southern China16. As a consequence, summer rainfall in the
whole of eastern China increased during the HS1 in the iTRACE
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simulation (Fig. 5b). However, such a response of EASM rainfall in the
iTRACE simulation may not be realistic as it is inconsistent with the
currently available proxy records (Supplementary Table 5) and there
are large uncertainties in simulating rainfall response in East Asia to
meltwater forcing75. We argue that the effect of AMOC slowdown on
the global summer climate during HS1 might have been

underestimated. For instance, summer cooling during the HS1 is lim-
ited to the North Atlantic in the iTRACE simulation, and the Eurasian
continent experiences summer warming (Fig. 6b). The warming of the
Eurasian continent may have been responsible for the simulated
rainfall increase in East Asia during the HS1. However, a recent
reconstruction of summer temperature in northeastern China based
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on the distribution of branched glycerol dialkyl glycerol tetraethers
(brGDGTs) in the sediment core from the Arxan Lake indicates sub-
stantial summer cooling during the HS176.

From HS1 to BA, all proxy records, except for the trace-element
record from Haozhu Cave15, indicate a wetting climate over the whole
of East Asia (Fig. 5d–f and Supplementary Table 6). The iTRACE
simulation shows that both annual and summer rainfalls, as well as

autumn rainfall, increased in northeastern China and northern China
but decreased in southern China during the BA period (Fig. 5d–f).
Similar to the iTRACE simulation, annual and autumn rainfalls in
southernChina decreasedduring theBA in theTRACE-21ka simulation,
but summer rainfall increased in both northern and southern China
(Supplementary Fig. 15d–f). The global temperature during the tran-
sition from HS1 to BA is characterized by strong warming in the
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Northern Hemisphere with small cooling in the Southern Hemisphere
and weak warming in Antarctica (Fig. 6c, d), while the transition from
LGM toHS1 is characterizedby strong cooling in theNorthAtlantic and
strong warming in the Southern Hemisphere (Fig. 6a, b). These evi-
dences suggest that the climatic transition from HS1 to BA is not a
simple reverse of the transition from LGM to HS1.

From BA to YD, all proxy records, except for the trace-element
record fromHaozhuCave15, indicate a drying climate over thewhole of
East Asia (Fig. 5g–i andSupplementary Table 7). The iTRACE simulation
shows that annual, summer, and autumn rainfalls significantly increase
in southern China, southwestern China, and North China Plain, but
decrease in northeastern China, semi-arid northern China, and north-
eastern Tibetan Plateau (Fig. 5g–i). The simulated summer rainfall in
the northern part of northeastern China also increased during the YD,
but not significantly. The TRACE-21ka simulation shows rainfall

increase in both northern and southern China (Supplementary
Fig. 15g–i). The global temperatureduring the transition fromBA toYD
is characterized by strong cooling in the Northern Hemisphere and
strong warming in the Southern Hemisphere (Fig. 6e, f). Unlike the
temperature response during the HS1, the simulated summer cooling
during the YD is not limited to North Atlantic, and the summer tem-
perature in East Asia decreased during the YD in the iTRACE simulation
(Fig. 6f). This difference may explain the better agreement between
proxy records and model simulation during the YD than HS1.

From YD to early Holocene, all proxy records, except for a trace-
element record from Haozhu Cave15 and a hopanoid record from
Dajiuhu peatland77, indicate a wetting climate over the whole of East
Asia (Fig. 5j–l and Supplementary Table 8). This pattern is generally
consistent with the model results from the TRACE-21ka simulation
(Supplementary Fig. 15j–l). The rainfall response at that time in the
iTRACE simulation is in good agreement with proxy records from
northeastern China, northern China, southwestern China, and the
Leizhou Peninsula (Fig. 5j–l). However, the iTRACE simulation shows a
rainfall decrease in southeastern China where various proxy records
indicate an increasing rainfall. This divergence is robust and cannot be
attributed to shortcomings in proxy records, because a well-dated
speleothem carbon isotope (δ13C) record from Shennong Cave clearly
indicates higher rainfall during the early Holocene than the YD78. The
transition from YD to early Holocene in the iTRACE is characterized by
warming in both the Northern and Southern Hemispheres, with the
strongest warming occurring in the Northern Hemisphere (Fig. 6g, h).
This pattern is generally consistent with global temperature
reconstruction61.

Taken together, there are large discrepancies between proxy
records and climate model simulations in reconstructing the hydro-
climate of southern China during the last deglaciation, particularly for
the iTRACE simulation running with the Community Earth System
Model (CESM). We argue that these discrepancies may be attributable
to the inability of climate models in correctly simulating the EASM
rainfall pattern. It has been suggested that the coupled general circu-
lation models (CGCMs) have large biases in simulating the mean state
of the tropical Pacific with an excessive equatorial Pacific cold tongue
when compared to observations79. As a result, current CGCMs are
unable to accurately reproduce the spatial pattern of EASM rainfall
during different seasonal stages, with the rain belt shifting northward
too quickly80. For example, the position of the spring and pre-Mei-Yu
rain belts are shifted northward compared to rainfall observations,
resulting in deficient rainfall in southern China80.

Link to the end of Green Sahara and associated feedbacks
The climate boundary conditions during the mid- to late Holocene are
largely constant81. Therefore, abrupt shifts in EASM rainfall under
gradual insolation forcing must involve strongly nonlinear feedbacks.
We attribute it to the end of the Green Sahara and associated
vegetation-dust-cryosphere feedbacks (Fig. 7). However, the timing of
the termination of the Green Sahara has not been well defined, with
previous studies showing different results34,35. Therefore, our first goal
is to objectively estimate this timing. Based on six high-resolution and
well-dated leaf wax hydrogen isotopic composition (δDwax) records
from the West African and East African monsoon regions (Supple-
mentary Table 10), we generate a synthesis of African summer mon-
soon that considers uncertainties in both proxymeasurement and age
model (Methods, Fig. 7e and Supplementary Fig. 16). Based on regime
shift analysis54,55 andBayesian change-point analysis56, the timing of the
termination of the Green Sahara is estimated to be 4620 ± 180 yr BP,
after which the African summer monsoon experienced a rapid decline
with the rate of change exceeding two standard deviations during the
Holocene (Supplementary Fig. 16). The timing of abrupt decline in the
African summer monsoon is estimated to be centered at 4350± 140 yr
BP (Supplementary Fig. 16), statistically coinciding with abrupt rainfall
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decrease at 4370 ± 60 yr BP in our reconstruction based on the
reduced chi-square test82 (χ2 = 0.017; P = 0.9). This timing also coin-
cides with strong reductions in the tropical trees and Sahelian grass-
land cover in the Saharan region as evidenced by a continuous pollen
record from Lake Yoa in northern Chad83 (Fig. 7g). Similarly, these
events coincide with the onset of maximum dust flux recorded in the
Kilimanjaro ice core84 andmarine sediment cores from the Nile Delta85

and the Gulf of Oman86 (Fig. 7f), the timing of which was estimated to
be centered at 4260 ± 66 yr BP87 (χ2 = 0.78; P = 0.46). These evidences
suggest that the abrupt reduction in the EASM rainfall during the mid-
to late Holocene is synchronous with the rapid degeneration of
regional vegetation and abrupt increase in dust emissions across the
Sahara in response to the termination of the Green Sahara. We further
examine the climatic effect of changes in the Saharan vegetation and
dust by performing two sets of mid-Holocene (MH) sensitivity
experiments using the European Community Earth SystemModel (EC-
Earth): one control experiment driven by orbital forcing only
(MHORB), and an idealized experiment (MHGSRD) incorporating

orbital forcing and a vegetated Sahara with reduced dust emissions
(Methods).

The deterioration of vegetation at the end of the Green Sahara
could influence the climate by increasing surface albedo88 and
enhancing dustmobilization36, which jointly reduce the absorption of
solar radiation and enhance radiative cooling of the troposphere. The
climatic impacts of the end of the Green Sahara are not limited to
northern Africa and can affect the global climate from the tropics to
the poles89. Our sensitivity experiments suggest that the reduced
vegetation cover and increased dust emissions in the Saharan region
could cause global surface cooling during both summer and winter,
with themost pronounced cooling occurring in northern Africa,West
Asia, the Tibetan Plateau, and the northern high latitudes (Fig. 8a, c,
e). The cooling of northern Africa and West Asia is directly related to
the increase in local land-surface albedo and atmospheric dust
concentrations36, while the cooling of the Tibetan Plateau and
northern high latitudes is linked to the amplification of cryosphere
feedbacks, such as changes in snow cover and sea ice extent39. The
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Fig. 8 | Responseof surface temperature (TS) and sea level pressure (SLP) to the
end of the Green Sahara in the sensitivity experiment performed with the
European Community Earth SystemModel (EC-Earth)36. The maps show annual
(ANN) (a, b), summer (JJA) (c, d) and winter (DJF) (e, f) differences in the TS (a, c, e)
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Qingtongyang Maar Lake with a drying climate during the mid- to late Holocene
transition (this study). Blue circles indicate the Qinghai Lake with a cooling climate
during the same period. The marks “+” indicate the Icelandic Low with increasing
SLP in response to the end of the Green Sahara, while the marks “–” indicate the
Azores High with reducing SLP at the same time, which resembles the negative
phase of the North Atlantic Oscillation (NAO–). Blue lines indicate the boundary of
the Tibetan Plateau.
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asymmetric cooling between the Northern and Southern Hemi-
spheres due to different land-sea configurations could alter the
interhemispheric temperature gradient (Fig. 7c)90 and shift the ITCZ
southward, thereby reducing the rainfall in East Asia. Additionally, the
cooling of the northern high latitudes can influence the EASM rainfall
through changes in the North Atlantic Oscillation (NAO). The NAO is
defined as the difference in surface sea level pressure between the
subpolar Icelandic Low and the subtropical Azores High, which con-
trols the strength and direction of the westerlies and storm tracks
across the North Atlantic91. At 4384 ± 23 yr BP (weighted mean), the
reconstructed NAO index shifted from primarily positive phases to a
weakly positive phase with intermittent strong negative phases92

(Fig. 7b), which closely tracks the change in the EASM rainfall
(χ2 = 0.047; P = 0.83), indicating an inherent dynamical connection
between them. The shift of NAO into more negative phases in
response to the termination of the Green Sahara can also be repro-
duced in our climatemodel simulations, which indicate increasing sea
level pressure in the northern Europe and/or Nordic Seas together
with decreasing sea level pressure in the Azores and/or southern
Europe (Fig. 8b, d, f). The NAO persistently influences the surface
temperature and snow cover over the Eurasian continent, sea ice and
SST in the North Atlantic from winter to summer93. The NAO-induced
SST anomalies in the North Atlantic can excite a wave train propa-
gating toward East Asia, which affects the large-scale atmospheric
circulation and, thus, regional rainfall pattern94. In addition, the
negative NAO could weaken the wind-driven AMOC and reduce the
poleward ocean heat transport in the North Atlantic39, further redu-
cing the interhemispheric temperature gradient and the EASM rain-
fall. However, multiple lines of evidence suggest that the basin-scale
AMOC remained fairly stable throughout the Holocene95. Therefore,
the feedbacks associatedwith the Holocene AMOC likely play aminor
role. In contrast, the Tibetan Plateau, known as the world’s third pole
with an average elevation of 4000m,may play amore significant role
in shaping the EASM rainfall. The snow-albedo feedback may have
amplified the temperature response on the Tibetan Plateau to the end
of the Green Sahara. An alkenone-based summer temperature
reconstruction from the Qinghai Lake on northeastern Tibetan Pla-
teau indicates a substantial cooling (>5 °C) between 5 and 3.5 ka96

(Fig. 7d). Since the Tibetan Plateau is themain heat source driving the
Asian summer monsoon97, its abrupt cooling during the end of the
Green Sahara could weaken land-sea thermal contrast and greatly
reduce the EASM rainfall.

To reveal the spatial pattern of EASM rainfall response to the
termination of the Green Sahara, we collect a wealth of hydroclimate
records in East Asia based on rigorous criteria (Methods, Supplemen-
tary Table 9) and compare them with four climate model simulations
(Fig. 9). In addition to our sensitivity experiments conducted with the
EC-Earth model36 (Methods), similar experiments based on the Com-
munity Climate SystemModel version 4 (CCSM4)98, the water isotope-
enabledCommunity Earth SystemModel (iCESM)99, and climatemodel
from the Goddard Institute for Space Studies (GISS)100 were included
for multi-model comparison. Consistent with the proxy records
(Supplementary Table 9), nearly all climate models simulate decreas-
ing annual and summer rainfalls in northeastern China, northern
China, northeastern Tibetan Plateau, and southwestern China in
response to the desertification of the Sahara (Fig. 9). However, the
simulated increases in annual and summer rainfalls in southern China
contrast with the available proxy records there (Supplementary
Table 9 and Fig. 9). Similar to the last deglaciation, we argue that the
biases in climate models are likely responsible for this model-proxy
discrepancy. We also analyze the changes in autumn rainfall in climate
simulations, which show a better agreement with proxy records
(Fig. 9). In particular, the EC-Earth and CCSM4 models simulate a
widespread autumn drying over the whole East Asia, closely resem-
bling the pattern of proxy records (Fig. 9).

In summary, our quantitative reconstructions of the EASM rainfall
amount changes over the past 22,000 years based on multi-methods
and multi-proxies provide a benchmark for understanding the forcing
and response of EASM rainfall in the context of long-term climate
change. Our reconstructions suggest that the EASM rainfall since the
LGM is characterized by alternative contrasting stable states and
abrupt shifts between these states, indicating a strongly nonlinear
nature of the EASM rainfall. In particular, we uncover and define five
prominent tipping points in the EASM rainfall, which are linked to
abrupt shifts in the AMOC and/or Saharan vegetation cover. In com-
bination with comprehensive paleoclimate data compilations and
multi-model simulations, we have drawn a picture of the EASM rainfall
responses to abrupt shifts in the AMOC and Saharan vegetation. Our
finding that the EASM rainfall was tightly coupled with known tipping
elements in the Earth systemduring the past has practical implications
for future change in the EASM rainfall under anthropogenic global
warming. The potential “tipping” of tipping elements when global
warming exceeds a specific threshold can trigger domino effects on
the EASM rainfall and threaten the lives of billions of people.

Methods
Site description and modern climate
The Qingtongyang Maar Lake (110°10′E, 20°34′N, elevation 131m) is
located in the Leizhou Peninsula of Guangdong Province, southern
China. It is a closed-basin crater lake that has a surface area of 8.81 km2

and a small catchment of 32.13 km2. Because of the small catchment
and lack of river input, the lake level ismainly controlled by the rainfall
amount falling in the catchment, which makes it an excellent measure
of past rainfall changes. Also, this lake lies in the northern boundary of
the present-day seasonal ITCZ migration, and thus, the lake status
should have been sensitive to past changes in the position of the ITCZ.
The surrounding bedrockof this lake is composed of volcanic basalt101.
No limestone in the catchment minimizes the possibility of introdu-
cing old radiocarbon into the lake, which lends credit to 14C dating and
ensures the reliability of age model.

Based on station data available from the China Meteorological
Data Service Centre (https://data.cma.cn) during the period 1957–2018
CE (Supplementary Fig. 2), the long-term annual mean temperature
(Tann) is 23.3 °C with the mean coldest month (January) temperature
of 15.6 °C and the mean warmest month (July) temperature of 28.8 °C.
The annual total rainfall (Pann) is 1611mm, with the driest month
(December) rainfall of 24mm and the wettest month (August) rainfall
of 327mm. The rainy season is from May to October under the influ-
ence of the EASM and northward migration of the ITCZ. Since more
than 80% of the annual rainfall is contributed by summer rainfall, the
variations of annual rainfall are almost identical to that of summer
rainfall (Supplementary Fig. 2).

Drilling and lithology
The sediment cores were recovered from the center of Qingtongyang
Maar Lake with piston corer in November 2016. Here we report the
upper part of the core, which is coded as QTY-2-1 and spans the last
~22,000 years with firm age control. The lithology of the core is
described as follows: 0–5 cm is a surfacemixed layer, 5–8 cm is grayish
black clay, 8–34.4 cm is grayish brown silty clay, 34.4–73 cm is grayish
black clay, 73–82 cm is grayish yellow sandy clay, 82–89 cm is grayish
black clay, 89–95.5 cm is grayish yellow sandy clay, 95.5–123 cm isgray-
brown yellow sandy clay.

Dating and chronology
210Pb and 137Cs dating. Samples at 0.5-cm intervals from the top 16 cm
of the sediment core were measured for the natural fallout
radionuclide 210Pb and anthropogenic fallout radionuclides 137Cs. Their
activities were measured by the gamma spectrometer using a low-
background, hyper-pure germanium detector. Each sample was
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counted for at least 24 h to ensure that both detection limit and
measurement error are acceptable. Prior to measurement, samples
were freeze-dried, weighed, and stored in sealed containers for
3 weeks to allow for radioactive equilibrium between 214Pb and its
parent radioisotope 226Ra102. The activities of 210Pb and 137Cs were
determined by gamma emissions at 46.5 and 662 keV, respectively.

226Ra activity was measured by the gamma emissions of its daughter
radioisotope 214Pb at 295 and 352 keV. The excess 210Pb activity (210Pbex)
was calculated by subtracting the 226Ra activity from the total 210Pb
activity. Because the sediment was mixed in the top 0–5 cm, we con-
structed the 210Pb age model based on the piecewise constant rate of
supply (CRS) model49 constrained by the 137Cs peak at 1963 CE and two
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Fig. 9 | Multi-model simulations showing rainfall response in East Asia to the
end of the Green Sahara. The maps show annual, summer and autumn rainfall
differences between the simulations MHORB (mid-Holocene experiment with
orbital forcing only) and MHGSRD (mid-Holocene experiment with orbital forcing,
a vegetated Sahara and reduced dust emissions) performed with EC-Earth36 (a–c),

CCSM498 (d–f), iCESM99 (g–i), and GISS100 (j–l), respectively. Pann: annual rainfall;
Pjja: summer rainfall; Pson: autumn rainfall. Brown (blue) hexagrams (this study)
and circles indicate proxy records with drying (wetting) climate during the mid- to
late Holocene transition.
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post-bomb 14C ages at 1955 CE and 2014 CE (Supplementary Fig. 6),
which was implemented in the R package ‘serac’103.

AMS 14C dating. Sixteen charcoal samples from various depths of the
sediment core were collected for AMS (accelerator mass
spectrometry) 14C dating (Supplementary Table 1). Samples were
chemically pretreated using standard acid-alkali-acid method104 and
graphitized on a fully automated system105. 14C content was measured
on the MICADAS system106 in the AMS laboratory of Nanjing
University107. The positive 14C dates were calibrated to calendar years
before present (BP), where present refers to 1950 CE, based on the
IntCal20 curve108. The negative 14C dates were calibrated using
monthly data of the Northern Hemisphere post-bomb calibration
curve 3109. Calibrations were implemented in the software OxCal110. For
stability, the 14C age model is based on linear interpolation and extra-
polation of the median values of the calibrated 14C dates, with two
outliers excluded (Supplementary Fig. 5). According to the agemodel,
the bottom of core QTY-2-1 is estimated to be 22,680 yr BP, but we
limit our analysis to the last 22,000 years to account for potential
disturbances at the core’s end during drilling.

Core scanning and calibration
The color of sediment is an indicator of sediment composition changes
and has been used successfully as a proxy for paleomonsoon pre-
cipitation changes111–115. Digital images of the sediment core surface
were taken by a high-resolution line scan camera installed in the
Geotech MSCL-XRF core scanner. Sediment color b*, representing the
blue (negative) to yellow (positive) component, was extracted from
digital images in a rectangle along the core direction with a width of
~15mmand at an unprecedented sampling interval of 100μm, yielding
an overall temporal resolution of ~1 years and 0.1-year resolution in the
period overlapping with instrumental records.

Continuous and non-destructive X-ray fluorescence (XRF) ele-
ment scanning was carried out at 1mm resolution on the split sedi-
ment cores, corresponding to an overall sampling resolution of ~10
years and 1-year resolution in the periodoverlappingwith instrumental
records. The sediment core surfaces were covered with a 4 μm-thick
thin film to avoid contamination of the scanning instruments. All XRF
scanning measurements were conducted with a generator setting of
10KV and a sampling time of 20 s. The irradiated dimensions of the
core surface are 15 × 1mm2. The split sediment cores were freeze-dried
before scanning to avoid the influence of water content on the results
of XRF116. The geochemical elements were calibrated using the
immobile element titanium (Ti) to isolate the proportion of changes
associated with climate:

Xcalib =Xraw×
Xraw� Ti
Xraw+Ti

ð1Þ

In Eq. (1), Xraw represents the raw value and Xcalib represents the
calibrated value. From a physical and chemical perspective, Xcalib
represents the proportion of element change attributable to redox
conditions and/or salinity. A similar process was used to quantify the
near-infrared reflectance of terrestrial vegetation based on satellite
remote sensing117. This equation is a nonlinear transform of the ele-
ment ratio (Xraw/Ti), which is insensitive to dilution effects and can
accommodate the inherent non-linearity of the relation between ele-
ment intensity and concentration118. As a ratio, it has the advantage of
minimizing some element-correlated noise and influences attributable
to variations in direct/diffuse irradiance, surface morphology, and
atmospheric attenuation116,118,119. To a lesser degree, the ratio can
reduce instrument-related errors119. The distribution of iron after cali-
bration was still highly skewed and it was further logarithmically
transformed to make its response to climate more linearly.

Rainfall reconstruction
Instrumental target. Our reconstruction target is annual rainfall based
on the calendar year that covers a full cycle of the rainy season.
Monthly rainfall deviations from the climatological mean (1961–1990
CE) of three meteorological stations surrounding the Qingtongyang
Maar Lake were averaged to represent regional rainfall variability
(Supplementary Fig. 2). The stations from Hainan Island were not
included because rainfall variability on Hainan Island is poorly corre-
lated with that of the Leizhou Peninsula. Climate data were down-
loaded from the China Meteorological Data Service Centre (https://
data.cma.cn). The period 1953–2005CE were used for calibration
because of the least missing values and overlapping with proxy data.
The period prior to 1953 CE was not used for calibration because of
large uncertainty in the climate data. Missing climate values were filled
in using the regularized expectation maximization (RegEM)
algorithm120 with truncated total least squares regression121. Grided
rainfall data from the Global Precipitation Climatology Centre (GPCC)
version 202244 were used as an additional independent validation of
our reconstructions. To preserve the full amplitude of climate varia-
bility and avoid spurious signals, both climate data and proxy records
were decadally smoothed with a cubic-smoothing spline45 to have
roughly the same frequency (Supplementary Fig. 3), following the
suggestion of previous studies46–48. Since smoothing can influence the
degrees of freedom (DOF), we assumed DOF = 51 for the raw data,
whichhas an effective sample size (ESS) of 53years, andDOF = 3 for the
smoothed data, which has an ESS of five decades47.

Proxy data. Proxy data measured on core QTY-2-1 from the Qington-
gyang Maar Lake were used as predictors for rainfall reconstruction,
including color b* and elemental concentrations of iron, manganese,
and calcium. These proxy records are sensitive to redox conditions
and/or salinity in the lake which are controlled by regional rainfall
(Supplementary Discussion). We decided to choose these four proxy
records based on three criteria. Firstly, from the statistical perspective,
there should be a significant correlation (P < 0.02) between proxy and
climate targets in their common time period. We utilized both corre-
lation and partial correlation to analyze the relationship between our
proxies and climate data, which shows that rainfall is the dominant
controlling factor of changes in these proxy records (Supplementary
Table 2). The impact of smoothing on the degrees of freedom was
considered during statistical analysis. Secondly, from the physical and
chemical perspective, the qualitative relationship between proxies and
climate can be explained and themechanisms have been relativelywell
recognized (Supplementary Discussion). Lastly, the temporal resolu-
tion of proxy records should be at least one year or finer during the
calibration period to facilitate meaningful calibration with rainfall
observations. To evaluate the common variance of proxy records and
the stability of climate-proxy relationships over time,we calculated the
running expressed population signal (EPS)53 and mean inter-series
correlation (Rbar)53 using a sliding window of 3000 years (Fig. 2e).

Ensemble parameters. To address various sources of uncertainty,
1650 members of reconstructions were obtained for each recon-
struction method by perturbing the following parameters:

(1) 0–25% of proxy records were randomly removed before
reconstruction to test for the robustness of proxy selection122.

(2) To overcome bias in the choice of calibration period46 whilst
retaining the autocorrelation structure123, all possible combinations of
5-year blocks and additional successive years with a length of 33/38
yearswere used for training,while the remaining 20/15 yearswereused
for validation.

(3) Gaussian noises with standard deviations equal to measure-
ment errors were added to the proxy data to simulate the influence of
measurement uncertainties. This treatment can improve the general-
ization of the reconstruction model and avoid overfitting.
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(4) The weight of each proxy is multiplied by a random scalar
drawn from a uniform distribution in the interval between 1/1.5 and
1.5124. This treatment simulates the influence of proxy weights122 and
age model uncertainties (Supplementary Fig. 4). Before weighting, all
proxy records were normalized to have zero mean and standard
deviation units over the calibration period.

(5) Red noise with its standard deviation equal to the root mean
square error (RMSE) and itsfirst-order autoregression (AR1) coefficient
identical to that of regression residual was added to the result to
represent the unexplained variance.

Composite plus scale (CPS). CPS is a classicalmethod for quantitative
climate index reconstruction and has been widely used to reconstruct
mean climate of various spatial scale47,125,126. The proxy matrix is nor-
malized over the calibration period and weighted averaged to form a
single time series, which is then scaled to have the same mean and
standard deviation as the reconstruction target. Here we perform CPS
in a way similar to previous studies122,124: the normalized proxies were
weighted by their non-detrended correlation with rainfall observation
over the calibration period. Like many linearmethods, CPS is prone to
variance losses and the reconstructions tend to be biased toward zero,
which are directly related to the correlation between proxies and the
climate target127. CPS is computationally efficient, and its performance
is often comparable to that of more complicated methods (Supple-
mentary Fig. 7).

Principal component regression (PCR). PCR is a popular method
commonly used in both climate index and climate field
reconstructions47,122,124,125,128–130. PCR reduces the dimension of the
proxy matrix by principal component analysis (PCA) and only retains
the first few principal components (PC) as predictors in the regression.
All PCs are linear combinations of the original proxies and orthogonal
to each other, which copes well with the problem of multicollinearity.
Here we perform PCA over the calibration period using the singular
value decomposition (SVD) algorithm131, retaining the first fewPCs that
explain up to 95% of the total variance to reduce noise. If PC1 explains
more than 95%of the total variance, we retain only PC1. The number of
retained PCs was selected in such a way because there exist many
methods to truncate PCs without an objectively discernible best
method, and the truncation is sensitive to the period over which the
PCA is performed125.

Partial least squares (PLS). Though PLS regression is a basic tool
widely used in chemometrics132, it is less seen in tree-ring-based climate
reconstructions compared toCPS and PCR, except in somepollen- and
diatom-based quantitative reconstructions133. PLS regression is of
particular interest because it has the ability to analyze data with
numerous noisy and collinear variables in twodatamatrices, X andY132.
Similar to the PCR method, PLS constructs components as linear
combinations of the original predictor variables but has more advan-
tages. In contrary to PCR, which constructs components to maximize
the explained varianceof predictors, PLS finds components that have a
large covariance with the response variables. Therefore, PLS regres-
sion can achieve a parsimoniousmodel with reliable predictive power.
Here, we perform PLS regression using the SIMPLS algorithm134 and
select the optimal number of PLS component based on two-sample t-
test (P <0.01)135 and require a reduction of RMSE in the validation
period by at least 5%136.

Optimal information extraction (OIE). The OIE method is a variant of
the CPS method, which integrates the features of local (LOC)
method137, a Bayesian framework138, the generalized likelihood uncer-
tainty estimation (GLUE)139,140, and ensemble reconstruction46,122. This
method has the advantage of efficiently extracting low-frequency cli-
mate signals, since it accounts for the nonlinear response of proxy to

climate based on Bayesian theory141. Instead of variance matching in
the CPS, theOIE sets the prior distribution of regression coefficients as
a uniform distribution in the ranges between direct and indirect
regressions, and the posterior distribution is determined by the GLUE
method139,140. Here we run the Markov Chain Monte Carlo (MCMC)
simulation in theGLUEusing theMetropolis–Hastings algorithm142 and
calculate the acceptance probability of regression coefficients based
on the RMSE of the validation period143. The MCMC sampling process
generates 1000 realizations of reconstruction and the median is used
as one of the ensemble members.

Point-by-point regression (PPR). PPR is a well-tested and easily
interpreted PCR method that has been applied to create high-quality
drought atlases worldwide129,144. PPR assumes that only those proxy
records located relatively close to a given point are likely to be true
predictors of climate at that location, where “true” indicates a causal
relationship between proxy and climate that is stable through time.
The PPR is initially designed for climate field reconstruction but can
also be used for climate index reconstruction. Unlike PCR, which
performs PCA over the calibration period, the PPR performs PCA over
the whole period of proxy records and puts the orthogonal PCs into
stepwise regression by the order of explanatory variance, which can
avoid the insufficient representativeness of a short calibration period
and extract the common variability linked to climate change. Here we
determine the optimum number of PCs put into regression model
basedon two-sample t-test135 and a thresholdof at least 5% reduction in
the RMSE in the validation period136.

Ridge regression (RIG). Ridge regression is an approach for deter-
mining the coefficients of a linear model that contains linearly corre-
lated predictors145. Estimations of coefficients for multiple linear
regressionmodels rely on the independence ofmodel terms.However,
when terms are correlated, and the columns of predictormatrix X have
an approximate linear dependence, the matrix (XTX)-1 is close to sin-
gular. As a result, the least squares estimate is sensitive to random
errors in the response variable Y, producing large variance, which is
called multicollinearity. Ridge regression resolves the problem of
multicollinearity by estimating regression coefficients using β = (XTX +
kZ)-1XTY, where k is the ridge parameter, and Z is the identity matrix.
Small, positive values of k improve the conditioning of the problem
and reduce the variance of the estimates. While biased, the reduced
variance of ridge estimates often results in a smaller mean squared
error when compared to least squares estimates. Here, we set k as a
random scalar evenly distributed in the range from 0 to 100, and its
final distribution is determined using the GLUEmethod139,140 and other
details on the MCMC sampling are identical to that of the OIE method.

Lassoandelastic net (ELN). Similar to the ridge regression, the lasso is
a regularization method for performing linear regression146. However,
lasso is a shrinkage estimator which includes a penalty term con-
straining the size of the estimated coefficients and thus forcing some
coefficients to be zero. As the penalty term increases, lasso lets more
coefficients to be zero. Elastic net is a hybrid of ridge regression and
lasso regularization147. Like lasso, elastic net can generate reduced
models by generating zero-valued coefficients, but it outperforms
lasso on data with highly correlated predictors. Here, we perform
elastic net by setting the weight of lasso versus ridge optimization as
0.5, and the regularization coefficient ‘lambda’ is determined by ten-
fold cross-validation and equals the maximum “lambda” value such
that the RMSE is within one standard error of the minimum cross-
validation error.

Artificial neural network (ANN). ANN is a machine learning method
that imitates biological neural network, a part of artificial intelligence
technology148,149. It has the ability to learn and make inferences from
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data, mimicking the way that the brain processes information. ANN
model consists of a series of layers, namely the input, hidden, and
output layers. The first hidden layer has connections from input data,
and each subsequent layer has connections from the previous layer.
Each layer multiplies the input by a weight matrix and adds a bias
vector. An activation function follows each hidden layer. The last layer
produces the network’s output, namely predicted values. ANN with
only one hidden layer can solve any problem of finite input-output
mapping, given enough neurons in the hidden layer. The model used
here is a fully connected feedforward backpropagation ANNwith three
hidden layers containing 100, 25, and 10 neurons, respectively. The
linear transfer function is used. Data from the validation period are
used to monitor training convergence every ten iterations.

Convolutional neural network (CNN). CNN is a deep learningmethod
designed to process data in the form of multiple arrays150. CNN is
commonly applied in tasks such as image detection, recognition, and
classification, but can also be used for regression problems151. It is the
convolutional layer and pooling layer thatmake CNNunique. Our CNN
consists of seven layers in order: a sequence input layer, a one-
dimensional (1D) convolutional layerwith filter sizeof 3 andneurons of
32, a batch normalization layer to speed up training and reduce the
sensitivity to model initialization152, a 1D average pooling layer with
pool size equal to filter size, a Monte Carlo dropout layer with drop-
ping probability of 50% to prevent the model from overfitting153, and a
fully connected layer followed by a regression output layer. The
weights of the model are initialized with the He initializer, which
samples from a normal distribution with zero mean and variance of 2
divided by input size154. Padding was conducted so that the output has
the same size as the input and reduces the influence of the edge effect.
Data augmentation was performed by adding Gaussian noise to the
input data tomake themodel more stable and avoid overfitting155. The
model was trained with the Adamoptimizer with amaximum epoch of
100, minimum batch size of 20%, and initial learning rate of 0.01.
Gradient clipping was applied to prevent gradient exploding. Fur-
thermore, we conducted independent validation every ten iterations
and stop the training early with a patience of five epochs, which is
another regularization method to prevent overfitting. The validation
data was shuffled before each validation.

Verification statistics. We use four verification statistics to assess the
reliability of the reconstruction models. These statistics evaluate the
ability of the proxy to reconstruct climate over verification periods
that are independent of calibration periods. (i) Pearson correlation
coefficient (R), a powerful statistic for testing the relative association
between two variables. (ii) Reductionof error (RE), which determines if
a reconstruction is better than climatology, i.e., the mean of rainfall in
the calibration period. There are no formal statistical significance tests
for RE, but a RE >0 indicates that the reconstruction is better than
using the mean of the calibration period as forecast. RE is a rigorous
verification statistic because it has no lower boundary. (iii) Coefficient
of efficiency (CE). Like RE, there are no formal statistical significance
test for CE, but a CE >0 indicates that the reconstruction is better than
using the mean of the verification period as forecast. CE is more rig-
orous than RE129. (iv) Root mean square error (RMSE), whichmeasures
the average difference between the reconstructed and observed
rainfall.

Compilation of East Asian hydroclimate records
To test the robustness of abrupt shifts in East Asian hydroclimate, we
compile proxy records from various climatic zones based on rigorous
criteria: (i) Reflect local and/or regional summer hydroclimate chan-
ges. Because the climatic interpretation of speleothem δ18O records in
East Asia remains controversial13, we only include the speleothem δ18O
records that have been linked to hydroclimate change based on

correlation with instrumental records and/or independent rainfall-
related proxy records such as δ13C records. (ii) The proxy records
should at least cover the transition period from middle to late Holo-
cene at 5–3 ka BP and/or one of the millennial-scale events during the
last deglaciation (HS1, BA, YD) without hiatus longer than 500 years.
(iii) The standard errors of age-control points should be less than 100
years inmost cases andno larger than800years. (iv) At least three age-
control points span or closely bracket the period of interest. The gap
between successive ages should be smaller than 3000 years for the
period 18–11 ka BP, and there should be at least one age-control point
within the period 3.5–4.5 ka BP. (v) Has a mean resolution finer than
200 years. But this was relaxed to 300 years for regions where proxy
records are scarce and 500 years for the lake level records. Details of
the compiled proxy records are listed in Supplementary Tables 5–9
and some records are shown in Supplementary Figs. 12, 13. Most
records are not continuous over the past 22,000 years and the source
data are not publicly available. Therefore, it is impossible to make a
continuous composite time series to describe the evolution of the East
Asian hydroclimate since the LGM. However, these records can pro-
vide insights into hydroclimate changes during specific abrupt climate
events, which were compared with model simulations.

Synthesis of African summer monsoon
A total of six dDwax records (Supplementary Table 10) were combined
into a composite time series to characterize the evolution of the Afri-
can summer monsoon, encompassing both the West African and East
African monsoons, during the Holocene. The proxy records were
selected based on these criteria: (i) Reflect local and/or regional sum-
mer hydroclimate rather than winter, excluding proxy records from
areas currently influenced by the Mediterranean climate. (ii) Span a
minimum duration of 9000 years with no recorded hiatus during the
period 11–0 ka BP. (iii) There should be at least one age-control point
every 3000-year interval. (iv) Has a median resolution finer than 300
years in the period 6–2 ka BP; (v) Both the sampling depths and proxy
data are publicly available for reanalysis of the age model.

There are two main sources of uncertainty in the paleoclimate
data, i.e., proxy measurement uncertainty and age model
uncertainty156. We generated 10,000 age models using the R package
‘rbacon’157 for each record and perturbed the proxy by adding random
noise drawing from a normal distribution with a standard deviation
equal to the measurement error. Then the perturbed proxy records
were interpolated against the perturbed age models at 10-year reso-
lution using the shape-preserving piecewise cubic interpolation
method. Prior to calculating the composite mean, the interpolated
dDwax records were corrected for ice volume change158 and subtracted
by the mean and divided by the standard deviation during the period
12–2 ka BP that is common to all records to form a standardized time
series. Furthermore, the standardized time series were multiplied by
−1 so that greater proxy values indicate higher rainfall amounts.

Detection of abrupt shifts and their timings
Three different methods were applied to detect abrupt shifts asso-
ciated with tipping points in the proxy records, including the regime
shift analysis54,55, Bayesian change-point analysis56, and the rate of
change. Regime shifts are defined as rapid reorganizations of a system
from one relatively stable state to another54. The regime shift
analysis54,55 splits a time series intomultiple segmentswith significantly
different mean and identifies the point at which abrupt changes in the
mean occur. Regime shift analysis was performed using the function
“ischange” in the software MATLAB with the maximum number of
change points set to 5 for the past 22,000 years. To validate the results
of regime shift analysis, a Bayesian ensemble algorithm56 was inde-
pendently used to detect abrupt shifts in the proxy records. Unlike
conventional criterion-based methods that select a single best model,
the Bayesian paradigm embraces all candidate models, evaluates their
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probabilities, and synthesizes them into anaveragemodel56. These two
independent methods perform well in detecting abrupt shifts in our
rainfall reconstruction and show consistent results (Supplementary
Fig. 10). Once the timings of abrupt shifts in our rainfall reconstruction
were determined, the corresponding depths were calculated, and
Bayesian age modeling157 was employed to assess age uncertainties.
However, for low-resolution records, the timings of abrupt shifts may
not align well with those detected by these two methods. In this case,
the rate of changewas used to determine the precise timings of abrupt
shifts. The rate of change in the composite time series of the African
summer monsoon was calculated, and the period with the rate of
change exceeding two standard deviations of the period 11–0 ka BP
was considered as the range of abrupt change in the time series
(Supplementary Fig. 16). Since the composite time series of the African
summer monsoon has been smoothed by averaging different realiza-
tions of uncertainties in both proxy measurement and age model, no
additional smoothing was applied. The rate of change was not applied
to detect abrupt changes in our rainfall reconstruction because the
changes in ultra-high-resolution records are very abrupt, and the
selection of smoothing parameters, such as window length, is quite
subjective and cannot adapt universally to abrupt eventswith different
amplitudes.

Climate model simulations
TRACE-21ka and iTRACE. To reveal the spatial pattern of rainfall
response in East Asia to abrupt shifts in the AMOC during the last
deglaciation, we compare our rainfall reconstruction and the proxy
records we compiled with model results from two transient climate
experiments, i.e., the TRACE-21ka71 and iTRACE16. The TRACE-21ka
simulated continuous climate evolution of the last 21,000 years using
the Community Climate System Model version 3 (CCSM3) with a spa-
tial resolution of T31 (3.75°)71. The transient climate forcings include
orbitally-induced solar insolation variations159, atmospheric green-
house gas concentrations160, meltwater fluxes71, and continental ice
sheets161. The iTRACE was performed in the state-of-the-art water
isotope-enabled version of the Community Earth System Model ver-
sion 1.3 (iCESM1.3)16, which largely follows the strategy of the TRACE-
21ka71. The iCESM1.3162 is composed of the Community Atmosphere
Model (CAM5.3), Parallel Ocean Program (POP2), Los Alamos Sea Ice
Model (CICE4), and Community Land Model (CLM4). The spatial
resolution of atmosphere and land is 1.9° in latitude and 2.5° in long-
itude, with 30 vertical levels in the atmosphere. The horizontal reso-
lution of ocean and sea ice is nominal 1° (gx1v6), with 60 vertical levels
in the ocean.

All experiments in the iTRACE were integrated from the LGM (20
ka) to the early Holocene (11 ka). Three parallel transient sensitivity
experiments (ICE, ICE +ORB, and ICE +ORB +GHG) were performed
with three climatic forcing added one by one, i.e., the ice sheet (ICE-
6G)163, the orbital forcing159, and the greenhouse gas forcing160. The
baseline iTRACE simulation (i.e., ICE +ORB +GHG+MWF) was bran-
ched from the ICE +ORB+GHG run at 19 ka, with the imposed melt-
water forcing (MWF) similar to that in the TRACE-21ka71. The ice sheet
in the iTRACE was changed every thousand years from 19 ka to 11 ka.
The ocean bathymetry was modified twice at 14 ka and 12 ka based on
the ICE-6G reconstruction163.

Green Sahara experiments. The Green Sahara sensitivity experiments
were performed using the European Community Earth System Model
(EC-Earth) version 3.1164. The EC-Earth is a fully coupled Earth system
model that includes several state-of-the-art components to describe
the atmosphere, ocean, sea ice, land surface, dynamic vegetation,
atmospheric composition, ocean biogeochemistry, and the Greenland
Ice Sheet165. The atmospheric component is based on the Integrated
Forecasting System (IFS cycle 36r4) of the European Centre for
Medium-RangeWeather Forecasts with a horizontal resolution of T159

(1.125°) and 62 vertical levels. The ocean component is based on the
Nucleus for European Modeling of the Ocean (NEMO), which uses a
tripolar grid with a horizontal resolution of 1° and 46 vertical levels.
The EC-Earth has proven its success in simulating the Earth’s climate
across past and future scenarios165,166. It shows good skills in capturing
the nuanced spatial and temporal patterns of monsoon rainfall in
present-day climate36,167.

To understand the response of rainfall in East Asia to the changes
in Saharan vegetation during the end of the Green Sahara, we per-
formed two sets of mid-Holocene (MH) experiments: one control
experiment driven by orbital forcing only (MHORB), and an idealized
experiment (MHGSRD) incorporating both orbital forcing and a
vegetated Sahara with reduced dust emissions. The MHORB experi-
ment was performed following the protocol of the Paleoclimate
Modeling Intercomparison Project phase 3 (PMIP3)168 with orbital
parameters fixed at 6 ka169. The concentrations of atmospheric CO2,
CH4, and N2O were fixed at the preindustrial level, i.e., 280 ppm, 650
ppb, and 270 ppb, respectively. Other boundary conditions, such as
land-sea distributions, ice sheets, topography, vegetation cover, and
dust emission were the same as the preindustrial period. In the
MHGSRD experiment, the vegetation type over the Sahara region
(11°N–33°N and 15°W–35°E) was modified to shrub, and the dust
emission from the Sahara Desert was reduced by 80%36 according to
the proxy-based estimation of Saharan dust flux reduction during the
mid-Holocene34,170. The change of vegetation cover from desert
(MHORB) to shrub (MHGSRD) corresponds to a decrease in surface
albedo from 0.3 to 0.15 and an increase in the leaf area index from 0.2
to 2.636. The dust reduction from the MHORB to the MHGSRD led to a
decrease in the global dust aerosol optical depth (AOD) by about 60%
and a total AOD of 0.0236. Such changes in vegetation cover and dust
emissions were not intended to precisely replicate mid-Holocene
Saharan conditions but were designed to provide insights into their
potential climate feedback.

Data availability
The proxy data and climate reconstructions generated in this study are
provided in the Supplementary Information and Source Data file. The
model data presented in this study are available in Zenodo at https://
zenodo.org/records/14257821. Source data are provided with
this paper.

Code availability
The R package “rbacon” is available at https://cran.r-project.org/web/
packages/rbacon/index.html. The R package “serac” is available on
GitHub at https://github.com/rosalieb/serac. The code for Bayesian
change-point analysis is available on GitHub at https://github.com/
zhaokg/Rbeast. The reduced chi-square test was performed with the
IsoplotR toolbox available at https://www.ucl.ac.uk/~ucfbpve/isoplotr/
home/. Our rainfall reconstructionswereperformed in the commercial
software MATLAB version R2023b using the Deep Learning Toolbox
and the Statistics and Machine Learning Toolbox.
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