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Abstract: The forecasting of river flows and pollutant concentrations is essential in sup-
porting mitigation measures for anthropogenic and climate change effects on rivers and
their environment. This paper addresses two aspects receiving little attention in the litera-
ture: high-resolution (sub-daily) data-driven modeling and the prediction of phosphorus
compounds. It presents a series of artificial neural networks (ANNs) to forecast flows and
the concentrations of soluble reactive phosphorus (SRP) and total phosphorus (TP) under a
wide range of conditions, including low flows and storm events (0.74 to 484 m3/s). Results
show correct forecast along a stretch of the River Swale (UK) with an anticipation of up to
15 h, at resolutions of up to 3 h. The concentration prediction is improved compared to a
previous application of an advection–dispersion model.

Keywords: pollutant transport forecast; hydrological model; artificial neural networks;
river flow forecast; in-river phosphorus model; high-resolution model

1. Introduction
Floods, droughts, and water contamination are major events (escalated in disasters

on very many occasions) that humankind faces in the context of growing pressures on na-
ture, together with more industrialization, climate change, and growing urbanization [1,2].
Public health and security are threatened under these circumstances. Therefore, effec-
tive forecasting (here, also termed prediction) and early warning systems are very im-
portant for the prevention and management of floods and water pollution [3,4], as they
offer stakeholders a time window to prepare mitigation measures and grounds to de-
velop additional support tools [5–7]. Forecasting tools may be based on conventional
models [8] and artificial intelligence (AI)-based models (data-driven approach) used sep-
arately or in combination [3,6,9]. Conventional modeling requires significant effort in
four main directions: (1) the understanding of phenomena; (2) their mathematical descrip-
tion or the selection of an appropriate off-the-shelf model which may need significant
adjustment; (3) the gathering of large amounts of field data for calibration and valida-
tion; and (4) significant computational resources and workforce. On the other hand, AI
models, despite demanding a significant amount of field data (e.g., in some cases, his-
torical data may be needed), require much less effort in the first two directions and are
very promising [10–12]. They are adaptable and accurate in handling complex, large
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datasets [9,13] and can be more accurate [9] and reliable [14] than conventional models,
especially in cases where the description of phenomena is very difficult to achieve [4,15].

Over the years to date, AI techniques have significantly advanced the modeling of
river water flows and concentrations [13,16,17]. It is observed that modeling at a high
time resolution (e.g., hourly) is implemented less often [13,18–20] than applications with
a coarser (daily to yearly) resolution [1,15,21–25], despite sub-daily simulation being es-
sential for representing short-duration storms and flash events [26,27]. Multiple aspects
arise which pinpoint exploitable areas for further development. First, models involving
hydrological and quality variables (e.g., chemical parameters) together are less prominent
compared to “pure” hydraulic or hydrological models [15,28,29]. Second, in the context of
a very steep increase in machine learning applications (including artificial neural networks
(ANNs)) in the water quality field (from 310 in 2000 to 3444 in 2020 [17]), phosphorus
compounds still receive little attention [16,17,30] compared to other indicators, such as
dissolved oxygen (DO [31,32]), biochemical oxygen demand (BOD [32,33]), total dissolved
solids (TDS [34–36]), nitrates (NO-3 [30]), electrical conductivity (EC [34,36]), or pH [35,37].
Moreover, models tend to include a single phosphorus compound type [32,38–42] rather
than fully accounting for different species [30]. Third, there is a clear need for measures to
alleviate the four identified drawbacks of ANNs stated in Table 1 [4,9,17,43–45]. Drawbacks
one and three are addressed in this research via a systematic methodology for data handling
and ANN development.

Table 1. Drawbacks of ANN models and proposed steps to overcome them.

Drawbacks Mitigation Measures

An often-time-consuming process of
trial-and-error to identify the optimum ANN
type and structure, avoiding overfitting

Automated algorithms can be set up for
the handling of the trial-and-error
process to minimize time

The danger of large errors
during extrapolations

Increased model accuracy may be
achieved using multiple models, hybrid
models, or combinations of ANNs with
optimization techniques [13,44,45]

The lack of process understanding and
limited possibility of correlating phenomena
with the model parameters

Additional datasets for independent
verifications after model
developmentThe combination of ANNs
with mechanistic models

Missing data Using other types of data in the system
or relying on data in the literature [17]

This paper is focused on the development of ANN-based models capable of forecasting
the dynamics of water flow and pollutant concentrations (soluble reactive phosphorus
(SRP) and total phosphorus (TP)) in a downstream location based on data from an upstream
location (and tributaries in certain cases), at resolutions of up to 3 h. A 54 km stretch of the
River Swale (part of the Ouse River catchment, United Kingdom (UK)) is used as a case
study. An earlier study of the Ouse [46], forecasting depth and water flows with a horizon
(lead time) of 6 h with the help of ANNs, concluded that longer time horizons would be
required for real-time practical applications in flood management warning systems. Longer
lead time (up to 20 days) has been achieved only with monthly [47] and daily resolution
models [48], while sub-daily models have achieved few hours of lead time [26,49], and it
has been observed that increasing lead time causes decreased prediction performance. Due
to this, it is important to add the estimation of inflows of water reservoirs [50,51] and the
need of a forecasting tool to handle a wide range of water flows, including extremes (very
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low drought flows to flood flows) which, for most models or from a data analyst point of
view, may be considered outliers [1].

The objective of this study is to offer reliable ANN-based models for the prediction
of water flow, SRP concentrations, and TP concentrations in ordinary conditions, during
storms, or in the case of uncontrolled pollution events. To cover a wide range of conditions,
the ANNs for water flow feature forecast horizons of 1 h, 6 h, 8 h, 9 h, 12 h, and 15 h, while
the ANNs for water flow, SRP, and TP concentrations together feature a forecast horizon
of 15 h. The models use easily attainable field data (water flow, temperature, and SRP
and TP concentrations) and an indicator of seasonality. Therefore, the use of additional
parameters (such as rainfall) is out of the scope of this paper, as the interest is to offer
forecasts using easily attainable parameters from the river only to facilitate easier model
use for stakeholders. The model’s reliability is tested by using independent data and
assessing the prediction performance via the visual inspection of figures and the following
numerical indices: Nash–Sutcliffe efficiency (NSE) [52], Kling–Gupta efficiency (KGE) [53],
modified peak-flow criteria (PFC), and modified low-flow criteria (LFC) [49].

This paper’s novel contributions are as follows: (a) the modeling of phosphorus
compounds; (b) the use of high-resolution measurements (between 15 min and 3 h for
water flow and 3 h for phosphorus compounds), which are less prominent in the literature
compared to lower resolutions (daily and above); (c) an increased forecasting horizon
(also termed lead time in the literature) of up to 15 h (we believe that this has not been
previously achieved by other high-time-resolution data-driven models) for sub-daily ANNs
that can cover extreme events as well as base flows; (d) the improved performance of water
flow and phosphorus species predictions compared to existing models for the same river
stretch, demonstrating the benefits of ANNs; and (e) a systematic methodology acting as a
blueprint for wider applications.

2. Materials and Methods
2.1. A Description of the River Stretch and the Field Data

The river stretch involved in this research (see Figure 1) is the lower part of the River
Swale (North Yorkshire, northeast England), flowing from Catterick (the upstream end,
M1) to Crakehill (the downstream end, M2).

Catterick is situated in a piedmont zone (of the Pennine hills) from where the river
flows through the valley of Swaledale, draining the North Yorkshire Dales and the Vale
of York. The Swale catchment is part of the greater Ouse catchment, as the River Swale
merges with the River Ure (10 km downstream of Crakehill) forming the River Ouse, a
tributary of the Thames. The catchment geology is diverse, consisting mainly of limestones,
sandstones (particularly in the lower area), and shales, with significant superficial deposits
(mainly boulder clay). The headwaters feature moorland and grassland, while the Vale of
York is largely covered by arable land [54]. The investigated stretch is situated on Triassic
new red sandstone covered with coarse gravels and boulders in the upper part and human-
made floor downwards [55,56]. It is influenced by 3 major tributaries (Bedale Beck, Wiske,
and Cod Beck, denoted by T1, T2, and T3 in Figure 1) discharging significant amounts of
phosphorus compounds. Wiske and Cod Beck alone are responsible for 78% of the SRP in
the River Swale [57]. Other significant influences are the 15 minor tributaries [58], point
pollution sources (e.g., 3 sewage treatment works and a quarry discharging directly in
the main channel), activities in populated areas (e.g., Catterick), diffuse pollution sources
(farming, agriculture, and leisure activities), and several water abstractions [55,59].

This lowland area of the Swale catchment receives rainfall of up to 1300 mm/year [56],
with an average annual rainfall of 1123 mm in the upper zone and 835 mm in the lower
zone (Table 2). Historical daily data show average flows of 12.9 m3/s in Catterick and of
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20.2 m3/s in Crakehill and a pattern within the year (applicable to the three main tributaries
as well): lower values during summer months (especially July and August) and higher
values in winter (especially December and January) [54,60–63].
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Figure 1. A study area map showing the catchment’s position within the UK.

Table 2. Study area details [54,60–63]: National Grid Reference (NGR [64]); average annual rainfall in
standard period (1961–1990) in millimeters (SAAR [65,66]); base flow index (BFI); 10% exceedance
(Q10); 5% exceedance (Q5).

Site Name and Notation
Geographical
Coordinates,
NGR

Elevation,
m

SAAR,
mm

Historical Daily Flow Data

Period BFI Mean,
m3/s

Q10,
m3/s

Q5,
m3/s

Swale in Catterick Bridge, M1 SE226993 60 m 1123 1992–2023 0.37 12.9 31 47
Bedale Beck in Leeming, T1 SE306902 24 m 729 1983–2023 0.31 3.2 5 14
Wiske in Kirby Wiske, T2 SE375843 20 m 632 1980–2023 0.16 4.8 14 29
Cod Beck in Dalton Bridge, T3 SE421766 19 m 696 1988–2023 0.48 1.7 4 6
Swale in Crakehill, M2 SE426734 12 m 835 1955–2023 0.48 20.2 47 68

In the NE English region in which the Swale is located, there have been long-term
positive trends in the peak river flow. There is much spatio-temporal variability in these
trends in England. It is known that 48% of basins in northeast England show increases in
their annual maximum flow (AMAX) and 6% significant decreases in periods of at least
30 years prior to 2017 [67]. Long-term trends in the Q90 (90% exceedance) low flow and Q10
peak flow have been identified, while in the Swale, there have been significant increases
across 1985–2014 in both low- and high-flow statistics [68].

The River Swale is in an area of a high mean annual runoff (471 mm) and is a
fast-responding river with a low base-flow index (0.48) at the downstream end of the
stretch [54,60]. There has been significant overbank flooding downstream (e.g., in York) in
recent years. For this downstream stretch, especially detailed flood records with long-term
trend analysis are available, and there is much concern surrounding heightened risk in the
future [54,60,69]. Developing early warning systems is especially important for such cases.
During the investigated period (January 1994 to February 2000), the water flows exhibited
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an average of 20.07 m3/s with a standard deviation of 26.73 m3/s. Values were generally
lower during spring, summer, and the beginning of autumn (exhibiting a minimum of
0.17 m3/s in October 1995) compared to the higher mid–late autumn and winter water
flows (exhibiting a maximum of 484 m3/s in January 1994). Such a broad flow range ensures
that trained ANNs may cope with extreme conditions as well as with base water flows.

The field data employed in this research are of two kinds: (1) the regular monitoring
of the water flow at M1 and M2, with an average time resolution of 15 min (January 1994
to December 1996); and (2) special monitoring campaigns (carried out under low-flow,
usual-flow, and storm conditions) with data comprising water flow and concentrations of
SRP and TP at M1, at M2, and in three main tributaries (T1, T2, and T3) with resolutions
up to 3 h (15 min, 1 h, and 3 h, depending on the campaign). These intensive campaigns
were organized at multiple locations within the catchment between February 1996 and
February 2000. Such detailed campaigns have not been repeated more recently. Out of the
extensive datasets, we employed 107,881 samples for water flow, 2445 samples for SRP, and
2445 samples for TP.

2.2. Building the ANN Models

All ANNs are feedforward backpropagation networks developed using the MATLAB
Deep Learning Toolbox following the steps in Figure 2, as described in Sections 2.2.1–2.2.7.
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2.2.1. Travel Time Evaluation

Regular water flow monitoring data were employed for the estimation of travel times
between M1 and M2. The visual analysis of the data reveals a consistent transition of the
peaks on the time axis from M1-to-M2 (Figure 3) by approximately 14 h.
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Figure 3. The illustration of flow peaks at the upstream (M1) and downstream end (M2) of the
river stretch.

Provided that the positions of peaks relative to each other are reasonably consistent,
we propose estimating the travel time by shifting the downstream (M2) flow back in time
hour by hour from 5 h to 25 h and calculating the normalized squared difference between
the shifted M2 and (unmodified) M1 values. The lowest difference corresponds to the
number of hours shifted which is numerically close to the observed travel time. Results in
Table 3 show an average travel time between M1 and M2 of around 14 h to 15 h. The low-
flow subset regards no-rain to light-rain conditions, overlapping mainly with spring and
summer, while the high-flow subset mainly comprises autumn and winter measurements.

Table 3. The values of water flow and travel times.

Water Flow Range Indicator Flow at M1
[m3/s]

Flow at M2
[m3/s]

Travel Time
Range [h]

All flows (entire dataset)
Minimum 0.74 1.97

14–15Average 11.82 18.69
Maximum 484 224

Lower-flows subset
Minimum 0.74 1.97

14–16Average 3.58 5.57
Maximum 84.4 52.5

Higher-flows subset
Minimum 0.995 3.04

12–14Average 18.72 29.68
Maximum 484 224

Travel time values together with the sampling resolution guided the data selection for
the ANNs and network structuring (e.g., setting the forecast horizon).

2.2.2. Performance Evaluation Methods

1. The ANNs’ prediction performance for water flows, SRP, and TP was assessed using
NSE, Equation (1) [52]; KGE, Equation (2) [53]; PFC, Equation (4); and LFC, Equation
(5) [49]. A perfect prediction is indicated by an NSE and KGE of 1.00 and a PFC and
LFC of 0.00.
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NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1

(
Oi − O

)2 (1)

where n is the total number of samples, i the individual samples, O the observations,
P the predictions, and O the mean of the observations.

KGE = 1 −

√
(R − 1)2 +

(
σP
σO

− 1
)2

+

(
P
O

− 1
)2

(2)

R =
CovPO
σP σO

(3)

2. where R is the linear correlation coefficient between predictions and observations,
CovPO the covariance between the predictions and observed values, σP and σO the stan-
dard deviations of the predictions and observations, and P the mean of the predictions.

PFC =

(
∑

Tp
p=1

((
O − P2

)
O

2
))0.25

(
∑

Tp
p=1(O

2)
)0.25 (4)

where p is the number of data points among the peaks; O is the observed data; P is the
simulated data; and Tp is the total number of peaks (flows greater than the measured
mean peak value).

LFC =

(
∑TL

n=1

((
O − P2

)
O

2
))0.25

(
∑

Tp
n=1(O

2)
)0.25 (5)

where n is the number of data points among the low flows; and TL is the total number
of low flows (flows smaller than the measured mean low value).

Additionally, the visual inspection of hydrographs and scatter plots was carried out
to assess the ANNs’ performance (steps in Figure 2). The visual inspection of SRP and TP
loads (evaluated from concentration and flow) was added for the evaluation of the ANNs
predicting concentrations together with the water flow.

2.2.3. Slitting of Data

Available field data were split into two: a set for the ANNs’ development (termed
“TRAIN” data, usually containing two thirds of the data, divided automatically by MATLAB
in different proportions for training, testing, and validation) and a second set used for an
additional independent evaluation of the forecast performance (termed “UNSEEN” data,
containing at least one third of the data). Three types of ANNs were developed using the
TRAIN data. The ANNs differentiate via the form of inputs (data from a single time stamp
or data as time series), as shown in Figure 4.

Type 1 ANNs: One dataset of measurements corresponding to a time stamp was used
as inputs in each step for the ANN to predict the output. Figure 4a illustrates the first
computation step for an ANN with a resolution (time step) of 3 h and a forecast (prediction)
horizon of 15 h. Type 2 ANNs: Observation data series (data from multiple time stamps)
were used as inputs in each forecast step, or the ANN generated the output in a further step.
Figure 4b illustrates the first computation step for an ANN with a resolution of 3 h and a
forecast horizon of 12 h. Type 3 ANNs: The inputs were a time series of observations and a
time series of earlier predictions of the output. Figure 4c illustrates steps 1, 2, and 21+ for
an ANN with a resolution of 1 h and forecast horizon of 1 h. In each computation step (e.g.,
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step 1), the input consisted of 20 past values from M1 (e.g., U1 to U20) and 20 past values
from M2 (e.g., D1 to D20). The output was the predicted value at M2 with the corresponding
forecast horizon (e.g., D21). In step 1 (ANN initialization), D1 to D20 consisted of observed
values only. In further steps, observed values at M2 were incrementally substituted by
predicted values from previous computation steps. M2 observations were completely
replaced with M2 predictions after 20 iterations (step 21+).

Hydrology 2025, 12, x FOR PEER REVIEW 8 of 24 
 

 

incrementally substituted by predicted values from previous computation steps. M2 ob-
servations were completely replaced with M2 predictions after 20 iterations (step 21+). 

 

Figure 4. Illustration of input and output data for ANN types: (a) type 1; (b) type 2; and (c) type 3. 
M1 = upstream end; M2 = downstream end; T1, T2, and T3 = tributaries. 

All three types of ANNs predicted water flow, while type 2 (sub-type 2.3) was em-
ployed for the prediction of both water flow and concentrations at M2, as it was consid-
ered the most appropriate to use. The forecasting horizon and the time step (step size/res-
olution) for the inputs and outputs of the three ANN types were selected based on the 
dataset resolution and on the reach travel time. Depending on the employed field data 
(long-term water flow or monitoring campaigns of water flow alone or with concentra-
tions of SRP and TP), the ANN types were further divided into sub-types, each assigned 
to a code in Table 4. The seasonality factor (as in [8]) was employed as an additional input 
for sub-type 2.3 to facilitate better SRP and TP predictions, as their transformations were 
strongly correlated to seasonality. The developed ANNs were applicable in a wide range 
of situations, e.g., (i) when tributaries’ data were unavailable/unknown (sub-types 2.2 and 
3.1), as, generally, there may be a lot of cases in which tributaries are not monitored; (ii) 
when multiple successive measurements were available at the upper end of the stretch 
(types 2 and 3 all sub-types); and (iii) when only one measurement was available (sub-
type 1.1). 

Table 4. Characteristics of the developed ANNs. 

ANN 
Type 

ANN Sub-
type ANN Notation Details for ANN Input and Output Data 

1 1.1 #1.1.1 
Inputs: one set of observed water flows at M1, T1, T2, 
and T3 in a single time stamp. Output: water flow at 
M2. 

2 2.1 
#2.1.1; #2.1.2; 
#2.1.3; #2.1.4 

Inputs: time series of observed water flows at M1, T1, 
T2, and T3. Output: water flow at M2. 

2 2.2 #2.2.1; #2.2.2 Inputs: time series of observed water flows at M1. No 
tributaries’ data. Output: water flow at M2. 

2 2.3 #2.3.1; #2.3.2 

Inputs: time series of observed water flows, SRP, and 
TP concentrations at M1, T2, and T3, water tempera-
ture, and seasonality. Output: water flow and SRP 
and TP at M2. 

(a) Time stamp [h] 0 3 6 9 12 15 18 21 (b) 0 3 6 9 12 15 18 21
M1 5.9 5.9 5.8 5.8 5.8 5.8 5.8 5.8 M1 5.9 5.9 5.8 5.8 5.8 5.8 5.8 5.8
T1 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 T1 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3
T2 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.6 T2 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.6
T3 1.1 1.1 1.1 1.1 1.2 1.2 1.5 1.5 T3 1.1 1.1 1.1 1.1 1.2 1.2 1.5 1.5

Output [m3/s] M2 10.8 10.9 11.0 11.0 10.8 10.8 10.8 10.8 M2 10.8 10.9 11.0 11.0 10.8 10.8 10.8 10.8
(c) Time stamp [h] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Inputs [m3/s] M1 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 4 U15 6 U17 8 U19 0
Outputs [m3/s] M2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21
Time stamp [h] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Inputs [m3/s] M1 U2 U3 U4 U5 U6 U7 U8 U9 0 U11 U12 U13 4 U15 6 U17 8 U19 0 U21
Outputs [m3/s] M2 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22
Time stamp [h] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Inputs [m3/s] M1 1 2 3 4 5 6 7 8 9 U30 U31 U32 3 4 5 6 7 8 9 0
Outputs [m3/s] M2 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40 D41

Legend observed values used as inputs for type 1 to 3 ANNs Predicted values at the downstream end M2 for type 1 to 3 ANNs
observed values used as inputs during initialization (steps 1 to 20) for type 3 ANNs
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Figure 4. Illustration of input and output data for ANN types: (a) type 1; (b) type 2; and (c) type 3.
M1 = upstream end; M2 = downstream end; T1, T2, and T3 = tributaries.

All three types of ANNs predicted water flow, while type 2 (sub-type 2.3) was em-
ployed for the prediction of both water flow and concentrations at M2, as it was considered
the most appropriate to use. The forecasting horizon and the time step (step size/resolution)
for the inputs and outputs of the three ANN types were selected based on the dataset
resolution and on the reach travel time. Depending on the employed field data (long-term
water flow or monitoring campaigns of water flow alone or with concentrations of SRP
and TP), the ANN types were further divided into sub-types, each assigned to a code in
Table 4. The seasonality factor (as in [8]) was employed as an additional input for sub-type
2.3 to facilitate better SRP and TP predictions, as their transformations were strongly corre-
lated to seasonality. The developed ANNs were applicable in a wide range of situations,
e.g., (i) when tributaries’ data were unavailable/unknown (sub-types 2.2 and 3.1), as, gen-
erally, there may be a lot of cases in which tributaries are not monitored; (ii) when multiple
successive measurements were available at the upper end of the stretch (types 2 and 3 all
sub-types); and (iii) when only one measurement was available (sub-type 1.1).

The three ANN types for flow forecasting helped provide a foundation for the devel-
opment of ANNs for the forecasting of both water flow and concentrations. Moreover, the
ANNs’ capability to predict under different field circumstances (e.g., water flow variability),
such as unexpected water flow changes along the river (e.g., abundant rain or a sudden
decrease in flows), was tested using a different data preparation method applied to the
sub-type 2.2 networks, which predicted water flow at M2 based on observations at M1 and
employed a 1 h resolution. The TRAIN data were mixed; the complete time series was
split into many smaller time series and then reassembled randomly. Results revealed that
different water flow scenarios did not significantly affect the ANNs’ performance.



Hydrology 2025, 12, 20 9 of 23

Table 4. Characteristics of the developed ANNs.

ANN Type ANN Sub-Type ANN Notation Details for ANN Input and Output Data

1 1.1 #1.1.1
Inputs: one set of observed water flows at
M1, T1, T2, and T3 in a single time stamp.
Output: water flow at M2.

2 2.1 #2.1.1; #2.1.2;
#2.1.3; #2.1.4

Inputs: time series of observed water flows
at M1, T1, T2, and T3. Output: water flow
at M2.

2 2.2 #2.2.1; #2.2.2
Inputs: time series of observed water flows
at M1. No tributaries’ data. Output: water
flow at M2.

2 2.3 #2.3.1; #2.3.2

Inputs: time series of observed water flows,
SRP, and TP concentrations at M1, T2, and
T3, water temperature, and seasonality.
Output: water flow and SRP and TP at M2.

3 3.1 #3.1.1

Inputs: time series of observed water flows
at M1 and previous predictions of water
flows at M2. No tributaries’ data. Output:
water flow at M2.

M1 = the upstream end; M2 = the downstream end; T1, T2, and T3 = tributaries.

2.2.4. Exploring Wide Ranges of ANN Hyperparameters

We created randomizing functions to generate a wide range of networks with respect
to the following: (A) the number of layers; (B) the number of neurons; (C) the transfer
function in each layer; and (D) the training function. A benchmark performance threshold
was set, depending on the network purpose (e.g., NSE > 0.85 for ANNs predicting only
flows). Networks predicting above the threshold were saved. This step would generally
have been slow and time consuming; therefore, automated algorithms were implemented.

2.2.5. Reducing the ANN Hyperparameter Search Ranges

After enough ANNs met the benchmark (>20, varying among the ANN sub-types),
we analyzed complying ANNs for common features to facilitate the following: (a) the
programming of characteristics (A–D) defined in the previous step; or (b) the constraint of
the range of randomizing functions (Step 1). As a common feature, it was observed that all
saved ANNs were trained using the Levenberg–Marquardt (LM) training algorithm. The
good performance of the LM algorithm in training the ANNs for flow has been confirmed
by others [70].

2.2.6. Generating Better-Performing ANNs

A new series of ANNs was generated (>20). A higher performance was achieved.
Each network was analyzed under the following criteria: (a) NSE for the training; (b) NSE
for the testing; (c) the ability to predict observations under extreme events (e.g., peaks
or low-flow situations); and (d) the graphical comparison of the network output against
measurements. The ANNs considered most suitable were selected. These ANNs were
considered proficient and reliable for multi-step ahead forecasting.

2.2.7. Evaluating Forecast Performance Using UNSEEN Data

The selected ANNs’ forecast performance was evaluated again using the UNSEEN
data to ensure their generalization capacity. These ANNs are available on HydroShare [71].
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3. Results
3.1. ANNs’ Architectures

A selection of the best-performing ANNs during development (training, validation,
and testing) and independent evaluation is illustrated in Table 5, showing one or multiple
ANNs for each sub-type. ANNs from a sub-type may be different in terms of architecture,
data resolution (time step), the number of inputs, and the forecast horizon.

Table 5. ANNs’ characteristics.

ANN No. Predicted
Indicators

Hidden
Layers’ Neurons

Transfer Functions
for Hidden Layers

Resolution
[h]

Input
Window [h]

Output
Timing [h]

Forecast
Horizon [h]

#1.1.1 flow [3, 3] [logsig, tansig] 3 0 15 15

#2.1.1 flow [3, 3] [logsig, tansig] 3 0–12 21 9
#2.1.2 flow [1, 7, 6] [logsig, purelin tansig] 3 0–6 18 12
#2.1.3 flow [5, 10, 7] [tansig, tansig, logsig] 0.25 0–12 18 6
#2.1.4 flow [6, 6, 4] [tansig, purelin, logsig] 1 0–12 18 6

#2.2.1 flow [3, 2, 7, 5] [logsig, tansig, logsig, purelin] 1 0–9 17 8
#2.2.2 flow [7, 6, 4] [logsig, logsig, logsig] 1 0–9 21 12

#2.3.1 flow, SRP, OP [2] [purelin] 3 0–12 27 15
#2.3.2 flow, SRP, OP [4, 6, 5] [purelin, purelin, purelin] 3 0–12 24 12

#3.1.1 flow [6, 1, 1] [purelin, purelin, purelin] 1 0–19 20 1

3.2. ANNs’ Calibration Results (Training, Validation, and Testing) Using TRAIN Data

The ANNs’ development steps aimed at producing reliable ANNs for a wide range of
conditions, using the optimum hyperparameters. Performance evaluation indices (Table 6)
and the visual evaluation of results for the flow-predicting networks (Figures 1–9) show that
among the long-forecasting-horizon ANNs, #1.1.1 predicted extremes better than medium
flows (Figure 5), while ANN #2.1.1 (Figure 6) predicted equally well for all flows, except
for the range 30 m3/s to 60 m 3/s. ANNs #2.1.3 and #2.1.4 (Figure 7) predicted very well
for all tested flow ranges, being the most performant (on TRAIN data), together with #3.1.1.
They featured the lowest forecasting horizon (1 h and 6 h) and were closely followed in
performance by ANNs #1.1.1 and #2.1.1, featuring longer forecasting horizons (15 h and
9 h). All these networks (except #3.1.1) used observed water flows at M1, T1, T2, and T3
(from the special monitoring campaigns) to forecast water flows at M2.

Table 6. ANNs’ model performance during development using TRAIN data.

ANN No. Indicator
Forecast
Horizon, h

Prediction Performance (TRAIN Data)
KGE NSE PFC LFC

#1.1.1. flow 15 0.98 0.97 0.17 0.17

#2.1.1. flow 9 0.97 0.96 0.19 0.17
#2.1.2. flow 12 0.89 0.97 0.26 0.15
#2.1.3. flow 6 0.99 0.99 0.02 0.12
#2.1.4. flow 6 0.99 0.99 0.14 0.24

#2.2.1. flow 8 0.92 0.89 0.20 0.12
#2.2.2. flow 12 0.94 0.91 0.20 0.12

#2.3.1. flow 15 0.92 0.94 0.10 0.19
SRP 15 0.78 0.69 0.17 0.33
TP 15 0.45 0.48 0.44 0.37

#2.3.2. flow 12 0.99 0.99 0.26 0.19
SRP 12 0.74 0.61 0.19 0.32
TP 12 0.73 0.53 0.41 0.34

#3.1.1. flow 1 0.99 0.99 0.13 0.09
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Figure 8. Type 2 ANN results, with sub-type 2.2, for M2 flow forecast based on M1 with resolution of
1 h and 12 h forecast horizon, using mixed TRAIN data.
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Figure 9. Type 3 ANN results for M2 flow forecast based on M1 and previous predictions at M2 with
resolution of 1 h and 1 h forecast horizon, using TRAIN data.

Networks #2.2.1, #2.2.2 (Figure 8), and #3.1.1 (Figure 9) used observed water flows
at M1 (from the regular monitoring of the water flow at M1 and M2) to forecast water
flows at M2. ANN #3.1.1 offered better flow prediction over the entire range, probably
due to the lower forecast horizon (1 h) and to the additional use of previous predictions of
water flows at M2 as inputs. However, the other two networks offered longer forecasting
horizons of 8 h and 12 h and offered good prediction performance. Moreover, ANN #2.2.2
was different from the other sub-type 2.2 ANNs via the preparation of data (mixed time
series reassembled randomly, as described in Section 3.1), aiming to capture unexpected
flow conditions.

Most of the ANNs are deep neural networks, with more than one hidden layer, except
the networks used to predict both water flow and concentrations (ANN #2.3.1, Figure 10).
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Figure 10. A comparison of predicted and observed water flow, soluble reactive phosphorus (SRP),
and total phosphorus (TP) with a 12 h (ANN #2.3.2.) and 15 h (ANN #2.3.1.) forecast horizon and a
resolution of 3 h with TRAIN data.

Generally, adding layers and/or neurons should have facilitated better predictions
in cases of complex phenomena, with the associated drawbacks of more demanding data
and computation requirements and the greater risk of overfitting. For sub-type 2.3, good
prediction performance could be achieved using the shallow ANN #2.3.1. Complementing
the ANN with additional layers or using more complex transfer functions increased the
training time and slightly improved the prediction performance for at least one of the
indicators (flow, SRP, TP) but did not improve the forecast horizon on any occasion. The
more complex ANN #2.3.2 featured similar performance to ANN #2.3.1. ANN #2.3.1 was
preferable for estimating both water flow and concentrations due to the architectural sim-
plicity and long forecast horizon (15 h). Overall, simpler networks appeared better suited
for this application. Increasing complexity did not improve performance. Similar behavior
was visible in the case of water flow predictions, as explained in the following section.

3.3. ANNs’ Forecast Results Using UNSEEN Data

During the additional testing, the best-performing flow-forecast ANNs were #3.1.1,
#2.1.1, #2.1.4, and #2.2.2 (Table 7). Three different time resolutions were tested for the
ANNs predicting water flow: 15 min (#2.1.3), 1 h (#2.1.4, #2.2.1, #2.2.2, and #3.1.1), and
3 h (#1.1.1, #2.1.1, #2.1.2, #2.3.1, and #2.3.2). It was observed that a higher resolution did
not necessarily lead to better prediction performance for the UNSEEN data. Among the
ANN designs of sub-type 2.1, the higher resolution of 15 min in the case of network #2.1.3
was associated with a lower prediction performance (NSE of 0.85) compared to the 1 h
resolution of network #2.1.4 (NSE of 0.96), which had the same forecast horizon of 6 h.
Better predictions (compared to networks with a 15 min resolution) were also made by
networks with a 3 h resolution and a forecast horizon of 9 h and 12 h (NSE of 0.97 for ANN
#2.1.1 and 0.96 for #2.1.2). ANN #2.1.3 performed better during training (NSE of 0.99),
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while ANNs #2.1.1 and #2.1.4 performed very well on both sets of data. In terms of input
preparation, it is noted that network #2.2.2, for which the inputs were mixed (to capture
unexpected weather scenarios), had good performance (TRAIN NSE of 0.91 and UNSEEN
NSE of 0.89).

Table 7. ANNs’ forecast performance with the UNSEEN dataset.

ANN No. Indicator
Forecast
Horizon, h

Prediction Performance (UNSEEN Data)
KGE NSE PFC LFC

#1.1.1. flow 15 0.93 0.97 0.15 0.15

#2.1.1. flow 9 0.96 0.97 0.19 0.18
#2.1.2. flow 12 0.88 0.96 0.17 0.13
#2.1.3. flow 6 0.89 0.85 0.38 0.19
#2.1.4. flow 6 0.97 0.96 0.21 0.15

#2.2.1. flow 8 0.91 0.85 0.21 0.18
#2.2.2. flow 12 0.94 0.89 0.19 0.16

#2.3.1. flow 15 0.74 0.70 0.44 0.28
SRP 15 0.74 0.74 0.28 0.24
TP 15 0.79 0.60 0.29 0.28

#2.3.2. flow 12 0.79 0.70 0.29 0.38
SRP 12 0.85 0.75 0.25 0.27
TP 12 0.40 0.08 0.31 0.39

#3.1.1. flow 1 0.99 0.99 0.13 0.11

ANN #1.1.1 showed very good results (NSE of 0.97) (Figure 11) for M2 flow prediction,
except local peaks (up to 45 m3/s), which were occasionally overpredicted. In the case
of increasing or decreasing the forecast horizon, the NSE always decreased, as expected,
considering that the relationship between inputs (flows at M1) and outputs (flows at M2)
was strongly connected to the travel time. This ANN had good practical use in predicting
a value at the downstream end of the river stretch based on a single measurement at the
upstream end and in tributaries, offering water stakeholders a time window of 15 h to
make decisions and implement actions.
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ANNs #2.1.1 to #2.1.4 had the advantage of good prediction performance and captur-
ing the flow dynamics trend, probably caused by the wide spectrum of input data. The
results for the UNSEEN data in Figure 12 (9 h and 12 h forecast horizon) and Figure 13 (6 h
forecast horizon) do not show significant improved peak prediction compared to ANN
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#1.1.1. Comparing ANNs using different data resolutions (1 h and 15 min in Figure 5), it is
observed how the higher-resolution ANN #2.1.3 (15 min) predicted the lower flows slightly
better, while the 1 h-resolution ANN #2.1.4 predicted the other flow ranges better. From
a practical point of view, network #2.1.2 may be the most promising due to the longest
anticipation time (12 h), the lower number of inputs needed (12 observations compared
to 20, 52, or 196 in the case of other ANNs of the same sub-type), and the good prediction
performance (NSE of 0.96).
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Figure 12. Type 2 ANN results, with sub-type 2.1, for M2 flow forecast based on M1 and tributaries
with resolution of 3 h and for 9 h (#2.1.1) and 12 h (#2.1.2) forecast horizons, using UNSEEN data.
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Figure 13. Type 2 ANN results, with sub-type 2.1, for M2 flow forecast based on M1 and tributaries
with resolutions of 15 min (#2.1.3) and 1 h (#2.1.4) and for 6 h forecast horizon, using UNSEEN data.

The ANN #2.2.2 forecast results (Figure 14) show a better forecast for low flows (up to
50 m3/s) and high extremes compared to for medium-range peaks. It is significant that
simulated values follow the trend of observations very well given the 12 h forecast horizon
and the capturing of unexpected weather events.
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Figure 14. Type 2 ANN results, with sub-type 2.2, for M2 flow forecast based on M1 with reso-
lution of 1 h and 12 h forecast horizon when the UNSEEN data were mixed randomly to capture
unexpected events.

The water flow forecasts of ANN #3.1.1 (Figure 15) reveal very good prediction, with
the better capturing of peaks compared to earlier sub-types, despite the large variability
of targeted outputs (observed M2 flows between 2.42 m3/s and 158 m3/s). Reduced
overestimation was obtained for the medium-range peaks (20 m3/s to 90 m3/s), while
slight underestimation occurred for the largest peak (160 m3/s). This one-step recurrent
ANN could be iteratively used for the computation of predictions over long time horizons,
provided that M1 water flows were specified.
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Figure 15. Type 3 ANN results for M2 flow forecast based on M1 and previous predictions at M2
with resolution of 1 h and 1 h forecast horizon, using UNSEEN data.

Figure 16 presents four samples of the UNSEEN data, each 3 weeks long during a
different time of the year, chosen randomly, and meeting two conditions: each span belongs
to another season and all the intervals must have variations in the flowrate. A short time
drop in the predicted flow rate immediately before the very steep peaks (e.g., spring
on 22nd April, summer on 10th August) can be observed. This might be because the
ANN overreacted and anticipated the flow rate to become lower based on the decreasing
upstream flow and applied correction when the upstream values became higher.
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Figure 16. Type 3 ANN results, with sub-type 3.1, using UNSEEN data for M2 flow forecast based on
M1 with resolution of 1 h and 1 h forecast horizon for 3 weeks sampled from each season.

The water flow and concentration ANNs with a forecast horizon of 15 h (#2.3.1 with
two neurons in a single hidden layer) and 12 h (#2.3.2 with three hidden layers) offered
relatively similar prediction performance for water flow and SRP, while ANN #2.3.1 had
better performance for OP (Figure 17). ANN #2.3.1 captured the OP loadings better, while
#2.3.2 captured the SRP loadings better.

Hydrology 2025, 12, x FOR PEER REVIEW 17 of 24 
 

 

overreacted and anticipated the flow rate to become lower based on the decreasing up-
stream flow and applied correction when the upstream values became higher. 

 

Figure 16. Type 3 ANN results, with sub-type 3.1, using UNSEEN data for M2 flow forecast based 
on M1 with resolution of 1 h and 1 h forecast horizon for 3 weeks sampled from each season. 

The water flow and concentration ANNs with a forecast horizon of 15 h (#2.3.1 with 
two neurons in a single hidden layer) and 12 h (#2.3.2 with three hidden layers) offered 
relatively similar prediction performance for water flow and SRP, while ANN #2.3.1 had 
better performance for OP (Figure 17). ANN #2.3.1 captured the OP loadings better, while 
#2.3.2 captured the SRP loadings better. 

 

ANN forecast test using UNSEEN data
(monitoring campaign

 carried out in February 2000)

0 100 200 300 400
Time (hours)

0

20

40

60

80

100

W
at

er
 fl

ow
 (m

3 /s
) observed

ANN #2.3.1
ANN #2.3.2

0 100 200 300 400
Time (hours)

0

0.1

0.2

0.3

SR
P 

(m
g/

L)

observed
ANN #2.3.1
ANN #2.3.2

0 100 200 300 400
Time (hours)

0

0.2

0.4

0.6

TP
 (m

g/
L)

observed
ANN #2.3.1
ANN #2.3.2

0 10 20 30 40 50 60

Observed flow (m3/s)

0

20

40

60

80

100

AN
N

 o
ut

pu
t f

lo
w

 (m
3 /s

) ANN #2.3.1
ANN #2.3.2

0 0.05 0.1 0.15 0.2 0.25
Observed SRP (ml/L)

0

0.1

0.2

0.3

AN
N

 o
ut

pu
t S

R
P 

(m
g/

L) ANN #2.3.1
ANN #2.3.2

0 0.1 0.2 0.3 0.4 0.5

Observed TP (m3/s)

0

0.2

0.4

0.6

AN
N

 o
ut

pu
t T

P 
(m

3 /s
) ANN #2.3.1

ANN #2.3.2

0 100 200 300 400
Time (hours)

0

2

4

6

8

10

SR
P 

Lo
ad

in
gs

 (g
/s

) observed
ANN #2.3.1
ANN #2.3.2

0 100 200 300 400
Time (hours)

0

10

20

30

TP
 L

oa
di

ng
s 

(g
/s

) observed
ANN #2.3.1
ANN #2.3.2

Figure 17. A comparison of predicted and observed water flow, soluble reactive phosphorus (SRP),
and total phosphorus (TP) with a 12 h (ANN #2.3.1.) and 15 h (ANN #2.3.1.) forecast horizon and a
resolution of 3 h with UNSEEN data.
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Flows above 20 m3/s were slightly overpredicted by both networks on around 75%
of occasions (Figure 17). Very large values of SRP (over 0.22 mg/L) were underestimated,
while for the other values, there was no evidence of systematic over- or underestimation.
The values of NSE associated with ANN #2.3.1 with the UNSEEN data (NSEFlowrate > 0.70;
NSESRP > 0.74; NSETP > 0.60) were better in comparison to earlier results for the same river
stretch using an advection–dispersion model. Timis and colleagues [8] reported NSE values
of 0.39 for SRP and 0.47 for organic phosphorus (OP, estimated as the difference between
TP and SRP) during evaluation runs.

4. Discussion
This paper presented a method of designing ANNs to predict water flow and phos-

phorus species’ (SRP and TP) concentrations based on different types of available data.
Given the non-linear and complex nature of ANN models, the employed method focused
on evaluating the model’s predictive accuracy using multiple performance indices and
additional performance testing using an independent dataset (UNSEEN data) to ensure
robustness. This approach was preferred to performing a sensitivity analysis, which is usu-
ally employed to aid feature selection and model simplification, improve model robustness,
and understand the system’s internal processes. The understanding of this system has
been enhanced by experimental investigations [55,58,72,73] and an advection–dispersion
model [8]. Therefore, these ANN models seek the practical use described in Table 8 and the
desired forecast horizon increase (from 6 h), compared to the earlier ANN applications in
the wider Ouse catchment [46].

Table 8. A summary of the best-performing ANNs during development and evaluation.

ANN Number Applicability and Observations

#1.1.1

A water flow forecast at M2 if a single set of measurements is available at M1
and in main tributaries at a resolution of 1 h. The travel time along the
stretch is covered by the forecast horizon of 15 h. No perfect estimations of
large peaks are needed.

#2.1.1
#2.1.2
#2.1.4

A water flow forecast at M2 when flows are monitored at M1 and in
tributaries. Applicable to a well-monitored watercourse. Different
resolutions of data can be used (1 h for #2.1.4 and 3 h for the other two).
Better prediction performance compared to 1.1.1, but a lower forecast
horizon (6 h, 9 h, 12 h) would not be problematic. Better peak predictions
compared to types 1.1.1 and 2.2.2.

#2.2.2

A water flow forecast at M2 with 12 h of anticipation based on hourly data at
M1, when knowledge on tributaries is not available. Very good prediction of
high peaks (up to 225 m3/s) and flows under 50 m3/s. Reduced need for
observations.

#3.1.1

A water flow forecast at M2 with 1 h of anticipation in situations without
monitoring data in tributaries and at M2. Used when very accurate
predictions are needed and a short forecast horizon (>1 h) is sufficient.
Trends are captured very well and there are better peak predictions
compared to earlier ANNs. Reduced need for observations.

#2.3.1
For when water flows and concentrations need to be predicted. Data from
two of the main tributaries and the upstream end are available. The travel
time along the stretch is covered by the forecast horizon of 15 h.

M1, T1, T2, and T3 = observed water flow and concentrations of SRP and TP at the upstream end (M1) and in the
tributaries (T1, T2, and T3).

All ANNs could forecast a wide range of water flows (0.74 to 484 m3/s) with a wide
range of anticipation (1 h to 15 h, depending on the needs). ANNs #3.1.1 (1 h forecast
horizon), #1.1.1 (15 h forecast horizon), #2.1.1 (9 h forecast horizon), and #2.2.2 (12 h forecast
horizon) performed equally well with both TRAIN and UNSEEN data. Most ANNs (except
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ANNs #1.1.1 and #3.1.1) had a better performance when it came to estimating lower flows
compared to high-flow peaks, as observed for other existing AI models [74,75]. A good
capability to predict a wide range of water flows was seen, which is noteworthy as few
previous studies [2,76] have accurately predicted very high flows, especially at a high sub-
daily resolution and featuring lower forecast horizons compared to present studies [20,26].
In particular, such predictions are fundamental requirements for urban streams [2,38,77].

Among the described ANNs, the highlight was ANN #2.3.1, which predicted both
the flow rate and the concentrations of SRP and TP with a 15 h forecast horizon and high
predictive performance using UNSEEN data (NSEFlowrate > 0.70; NSESRP > 0.74; NSETP

> 0.60). Its capabilities equaled those of other AI-based models including at least one
phosphorus compound. TP was predicted at a monthly resolution with an NSE of 0.71 [78];
at monthly, bimonthly, and trimonthly resolutions with an R2 of 0.74 to 0.94 [79]; and
at a daily resolution with relative errors of up to 20% [80]. Better results, with an R2 of
0.92 to 0.97, have been obtained for TP by more complex models comprising one or multiple
variables at daily [39] and sub-daily resolutions [38]. Compared to the aforementioned
models in the literature, the ANNs in this study provided a higher time resolution in the
forecasts while asking for easily attainable field data.

These practical aspects related to the presented ANNs, together with the good pre-
diction performance, are even more valuable in the context of the difficulty of forecasting
river variables due to the very fast changing dynamics which make forecasting a chal-
lenging task [3] and cause results at higher resolutions to be worse than those at lower
resolutions [20]. This further highlights the need for high-frequency data (e.g., sub-daily)
and for models comprising both hydrological and water quality parameters [15]. Such
data from future monitoring campaigns may facilitate at least three research directions:
(1) the application of these ANN models for forecasting and analytical purposes; (2) the
further improvement of ANN models’ performances and functionality (e.g., by including
additional water quality parameters); and (3) the testing of other ANN types and additional
AI techniques for this case study.

5. Conclusions
In this paper, the performance and applicability of feedforward backpropagation

artificial neural networks was assessed using datasets for a stretch of the River Swale.
All networks were double-tested, first by using the incorporated Deep Neural Network
Toolbox of MATLAB (using a share of the TRAIN data) and second by manually using
additional datasets alongside during data processing (UNSEEN data).

The ANNs successfully and reliably predicted flows and SRP and OP concentrations.
ANNs with higher time resolutions (15 min for #2.1.3) performed better with the TRAIN
data, while the ANNs with 1 h or 3 h resolutions performed very well using both datasets
(#2.1.1, #2.1.4, and #3.1.1). The most potent ANN variants were as follows: (1) #2.1.4 and
#2.1.2, water flow prediction with a 6 h and 12 h forecast horizon using time series from the
upstream end and tributaries as an input (NSE of 0.96); (2) #2.2.2, water flow prediction
with a 12 h forecast horizon using main stream flow rate time series as an input in the
absence of data on tributary flows (NSE of 0.89); (3) #3.1.1, water flow prediction with a
1 h forecast horizon (extendable by recurrence to any future horizon) using upstream flow
rate time series and previous ANN-predicted values as an input in the absence of data on
tributary flows; (4) #2.3.1, the prediction of water flow and concentrations together with a
15 h forecast horizon using as an input the main stream and two tributary flow rate and
concentration time series along with temperature and seasonality. These networks bring
significant improvement beyond that achieved previously in the River Swale using an
advection–dispersion water quality model.
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