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ABSTRACT
Most national assessments of climate change-related risks to agriculture focus on the productivity of existing crops. However, one
adaptation option is to switch to alternative crops better suited to changing local climates. Spatially explicit projections of relative
climatic suitability across a wide range of crops can identify which ones might be viable alternatives. Parametrising process-based
models for multiple crops is complex, so there is value in using simpler approaches to ‘horizon scan’ to identify high-level issues
and target further research. We present a horizon scan approach based on EcoCrop data, producing mapped changes in suitability
under +2◦C and +4◦C warming scenarios (above pre-industrial), for over 160 crops across the United Kingdom. For the United
Kingdom, climate change is likely to bring opportunities to diversify cropping systems.Many current and potential new crops show
widespread increases in suitability under a +2◦C warming scenario. However, under a +4◦C scenario, several current crops (e.g.
onions, strawberries, oats,wheat) begin to showdeclines in suitability in the region of theUnitedKingdomwheremost arable crops
are currently grown. Whilst some new crops with increasing suitability may offer viable alternatives (e.g. soy, chickpea, grapes),
the greatest average increases in suitability across crops occur outside the UK’s current areas of greatest agricultural production.
Realising these opportunities would thus be likely to require substantial changes to current farming systems and supply chains. By
highlighting these opportunities and challenges, our approach provides potentially valuable information to farmers and national
assessments.

1 Introduction

Climate change is projected to bring significant challenges to
agricultural systems worldwide (Ray et al. 2019, Raza et al. 2019,
Wheeler and von Braun 2013, Zabel, Putzenlechner, and Mauser
2014, Zhao et al. 2017) at a time when they must also increase
productivity to meet growing global demand for food (Tilman
et al. 2011). If the global food supply system is to maintain
resilience in the face of climate change, it is vital for farmers to

successfully adapt their agricultural systems, management, and
technologies.

One key potential route of adaptation is for farmers to switch
to alternative crops that are better suited to changing local
climates (Rising and Devineni 2020). The majority of global
agricultural systems (and of the world’s food supply) rely on a
relatively small subset of crop species (Hammer 2004, Hufnagel,
Reckling, and Ewert 2020). In many situations, our ability to
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continue increasing crop yields via technological solutions has
stalled (Arata, Fabrizi, and Sckokai 2020, Grassini, Eskridge, and
Cassman 2013), and there is evidence that climate change has
already contributed to this ‘drag’ on the growth of agricultural
production (Bezner Kerr et al. 2022). Simultaneously, introducing
more diverse cropping systems has been demonstrated to deliver
a wide range of other benefits to agroecosystems including
improvements to biodiversity, soil health and the control of pests
and diseases (Altieri et al. 2015, Guzman, Chase, and Kremen
2019, Hufnagel, Reckling, and Ewert 2020). Adopting a more
diverse range of alternative or underutilised crops, therefore,
has the potential to both increase climate resilience and support
farmland biodiversity and ecosystem services.

Whilst switching to alternative crops offers opportunities, it also
brings potential risks that may act as barriers to adoption (Rial-
Lovera, Davies, and Cannon 2017). These include economic risks
of investment in new agronomic practices and technology, and
access to local supply chains (Holloway and Ilbery 1997, Knight
et al. 2022). There are also environmental risks of introducing
crops novel to a given location, including interactions with
pollinators, wild crop relatives (Haygood, Ives, and Andow 2003)
and pests (Skendžić et al. 2021). If adopting alternative crops is
to succeed as an adaptation strategy, it is vital that decisions
are based on robust data. However, one factor known to be
limiting uptake of alternative crops is a lack of accessible, spatially
detailed data on climatic suitability of a large variety of different
crops. This restricts our ability to make informed decisions on
alternative crops as viable local adaptation strategies (Knight et al.
2022, Rial-Lovera, Davies, and Cannon 2017).

An essential first step towards overcoming this limitation is to
develop spatially explicit projections for crops under climate
change. Whilst there is an extensive literature modelling climatic
impacts on individual crops (Agnolucci et al. 2020, Challinor et al.
2009, Jagermeyr et al. 2021, Rezaei et al. 2023, Rial-Lovera, Davies,
and Cannon 2017, Wheeler and von Braun 2013, Zhao et al. 2017),
application of these models to explore climate change impacts is
usually limited to a small number of species (Hufnagel, Reckling,
and Ewert 2020, Rezaei et al. 2023). Comparisons scoping multi-
ple crop species, including those not yet grown in the focal area,
are rarer (Aramburu Merlos and Hijmans 2022, Ciscar, Fisher-
Vanden, and Lobell 2018, Heinz, Galetti, and Holzkämper 2024,
Hufnagel, Reckling, and Ewert 2020, Manners, Varela-Ortega,
and van Etten 2020). The justification for focussing on a few crops
is, typically, that they currently occupy the majority of the global
cropped area (Agnolucci et al. 2020, Jagermeyr et al. 2021, Zabel,
Putzenlechner, and Mauser 2014, Zhao et al. 2017). However, this
neglects the potential for this situation to change (Aramburu
Merlos and Hijmans 2022, Pironon et al. 2019) and excludes
crops of potentially high importance at local levels. A resolution
to this issue is to conduct ‘horizon scans’, estimating spatial
and temporal patterns of change in the suitability under climate
change, for a wide range of crops, at national to sub-national
resolutions. Horizon scans do not, in themselves, seek to produce
predictions with high levels of absolute accuracy but instead aim
to provide a high-level overview and help prioritise targets for
further investigation (Boult et al. 2018) or to identify research
and knowledge gaps (Manners and van Etten 2018). Horizon
scanning approaches are widespread and provide valuable data
for the development of adaptation strategies in the agricultural,

environmental and policy sectors, while also guiding further
research (Sutherland and Woodroof 2009). Some horizon scans
have used review-based methods (Knight et al. 2022) or global-
scale data (Fischer et al. 2021), but these are limited in their spatial
and temporal resolution.

Here, we develop a high-resolution, spatially explicit model of
changes in relative crop suitability under climate change, based
on an existing database of crop biophysical constraints, EcoCrop
(FAO 2022). Models built on EcoCrop have been widely used to
assess crop potential before (e.g. Egbebiyi et al. 2020, Hijmans
and Graham 2006, Manners, Varela-Ortega, and van Etten 2020,
Ramirez-Villegas, Jarvis, and Läderach 2013, Taba-Morales et al.
2020) and have shown good correspondence with more complex
models (Hijmans andGraham2006, Ramirez-Villegas, Jarvis, and
Läderach 2013, Vermeulen et al. 2013). Although EcoCrop focuses
on major environmental constraints (i.e. climate and soil types)
and does not encompass many other parameters that ultimately
determine the viability of a crop in a given location, it forms
an ideal method for horizon scanning, as it does not require
local parametrisation and can be run rapidly for a large number
of crops on fine-resolution gridded data. We used this model,
combined with CHESS-SCAPE climate projections downscaled
from the UKCP18 Regional Climate Model perturbed parameter
ensemble (Robinson et al. 2023), to perform a horizon scan for
theUnited Kingdom.Our results project changes in suitability for
167 arable, horticultural and orchard crops, at 1-km resolution for
two levels of global average warming (+2◦C and +4◦C above pre-
industrial). We identify changes in the suitability of both current
and alternative crops and explore potential opportunities and
challenges in using alternative crops to adapt the UK agricultural
system to climate change.

2 Methods

2.1 Filtering the EcoCrop Database

The EcoCrop database (accessible at https://gaez.fao.org/pages/
EcoCrop) was developed by the Food and Agricultural Orga-
nization (FAO) of the United Nations in the 1990s and gives
climatic and abiotic threshold values for over 1700 crop species.
The database has beenwidely used to explore climatic constraints
on crops, and modelling approaches have been developed for
calculating suitability indices from EcoCrop data. These models
have subsequently been built into analytical software (Hijmans
2021, Hijmans et al. 2001) and have been used for exploring
climate-driven changes in suitability for individual crops (Hunter
and Crespo 2019, Ramirez-Villegas, Jarvis, and Läderach 2013,
Taba-Morales et al. 2020) and for comparisons across crop species
(Chemura, Gleixner, and Gornott 2024, Gardner, Gaston, and
Maclean 2021, Heinz, Galetti, and Holzkämper 2024, Manners
and van Etten 2018, Manners, Varela-Ortega, and van Etten 2020)
over local, national, continental and global scales. Models based
on EcoCrop are well suited to horizon scanning exercises as
they typically require few crop-specific parameters (Ramirez-
Villegas, Jarvis, and Läderach 2013), cover a large number of
crops and have been demonstrated to show good correspondence
to more complex models where these are applied for the same
crops, regions and time periods (Hijmans and Graham 2006,
Ramirez-Villegas, Jarvis, and Läderach 2013). We constructed
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our own model based on the EcoCrop database rather than
directly implementing existing models, partly to maximise the
potential of the fine spatial and temporal (daily as opposed to
monthly data) resolution of the UK-specific climate data, adding
maximum temperature, and partly to give us full control over
the way the model handles issues like annual versus perennial
crops and the compound effects of temperature and precipitation
suitability. Because the model developed by Hijmans et al. (2001)
is generally referred to as ‘the EcoCrop model’ in the literature,
so we henceforth refer to ‘our EcoCrop model’ to distinguish our
specific methods from this prior implementation.

We first filtered the EcoCrop database by several criteria. Firstly,
we excluded crops for which information was missing on one or
more parameters required by our model. Secondly, we excluded
crops which would not be expected to occur in the United King-
dom even under extensive climate change (e.g. those associated
with tropical climates or soil types that are not found in the
United Kingdom). Finally, we also restricted analyses to those
species which are used for food and excluded those that are
used solely for timber, materials, medicines or ornamental uses.
This was done primarily to focus our analyses on crops that
are likely to be governed by similar market forces (e.g. those
governing food supply chains) and political factors (e.g. national
food security). In some cases, this distinction is somewhat unclear
as the same crop can be used for multiple purposes. For example,
hemp (Cannabis sativa) is grown variously for food, fibre and
medicinal products depending on the variety and local demand.
In such cases, we included a crop as long as it is grown for
food in at least some situations. We also included crops that
are grown for food but contribute little to overall macronutrient
output (e.g. aromatics such as thyme Thymus vulgaris and sage
Salvia officinalis) because they are still part of the food supply
chain and may contribute to maintaining diets with sufficient
micronutrients.

We also added information on whether the crop is known to be
currently grown in the United Kingdom as a current UK major
crop, defined as crops contributing to the cumulative 90% of
agricultural land in the United Kingdom, from UK government
Department for Environment, Food and Rural affairs (Defra)
statistics. This category is designed to be broadly indicative of
the relative importance of crops to current UK agriculture, and
thus the impact of climate change on theUK’s dominant cropping
systems, rather than any attempt to formally group crops. We did
not directly consider whether crops are grown under protected
(e.g. glasshouse) or irrigated conditions, because this information
is hard to obtain in a spatially explicit manner and the vast
majority of the UK’s crops are grown under rainfed, open-field
conditions. However, even if climatic suitability can be modified
by such management practices, we assume that changes in
suitability are still informative as they indicate that these practices
are likely to have greater or lesser changes to overcome in future.
We also assigned each crop to a ‘crop type’:

1. Bush and vine fruits—annual or perennial species produc-
ing edible berries or other fruits, including shrubs, vines and
herbaceous species.

2. Cereals—annual herbaceous species producing edible seeds,
either true cereals (graminoids) or pseudocereals.

3. Legumes—annual herbaceous species in the family
Fabaceae producing edible pulses.

4. Oilseeds—annual herbaceous species producing edible oils,
extracted from seeds or fruits.

5. Root crops—mostly herbaceous species with edible below-
ground roots, rhizomes, bulbs, corms or tubers.

6. Tree fruits—perennial shrub and tree species, producing
edible fruits or nuts.

7. Vegetables and herbs—annual herbaceous species with
edible leaves, flowers or fruits.

Crop types were derived from the lifespan, lifeform and use
category classes in EcoCrop and were intended to capture broad
types of crop production system (see Appendix S2). Crop types
are defined such that individual farms in the United Kingdom
are likely to specialise in a few types, with adaptation to new
systems requiring greater investment in terms of new machinery
and agronomic knowledge and skills.

2.2 Source of Climate Projections

We used gridded climate data from CHESS-SCAPE (Robinson
et al. 2022, Robinson et al. 2023). These are 1-km resolution pro-
jections of meteorological variables over the United Kingdom at
daily time steps, from 1980 to 2080. These data provideUKclimate
change data that have high temporal and spatial resolution, are
consistent with historical observations and demonstrate a range
of possible climate change scenarios. CHESS-SCAPE provides
several physical climate variables over the United Kingdom
for the period 1980–2080 at 1-km spatial resolution and time
steps ranging from daily to decadal averages. We used the
downscaled RCP8.5 data from CHESS-SCAPE and ran models
with the four ensemble members in the dataset. These ensemble
members were derived from the UKCP18 12 km Regional Climate
Model perturbed parameter ensemble and selected from the 12
UKCP18 ensemblemembers to span the range of temperature and
precipitation change in the UKCP18 ensemble, representing the
ensemble climate model uncertainty (Robinson et al. 2022, 2023)
(see Figures S2 and S3).

Because we were interested in exploring changes in suitability at
alternative levels of global warming, it was necessary to select the
appropriate time slices from the ensemble members, that is those
corresponding to+2◦Cand+4◦Cof global warming relative to the
pre-industrial period (1850–1900). This was done using existing
time slices for the UKCP18 12 km ensemble (Arnell et al. 2021).
These time slices were derived from the global temperature time
series associated with the global model simulation in which each
of the regional climate model simulations is nested (Kennedy-
Asser et al. 2022). For all four ensemble members, at least 90%
of the time slice within which +4◦C of global average warming
occurred falls before 2080. It is worth noting that, in the baseline
period (1980–2000, against which climatic suitability under each
warming level is compared), global warming of approximately
+0.5◦C had already occurred relative to 1850–1900; hence, the
changes in suitability projected exclude any changes that had
already occurred by then.
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Since the results presented here focus on projected changes in an
index of suitability with+2◦C and+4◦C of global warming rather
than ameasure of absolute suitability over time, it was considered
unnecessary to bias correct the UKCP18 output. Preliminary
analysis suggested that the direction, magnitude and spatial
patterns of change in suitability indices were consistent whether
bias correction was applied or not.

2.3 Linking EcoCrop and Climate Projections

We constructed a model to derive gridded estimates of climate-
based crop suitability indices from the information in the
EcoCrop database (henceforth referred to as ‘our model’). The
model derives a climatic suitability score based on daily temper-
ature and daily precipitation values, using information on the
required and optimal temperature and precipitation ranges, and
the number of days within which the crop must grow (parameter
names are as used in the EcoCrop database):

∙ GMIN, GMAX: the minimum and maximum time required to
produce a harvestable crop in days

∙ TMIN, TMAX: the minimum and maximum temperatures for
crop growth in degree Celsius

∙ TOPMN, TOPMX: the optimal temperature range for crop
growth in degree Celsius

∙ PMIN, PMAX: the minimum and maximum of precipitation
for crop growth in millimetre

∙ POPMN, POPMX: the optimal precipitation range for crop
growth in millimetre

∙ KTMP: temperature belowwhich the crop plant dies in degree
Celsius

∙ TEXT: soil texture classes suitable for the crop (e.g. heavy,
medium, light, organic)

Values for these parameters as derived from theEcoCrop database
are given in Appendix S2. The temperature and precipitation
suitability score for a given crop is calculated for each day (i.e.
each hypothetical sowing date for annual crops, or hypothetical
start of the annual cycle for perennial crops) and grid square in
the CHESS-SCAPE dataset and a selection of possible growing
times (GTIME s) between GMIN and GMAX by looking forward
in time by GTIME days and calculating the scores for this period.
We chose GTIMEs at an interval of 10 days from GMIN onwards
to balance accuracy against computational cost. The main steps
in the model are as follows:

1. 𝑆𝑇 is calculated via annual or perennial scoring method.

2. Heat and frost penalties are applied to 𝑆𝑇 .

3. Steps 1 and 2 are repeated for each GTIME.

4. 𝑆𝑃 is calculated.

5. 𝑆𝑇 and 𝑆𝑃 are aggregated over GTIME by taking the
maximum.

6. Scores are aggregated fromdaily to annual by taking the 95th
percentile.

7. Minimum of aggregated 𝑆𝑇 and 𝑆𝑃 is calculated, producing
combined climatic suitability score.

8. Soil-type and land-cover masking is applied.

9. Combined suitability score is converted from annual to
degree Celsius of warming.

10. Difference from 1980 to 2000 baseline is calculated.

The temperature score 𝑆𝑇 is calculated by two different methods
dependent on whether or not the crop is usually grown as an
annual or perennial crop. This is due to a fundamental difference
in the way the EcoCrop parameters are interpreted for these
different life histories—annual plants must complete their entire
growth cycle from sowing to harvest within GTIME days, whilst
perennials are only required to complete production of their
harvestable parts (e.g. fruit) within GTIME days. Preliminary
analyses suggested that applying the annualmethod to perennials
gave many species very low suitability scores (including those
currently grown in the United Kingdom), whilst using the
perennial methods for annuals resulted in very high scores, even
for species that are not currently grown in the European Union.
We took life-history information (and thus the method used
to model each crop) directly from the EcoCrop database. The
derivation of the combined climatic suitability score via themodel
follows the equations below. Full model code is available via
the URL in the Data Availability Statement, and pseudocode is
provided in Appendix S1.

2.4 Annual Temperature Suitability Scoring
Method

For annual crops, 𝑆𝑇,𝑑,𝑔,𝑔𝑡 is calculated using the following
method:

For each day (d), 1-km grid cell (g) and GTIME length (gt), an
intermediate score between0 and 1 is assignedusingEquations (1)
to (4):

𝐷𝑑,𝑔,𝑔𝑡 =
𝑇𝑑,𝑔 − 𝑇𝑀𝐼𝑁

𝑇𝑂𝑃𝑀𝑁 − 𝑇𝑀𝐼𝑁
when 𝑇𝑀𝐼𝑁 < 𝑇𝑑,𝑔 ≤ 𝑇𝑂𝑃𝑀𝑁,

(1)

𝐷𝑑,𝑔,𝑔𝑡 = 1 when 𝑇𝑂𝑃𝑀𝑁 < 𝑇𝑑,𝑔 ≤ 𝑇𝑂𝑃𝑀𝑋, (2)

𝐷𝑑,𝑔,𝑔𝑡 =
𝑇𝑀𝐴𝑋 − 𝑇𝑑,𝑔

𝑇𝑀𝐴𝑋 − 𝑇𝑂𝑃𝑀𝑋
when 𝑇𝑂𝑃𝑀𝑋 < 𝑇𝑑,𝑔 ≤ 𝑇𝑀𝐴𝑋,

(3)

𝐷𝑑,𝑔,𝑔𝑡 = 0 for all other 𝑇𝑑, 𝑔, (4)

where𝑇𝑑,𝑔 is the average temperature of the given day (d) and grid
cell (g). A score of 1 represents a day and grid cell that ismaximally
temperature suitable for the given crop, and 0 not suitable. Then,
a sum of 𝐷𝑑,𝑔,𝑔𝑡 across the subsequent GTIME days is calculated
according to Equation (5):

𝑁𝑑,𝑔,𝑔𝑡 =
day=𝑑+𝐺𝑇𝐼𝑀𝐸∑

day=𝑑
𝐷𝑑,𝑔,𝑔𝑡 . (5)
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This sum, 𝑁𝑑,𝑔,𝑔𝑡, is the total number of suitable days within
GTIME. If 𝑁𝑑,𝑔,𝑔𝑡 is greater than or equal to GMIN, thar is, if at
least the minimum number of suitable days is achieved within
GTIME, then a suitability score, 𝑆𝑇 , dependent only on the given
GTIME, is assigned to the given day (d), grid cell (g) and GTIME
(gt) according to Equation (6):

𝑆𝑇,𝑑,𝑔,𝑔𝑡 = 100 ×
[
1 − 𝐺𝑇𝐼𝑀𝐸 − 𝐺𝑀𝐼𝑁

𝐺𝑀𝐴𝑋 − 𝐺𝑀𝐼𝑁

]
,

where 𝑁𝑑,𝑔,𝑔𝑡 ≥ 𝐺𝑀𝐼𝑁, else 𝑆𝑇,𝑑,𝑔,𝑔𝑡 = 0. (6)

The result of Equations (1) to (6) is that the fewer days it takes to
amassGMIN suitable days, the higher the temperature suitability
score (𝑆𝑇,𝑑,𝑔,𝑔𝑡). If every day within a window size of 𝐺𝑀𝐼𝑁 is
maximally suitable (Equation 2), 𝑆𝑇,𝑑,𝑔,𝑔𝑡 is 100 (as𝑁𝑑,𝑔,𝑔𝑡 = 𝐺𝑀𝐼𝑁

and 𝐺𝑇𝐼𝑀𝐸 = 𝐺𝑀𝐼𝑁 in Equation 6). If the window size has
to increase to 𝐺𝑀𝐴𝑋 before 𝑁𝑑,𝑔,𝑔𝑡 equals or exceeds 𝐺𝑀𝐼𝑁,
then 𝑆𝑇,𝑑,𝑔,𝑔𝑡 = 0 (as 𝑁𝑑,𝑔,𝑔𝑡 ≥ 𝐺𝑀𝐼𝑁 and 𝐺𝑇𝐼𝑀𝐸 = 𝐺𝑀𝐴𝑋 in
Equation 6). This represents the assumption that, all other consid-
erations aside, the shorter the feasible development time within
which a crop reaches its climatically constrained conditions for
growth, the greater its suitability to the local climate.

Heat stress and frost penalties are then applied to the suitability
score to account for temperature extremes. Daily minimum
temperatureswithin theGTIMEwindow are checked, and if there
is a daily-minimum temperature below KTMP, then 𝑆𝑇,𝑑,𝑔,𝑔𝑡 is
set to 0. A heat stress penalty is also applied by subtracting the
number of dayswithin theGTIMEwindowwith a dailymaximum
temperature above TMAX from 𝑆𝑇,𝑑,𝑔,𝑔𝑡 . It is the highest score out
of all the window sizes (GTIMEs) assessed that is taken forward
(Step 5):

𝑆𝑇,𝑑,𝑔 = max
𝑔𝑡∈[𝐺𝑀𝐼𝑁, 𝐺𝑀𝐴𝑋]

𝑆𝑇,𝑑,𝑔,𝑔𝑡, (7)

so a climate where the majority of days are temperature suitable
for a given crop (assessed by Equations 1–4) will score higher than
a climate with more variable temperature suitability.

2.5 Perennial Temperature Suitability Scoring
Method

The temperature score for a given GTIME (gt), each day (d), grid
square (g) and crop is calculated as follows:

First, the daily average temperature (TAVG) across GTIME is
calculated. Then, Equations (8) to (10) are used to calculate the
score, 𝑆𝑇,𝑑,𝑔,𝑔𝑡:

𝑆𝑇,𝑑,𝑔,𝑔𝑡 =
100

0.5 (𝑇𝑂𝑃𝑀𝑋 + 𝑇𝑂𝑃𝑀𝑁) − 𝑇𝑀𝐼𝑁

(
𝑇𝐴𝑉𝐺𝑑,𝑔,𝑔𝑡 − 𝑇𝑀𝐼𝑁

)
(8)

when 𝑇𝑀𝐼𝑁 < 𝑇𝐴𝑉𝐺𝑑,𝑔,𝑔𝑡 ≤ 0.5(𝑇𝑂𝑃𝑀𝑋 + 𝑇𝑂𝑃𝑀𝑁),

𝑆𝑇,𝑑,𝑔,𝑔𝑡 =
100

𝑇𝑀𝐴𝑋 − 0.5 (𝑇𝑂𝑃𝑀𝑋 + 𝑇𝑂𝑃𝑀𝑁)

(
𝑇𝑀𝐴𝑋 − 𝑇𝐴𝑉𝐺𝑑,𝑔,𝑔𝑡

)
(9)

when 𝑇𝑀𝐴𝑋 ≥ 𝑇𝐴𝑉𝐺𝑑,𝑔,𝑔𝑡 > 0.5(𝑇𝑂𝑃𝑀𝑋 + 𝑇𝑂𝑃𝑀𝑁),

𝑆𝑇,𝑑,𝑔,𝑔𝑡 = 0 for all other TAVGd, 𝑔, 𝑔𝑡. (10)

2.6 Precipitation Suitability Scoring Method

The precipitation score is calculated in a similar way. The pre-
cipitation total (PTOTd,g,gt) is calculated over the GTIME period:

𝑃𝑇𝑂𝑇𝑑,𝑔,𝑔𝑡 =
day=𝑑+𝐺𝑇𝐼𝑀𝐸∑

day=𝑑
𝑃𝑑,𝑔,𝑔𝑡 . (11)

Then, Equations (12) to (14) are used:

𝑆𝑃,𝑑,𝑔,𝑔𝑡 =
100

0.5 (𝑃𝑂𝑃𝑀𝑋 + 𝑃𝑂𝑃𝑀𝑁) − 𝑃𝑀𝐼𝑁

(
𝑃𝑇𝑂𝑇𝑑,𝑔,𝑔𝑡 − 𝑃𝑀𝐼𝑁

)
(12)

when 𝑃𝑀𝐼𝑁 < 𝑃𝑇𝑂𝑇𝑑,𝑔,𝑔𝑡 ≤ 0.5(𝑃𝑂𝑃𝑀𝑋 + 𝑃𝑂𝑃𝑀𝑁),

𝑆𝑃,𝑑,𝑔,𝑔𝑡 =
100

𝑃𝑀𝐴𝑋 − 0.5 (𝑃𝑂𝑃𝑀𝑋 + 𝑃𝑂𝑃𝑀𝑁)

(
𝑃𝑀𝐴𝑋 − 𝑃𝑇𝑂𝑇𝑑,𝑔,𝑔𝑡

)
(13)

when 𝑃𝑀𝐴𝑋 ≥ 𝑃𝑇𝑂𝑇𝑑,𝑔,𝑔𝑡 > 0.5(𝑃𝑂𝑃𝑀𝑋 + 𝑃𝑂𝑃𝑀𝑁),

𝑆𝑃,𝑑,𝑔,𝑔𝑡 = 0 for all other 𝑃𝑇𝑂𝑇𝑑, 𝑔, 𝑔𝑡. (14)

As for the temperature suitability score, it is the highest score out
of all the window sizes (GTIMEs) assessed that is taken forward
(Step 5):

𝑆𝑃,𝑑,𝑔 = max
𝑔𝑡∈[𝐺𝑀𝐼𝑁, 𝐺𝑀𝐴𝑋]

𝑆𝑃,𝑑,𝑔,𝑔𝑡. (15)

2.7 Handling Output Suitability Scores

The scores SP ,d ,g ,gt and ST ,d ,g ,gt are then aggregated over GTIME
(gt) and time (d). They are first aggregated by taking the
maximum score across GTIMEs (e.g. Equation 7), then the
scores for each hypothetical sowing day (d) are aggregated to
yearly scores by taking the 95th percentile over each year. Using
the 95th percentile ensures that the aggregated annual score
represents the best possible score derived from the optimal timing
of crop growth and harvest, without being overly sensitive to
anomalous single days with high scores (as would be the case
if the maximum was used). The independent calculation for
temperature and precipitation suitability allows us to examine the
relative contribution of changes in temperature and precipitation,
but a final, unitless combined climatic suitability score for a given
grid square was also derived from the minimum of the two scores
at each grid square (g), as the lowest score is likely to be the
limiting factor in the crop’s growth.

Although our analysis focusses on climatic factors, we also
wished to ensure that the suitability sores reflected other major
abiotic restrictions on the feasibility of potential future crops—
namely soils and landscape structure. Soil masking was applied
to the combined temperature and precipitation suitability scores
according to theTEXT parameter, using BritishGeological Survey
Soil ParentMaterialModelmapped data.Masking for agricultural
land was also applied for all crops using the UKCEH 1 km Land-
Cover Map 2015 (Rowland et al. 2017). In the UK situation, the
likelihood of growing crops on land which is currently not used
for crops of any sort (including pastures) is likely to be unfeasible,
given that over 70% of the UK’s land is already farmed (Rowland
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et al. 2017) and there is strong competitionwith other landuses for
the remainder (Smith et al. 2023). We applied masking at the end
of our processing chain, so that our methods could be applied in
situations where information about these constraints was either
lacking or unnecessary.

Our model thus produces as its final output a 1-km grid for
each crop, mapping a unitless climatic suitability score ranging
between 0 and 100. A value of zero indicates the required climatic
parameters are never met within even the minimum growing
period required by the crop, whilst a value of 100 indicates that
all climatic parameters are met throughout the growing period
whenever the crop is planted. We chose to present a continuous
score rather than a binary score of suitable versus unsuitable,
as this better reflects the potential uncertainties associated with
our approach and interpretation is less strongly sensitive to how
accurately the values in the EcoCrop database represent the
climatic constraints on a crop and all its varieties, cultivars and
production systems.

Because themodel produces annual outputs, data can be analysed
either in terms of change over time or with reference to particular
levels of warming. We chose the latter approach because it
renders the output more agnostic to the particular RCP used
to produce the climate projections and because we focus solely
on the climatic impacts whilst not accounting for other factors
with a known temporal component (e.g. land-use change, CO2
concentration). To do this, we identified the range of years for
each ensemble member within which the average global tem-
perature increases by the required amount, with reference to the
baseline condition (1980–2000), as described above and detailed
in Arnell et al. (2021). We then averaged the output combined
climatic suitability score across the time periods to obtain our
suitability indices for +2◦C and +4◦C warming levels and then
took the mean across the four ensemble members. Variability in
the ensemble members can be seen in Figures S2 and S3.

2.8 Summarising Changes Across Crops

We then explored change in suitability scores between the
baseline, +2◦C and +4◦C scenarios for each crop. We sum-
marised median change across the entire United Kingdom and
per region (regions defined by aggregated EU Nomenclature of
Territorial Units for Statistics Level 1). Regions were aggregated
as follows: northwest = Northern Ireland, North West England;
northeast= Scotland, Yorkshire and theHumber,NorthEast Eng-
land; southeast = East Midlands, London, South East England,
Eastern England; southwest=Wales, West Midlands, SouthWest
England. To map aggregate change in suitability across crops, for
each 1-km cell, we calculated the median difference between the
suitability score under a given time slice and the baseline, across
all crops. All spatial analyses were performed in R (R Core Team
2022), making use of the terra (Hijmans et al. 2022) and ncdf4
(Pierce 2019) packages.

2.9 Model Validation

A full validation of our model is challenging, as no empirical
data exist for future time periods. Even for the baseline period,

comparing our modelled outputs to observed measures of crop
production in the United Kingdom is challenging, as data on
crop yields at sub-national scales are not published by the UK
government beyond a few cereal and oilseed crops. Using data
on crop areas, which can be obtained from earth observation
data (e.g. Upcott et al. 2023), has the issue that current cropping
patterns in the United Kingdom do not well represent climatic
suitability but instead the constraints of land-use history, supply
chains, yield focus, and agricultural infrastructure. An alternative
approach that avoids this issue is to compare our modelled
outputs to those using process-based models of crop yield. We
performed this qualitatively duringmodel development to ensure
that our results showed similar temporal and spatial patterns
to those of published results from statistical or process-based
models applied to crops in the United Kingdom (e.g. Harrison
and Butterfield 1996; Hayman et al. 2024; Holloway and Ilbery
1997; Kenny and Harrison 1992). We also performed a post
hoc quantitative comparison of our outputs for the baseline
period against the Global Gridded Crop Model Intercomparison
(GGCMI) dataset of the Agricultural Model Intercomparison and
Improvement Project (AgMIP), one of the few published datasets
derived from a consistent run of the same crop models at fine
(subnational) resolution, for a reasonable diversity of crops. We
took data on 11 crops from theWOFOSTmodel runs of the AgMIP
GGCMI dataset with direct equivalence to those in EcoCrop and
compared our suitability score against the modelled yield as a
ratio of median global yield (to standardise all crops onto the
same score despite their differing expected yields). We performed
this comparison for the centroids of all 0.5-arc-degree cells in
the AgMIP GGCMI data that overlapped our EcoCrop-derived
maps (to compare the models’ prediction of per-crop spatial
patterns within the United Kingdom), as well as comparing the
UKmedian value across crops (to compare themodels’ prediction
of relative suitability across crops). Correlations between values
from the two models were assessed using Pearson’s r.

3 Results

3.1 Exploring the Fate of Current UK Crops
Under Climate Change

By translating annual values to time slices corresponding to levels
of average global warming (Arnell et al. 2021), we compared
changes in suitability scores under +2◦C and +4◦C warming
scenarios as well as spatial patterns within these scenarios (maps
for example crops in Figure S1). Most crops showed spatial vari-
ation in suitability, both under the baseline period (1980–2000)
and under warming scenarios, reflecting climatic differences
within the United Kingdom (Figure S2).We summarised the crop
suitability scores for the baseline and warming levels by regions,
formed from aggregated EUNomenclature of Territorial Units for
Statistics Level 1. This captures spatial variation in suitability (and
change thereof) and differentiates crops showing uniform versus
contrasting spatial patterns.

Under a +2◦C scenario, most of the UK’s current major crops
(defined as crops contributing to the cumulative 90% of agri-
cultural land in the United Kingdom, from Defra statistics)
show slight to substantial increases in suitability (Table 1). These
increases are most marked for the northeast and northwest and
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TABLE 1 Median change per region in modelled suitability scores for 13 UK major crops, for +2◦C and +4◦C warming scenarios.

+2◦C +4◦C

Crop SW NW NE SE Crop SW NW NE SE

Maize 14.65 43.35 51.84 9.55 Maize 17.77 50.52 62.03 8.23
Broad bean 24.39 49.00 44.42 9.90 Broad bean 23.71 61.35 59.10 6.35
Oats 8.45 19.23 26.35 4.06 Oats 1.16 24.48 34.23 −1.94
Potato 12.08 23.32 21.61 4.68 Potato 12.29 30.61 31.42 9.48
Sugarbeet 6.71 9.03 13.52 3.94 Pear 21.00 18.87 19.16 20.48
Wheat 0.19 6.39 10.90 1.19 Apple 5.32 18.55 12.71 −0.35
Pear 9.29 8.19 8.48 9.23 Sugarbeet 8.65 15.65 15.68 10.90
Apple 5.10 9.10 7.23 1.23 Raspberry 7.81 12.13 3.94 5.55
Barley 1.29 3.84 6.39 1.71 Wheat −5.90 5.45 11.00 0.39
Raspberry 4.00 6.06 2.97 2.19 Peas 8.39 7.29 2.97 5.19
Onion −0.23 0.61 3.97 1.06 Barley 1.03 4.39 7.84 3.55
Peas 3.65 3.10 1.90 1.77 Onion −1.90 0.55 3.65 1.84
Strawberry −1.15 −0.29 3.00 1.31 Strawberry −7.23 −4.84 −0.40 0.19

Note: Rows are ordered in descending order of maximum regional change per scenario. Cells shaded on a diverging colour ramp, with grey indicating values near
zero, reds indicating negative values and greens indicating positive values.

for crops like maize (Zea mays) and broad beans (Vicia faba)
which are grown extensively in considerably hotter and drier
climates than of the United Kingdom. Only onions (Allium cepa)
and strawberries (Fragaria chilensis/Fragaria virginiana) show
regional decreases at +2◦C, and these are potentially offset by
increases elsewhere. Even under +4◦C of warming, no current
major crops show uniform decreases in suitability across all UK
regions (although strawberries come close, showing declines in
three of the four regions). However, the north–south contrast
becomes more marked, and regional decreases or plateaus in
suitability (i.e. little to no change) are apparent for more crops,
including major cereals wheat (Triticum aestivum) and oats
(Avena sativa).

3.2 Horizon Scanning for Alternative Crop
Opportunities

When identifying potential alternative crops for the future, it is
important to consider both the absolute score and the level of
change. For example, a crop showing a moderate increase to a
high suitability (say, an increase from 70 to 80) is likely to be
a more viable option (and a lower risk of adoption to farmers)
than one showing a larger increase from lower suitability (from
0 to 20). We therefore filtered our results for the 154 crops not
classified as the UK’s major crops by both the absolute score and
the level of change in suitability (Table 2).

Many crops showed substantial increases under climate change
that achieved high absolute scores. Amongst the greatest
increases under climate change, especially under the +2◦C
scenario (Table 2), were those shown by crops that are currently
only grown within a limited area of the United Kingdom (e.g.
chickpea [Cicer arietinum], sunflower [Helianthus annuus], grape
[Vitis vinifera]). Whilst limited areas at present may be due to

several reasons, including restricted demand or access to supply
chains, limitations can also reflect where climate is currently only
suitable across part of theUnitedKingdom, and thus, a northward
expansion under climate change is highly likely. A few such crops
do not appear in Table 2 (e.g. quinoa [Chenopodium quinoa],
lentils [Lens culinaris]), because their baseline suitability is
already sufficiently high that regional increases do not place them
in the top 30 (Appendix S2). Substantial increases in suitability
were also evident in many crops that are currently not grown
commercially in the United Kingdom, especially under the +4◦C
scenario. These include crops currently grown in Mediterranean
Europe (e.g. Citrus species, durum wheat [Triticum durum], okra
[Abelmoschus esculentus]) and others more associated with arid
(e.g. cow pea [Vigna unguiculata]) or subtropical (e.g. buffalo
bean [Mucuna pruriens]) climates in other parts of the world.

Themost straightforward route for adoption of new crops is likely
to be where they can be added to or substitute for crops in the
current rotation of a particular agricultural system, such that the
same agricultural methods, equipment and knowledge can be
used (e.g. the replacement of commonwheat with durumwheat).
Adaptation is likely to be considerably harder where crop types
are different (e.g. annuals to perennials, cereals to root crops).
Figure 1 shows that the crops showing greatest increases under
both warming scenarios include many arable crops (legumes,
cereals and oilseeds) but also several fruit crops (e.g. Citrus spp.,
pomegranate [Punica granatum]) which may be viable additions
or substitutions to current orchard systems (Figure 1).

3.3 Mapping Regional Opportunities and
Challenges

Mapping the median change across all crops (Figure 2) shows
that both global warming scenarios result in a net increase in
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TABLE 2 Median change per region in modelled suitability scores for potential future crops, for +2◦C and +4◦C global warming scenarios.

+2◦C +4◦C

Crop SW NW NE SE Crop SW NW NE SE

Sorghum 42.48 9.40 3.45 46.97 Sorghum 74.45 65.55 59.81 71.13
Andean lupin 29.97 3.97 0.29 35.68 Safflower 64.71 60.00 49.65 51.45
Safflower 35.39 12.61 3.61 35.03 Durum wheat 52.00 63.06 44.71 37.77
Wild strawberry 21.45 34.29 27.74 14.29 Okra 42.19 63.00 39.32 19.00
Durum wheat 34.16 19.52 11.03 24.58 Andean lupin 62.55 57.24 36.23 59.06
Oca 21.90 32.32 18.10 10.94 Cow pea 61.52 42.03 27.55 41.32
Horseradish 28.00 30.98 16.39 18.03 Horseradish 22.45 53.84 42.55 9.77
Okra 29.97 30.94 18.81 14.39 Oca 21.84 51.35 39.29 11.26
Sesame 14.13 25.87 22.19 4.23 Wild strawberry 13.10 48.87 43.39 6.84
Chickpea 7.13 18.81 17.81 3.29 Soy bean 35.58 44.23 17.61 10.84
Algerian oat 10.77 16.10 18.52 6.16 Shallot 43.65 36.61 12.84 16.94
Basil 4.48 17.87 16.71 2.29 Tepary bean 26.94 40.16 21.26 8.77
Hop 16.19 16.19 16.87 13.68 Buffalo bean 39.87 34.81 18.39 23.65
Caper 15.71 15.29 15.29 12.71 Sesame 20.84 38.23 32.74 9.58
Black mulberry 15.26 14.45 15.10 12.13 Cherimoya 33.19 34.65 25.06 15.32
Beetroot 6.29 14.52 4.74 −1.52 Caper 30.23 34.42 34.39 22.26
Dill 4.27 14.37 11.65 1.61 Hop 25.23 34.42 34.06 20.06
Parsnip 2.55 11.35 14.26 2.77 Black mulberry 31.32 33.48 32.94 19.48
American pawpaw 12.19 14.13 10.87 3.77 Sweet weed 31.65 33.10 24.87 14.77
Hemp 5.48 12.77 13.74 2.81 Mexican avocado 22.55 31.65 26.68 14.52
Bur-reed 10.39 13.61 9.29 6.19 Algerian oat 16.42 26.55 29.29 9.13
Linseed 6.16 12.45 13.39 3.26 Feijoa 26.52 28.61 28.74 19.29
Feijoa 13.19 12.81 12.81 11.06 American pawpaw 17.32 28.65 20.48 7.16
Tef 7.00 12.81 11.06 2.45 Bur-reed 14.19 27.71 15.55 8.52
Salsify −8.35 5.03 12.06 −3.48 Grape 26.03 24.60 25.32 22.71
Sunflower 4.74 9.35 12.03 3.00 Chickpea 13.45 25.90 21.94 8.16
Grape 11.61 10.94 11.58 10.71 Quince 23.81 25.06 20.00 14.45
Rye 2.81 8.23 11.55 1.26 Crab apple 20.32 24.03 21.42 6.74
Crab apple 9.55 11.45 11.45 5.39 Bitter orange 23.81 22.52 22.42 19.77
Amaranth 1.32 5.65 11.35 0.84 Mandarin 22.29 21.87 22.81 14.97

Note: Rows are ordered in descending order of maximum regional change per scenario. Crops shown are the top 30 of those achieving a score of at least 40 in at
least one region and showing an increase of at least 10 in at least one region. These thresholds are arbitrary, and the full list of regional median scores and changes
can be found in Appendix S2. Cells shaded on a diverging colour ramp, with grey indicating values near zero, reds indicating negative values and greens indicating
positive values.

suitability across most of the United Kingdom in comparison
with the 1980–2000 baseline. Decreases in suitability are largely
equalled (+2◦C) or outweighed (+4◦C) by increases. This is
explained by the far larger number of potential future crops
showing increases in suitability than current crops showing
decreases.

Figure 2 shows that the areas with the greatest overall increase
in median suitability (i.e. the greatest number of crops showing
at least this level of increase) lie mostly in southwest England,
Wales and Scotland, whilst the southeast of England shows the

lowest median change (particularly under +4◦C). This suggests
that there are potentially fewer options for alternative crops in
the latter region, with those crops which increase in suitability in
these areas doing so to a lesser extent than in the north and west
of the United Kingdom.

3.4 Validation Results

Comparing our suitability scores with the yield predictions from
the WOFOST AgMIP GGCMI data for individual crops (Table 3)

8 of 15 Climate Resilience and Sustainability, 2025

 26924587, 2025, 1, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/cli2.70007 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [27/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 1 Scatterplot of regional variation (minimum regional median change vs. maximum regional median change) in ensemble mean
suitability score change from the baseline (1980–2000) under +2◦C or +4◦C global warming scenarios for all crops shown in Tables 1 and 2. Points
and labels are coloured by their associated broad crop type.

showed correlation coefficients between 0.07 (barley) and 0.83
(maize). For crops that are currently unsuited to the UK climate,
or show only very limited suitability (e.g. groundnut, rice, soy),
one or both datasets predicted zero scores across most of the
United Kingdom, so a meaningful correlation was not possible
to calculate.

Sunflowers showed a non-significant correlation but also had the
lowest viable sample size of points with data as, in this case, the
AgMIP GGCMI data show a sharp cutoff to zero values outside
the south east of England. Barley also showed a non-significant
correlation, but this may be because of its relatively uniform
suitability across the United Kingdom in both datasets (i.e. lowest
range of values in Table 3).

For UK median scores, there was a strong positive relationship
(r= 0.82, p= 0.02, n= 11) between the twomodels, with crops that

score highly under our EcoCrop model being predicted to have
high yields by AgMIP GGCMI (Figure 3).

4 Discussion

4.1 Climate Change Opportunities and
Challenges for UK Agriculture

Our horizon scan shows the potential impacts of climate change
on the UK’s suitability for a wide range of crops. At first glance,
climate change would appear to bring many opportunities to UK
agriculture. We find that none of the UK’s current major crops
showed UK-wide declines in suitability, under either warming
scenario. There are also substantial increases in suitability for
many crops not currently grown widely in the United Kingdom,
which might be feasible to incorporate into existing agricultural
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FIGURE 2 Median change in suitability across all crops relative to the 1980–2000 baseline, under+2◦Cand+4◦Cwarming scenarios. Areas shaded
in grey represent 1-km cells with no agricultural land.

TABLE 3 Correlations between EcoCrop suitability scores and AgMIP GGCMI yields for a grid of 0.5-arc-degree cell centroids across the United
Kingdom.

Correlations Range

Crop r p N EcoCrop suitability AgMIP GGCMI yield

Barley 0.07 0.67 37 66.39–92.39 3.07–6.6
Common bean 0.34 0.04 37 34.35–92.16 0.74–4.03
Groundnut — — — — —
Maize 0.83 <0.01 43 10.45–87.45 0.86–7.6
Potato 0.41 0.02 34 35.48–77.55 4.58–15.3
Rice — — — — —
Rye 0.22 0.15 43 55.74–90.45 1.02–8.16
Soy — — — — —
Sunflower 0.12 0.55 27 37.1–80.26 1.97–2.62
Wheat 0.37 0.02 37 54.1–91.84 4.37–10.08
Sorghum — — — — —

Note: Correlations calculated via Pearson’s r. Sample sizes vary as some crops returned no data in the AgMIP GGCMI data; dashes indicate where nonzero values
were insufficient for correlation. Also showed are the ranges of the values used to calculate these correlations (note these are not the full ranges of the entire
dataset).

systems. This brings opportunities to diversify UK cropping sys-
tems to increase climate resilience and bring other environmental
benefits, as increasing crop heterogeneity favours biodiversity
and associated ecosystem service delivery (Altieri et al. 2015;
Hufnagel, Reckling, and Ewert 2020; Vernooy 2022). Crops that
showed increased suitability under climate change came from a
broad range of crop types, includingmany legumes (e.g. chickpea,
cow pea, soy, broad bean). Legumes are important as protein
sources allowing dietary shifts away from livestock (Kim et al.
2020; Semba et al. 2021) and reducing reliance on fertilisers
through nitrogen fixation (Palmero et al. 2022). Therefore, again,

adopting these crops could bring co-benefits alongside climate
resilience.

However, many crops showed strong spatial variation in suitabil-
ity change, with some regions experiencing increased suitability
while others exhibited declines. These included some of the UK’s
major crops, with wheat, oats, apples, onions and strawberries all
showing regional declines under the+4◦C scenario. Spatial varia-
tion is to be expected, given the baseline of strong latitudinal and
longitudinal gradients in precipitation and temperature across
the United Kingdom, and that change in precipitation and (to
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FIGURE 3 Comparison of UKmedian scores from EcoCrop against
UK median yields as a ratio of the global median from AgMIP GGCMI.

a lesser extent) temperature is also spatially variable (Robinson
et al. 2023) (Figure S2). The challenges of climate change to
current crops are exacerbated by the fact that, where crops did
show regional declines, these were often in southeast England,
which currently contains the most extensive and productive
arable land and most diverse range of crop types (Upcott et al.
2023). Whilst production of major crops might simply shift to
match changing suitability (Sloat et al. 2020), there are limits
to this method of adaptation. The areas of the United Kingdom
showing greatest increases in average suitability across crops (e.g.
the southwest and Scottish borders) are constrained by factors
including small field sizes, variable topography and isolation from
much of the current infrastructure of crop processing and supply
chains, which limit the extent to which production ofmajor crops
is likely to shift to these areas (Millward and Robinson 1971).
More localised supply chains (Berti 2020; Maye and Ilbery 2006)
and the drive to reduce greenhouse gas emissions from the food
processing sector by reducing transport miles and increasing the
number of local processors supported by on-site renewable energy
production (Clairand et al. 2020) may help bypass some of these
constraints but will not escape them altogether.

Switching crops within current highly agricultural areas also
faces challenges. Whilst cereal crops that showed declines in
the southeast (e.g. common wheat, oats) often showed alterna-
tives with increasing suitability in the same region (e.g. durum
wheat, Algerian oats [Avena byzantina]), the average change
in suitability is lowest in this region, suggesting that overall
options are more limited. Indeed, there were fewer alternatives
for soft fruits and vegetables, which are important micronutrient
sources (Keatinge et al. 2010). There are therefore likely to be
considerable challenges in adapting UK agricultural systems to
realise the potential opportunities that climate change provides
for alternative crops and crop diversification. Overcoming these
challenges is likely to require careful balancing of the relative
benefits of crop switching versus other routes towards increased
climate resilience. These may include changing crop varieties
or breeding of greater resilience into existing crops (Pironon
et al. 2019) or the adoption of novel agricultural systems (such
as paludiculture or vertical farming) that may be more resilient
to climate change but require fundamental changes to the way
land is used and managed (Rhymes et al. 2023). Indeed, region-
specific pathways of climate change adaptation for crops must
be framed within the wider challenge of adapting land use as

a whole. A potential use of our suitability maps is thus as a
parameter in spatially explicit modelling of competing land uses
(e.g. forestry, urban development) to explore scenarios that can
resolve conflicts by ensuring that land-use change is allocated to
the most suitable location under climate change and minimising
environmental and socioeconomic trade-off (e.g. Smith et al.
2023).

4.2 Limitations of the Horizon Scanning
Approach

Our suitability scores assume that crops are grown under rainfed,
open-field conditions. This is reflected in the low baseline scores
for a few crops that are currently grown in the United Kingdom
but do not form a substantial percentage of the cropped area (e.g.
lettuce [Lactuca sativa], pumpkin [Cucurbita maxima]), because
climatic conditions are in factmodified by a variety of agricultural
practices for some or all of the crop life cycle (e.g. irrigation,
protection, transplanting), all of which aremanagementmethods
that ourmodel does not directly consider (althoughmore detailed
exploration of the balance between which of the temperature and
precipitation suitable scores is the more limiting may provide
some indication of viability of management as a route toward
adaptation). Whilst these practices allow viable production in
otherwise ‘unsuitable’ climates, they are only worthwhile where
incentives outweigh costs. Our results indicate the climatic
‘envelope’ within which such actions can modify conditions.
Thus, crops that show declines in suitability but which are
grown under modified conditions (e.g. strawberries, over 80% of
which are grown under cover in the United Kingdom [Calleja,
Ilbery, and Mills 2012]) may still become more challenging to
produce, because the climatic constraints that must be overcome
by management are larger. This is exacerbated by the potential
for climate change to increase the costs of agricultural practices,
both economically (e.g. rising costs of agricultural energy and
materials [Zilberman et al. 2008]) and environmentally (e.g. the
need to reduce energy consumption and implement nature-based
solutions [Keesstra et al. 2018; Seddon et al. 2020]).

Many factors beyond climatic suitability also limit the viability
and uptake of alternative crops. Information is also required on
the associated agronomy, pest and disease risks and predicted
economic returns (Knight et al. 2022), as well as on the influence
of climate and weather on these. A potential issue is the fraction
of the potential alternative crops which may be insect pollinated,
in the context of projections of large global declines in insect
pollinators (Warren et al. 2018) above 2◦C warming. This could
act as a major constraint on the feasibility of switching to these
crops.

Equally, it is important that environmental impacts of new
crops are adequately explored. Whilst our results focus on broad
climatic constraints alone, these form the background against
which other factors interact to shape current and future cropping
decisions. Our approach, in common with others based on the
EcoCrop database (Gardner, Gaston, and Maclean 2021; Heinz,
Galetti, and Holzkämper 2024), cannot model the effects of
CO2 fertilisation, the complexities of soil water storage or the
impact of short-lived weather events (e.g. convection driven
summer storms) that are less well-simulated by the climate
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projections (Robinson et al. 2023), but which may ultimately be
more restrictive on crop viability than long-term average climatic
shifts. However, by using daily as opposed to monthly data,
we are able to better estimate the potential impacts of those
extremes of temperature and precipitation that are captured by
the input climate projections. Our results, as with any horizon
scan (Gardner, Gaston, and Maclean 2021), are thus intended
to help prioritise candidates for further investigation into these
issues, for example by construction, parametrisation and appli-
cation of more detailed, process-based models of crop yield.
Early indications of where to focus such efforts are potentially
valuable. For example, crops identified as becomingmore suitable
may require adaptation (by traditional plant breeding or by new
genetic technologies) to ensure that they can be grown at scale
in the United Kingdom (Eshed and Lippman 2019; Rial-Lovera,
Davies, and Cannon 2017; Tadele 2019). Since plant breeding
programmes are expensive and long term, our results can help to
identify current crops requiring breeding programmes to counter
falling suitability or new candidate crops requiring breeding to
increase agronomic viability (Pironon et al. 2019).

Ourmodelling approach is simple in comparison to the statistical
or process-based approaches frequently used to assess single crop
responses to climate change (Ciscar, Fisher-Vanden, and Lobell
2018; Rosenzweig et al. 2014). Where statistical or process-based
models have been applied to potential future crops for the United
Kingdom, our approach does tend to produce similar spatial
patterns of predicted change in suitability. These include the
initial rise under moderate warming for wheat, followed by a
strong north–south split under increased warming (Harrison and
Butterfield 1996; Hayman et al. 2024), as well as the widespread
increases seen for grapes, sunflower and commonbean. Although
the corelation of our score to yield produced by AgMIP GGCMI
varied between crops in terms of spatial pattens within the
United Kingdom, all correlation coefficients were positive, and
the correlation betweenUKmedians across crops was significant.
This suggests that even where our approach does not reproduce
the exact spatial patterns of modelled crop yield, it is likely to be
suitable for the relative ranking of crops over larger spatial units,
as we present here. Where other studies have used the existing
EcoCrop model as developed by Hijmans et al. (2001) or Hijmans
(2021), the crops identified as showing the greatest increases in
suitability in the United Kingdom are broadly similar to the
shortlists we present, including lupin, flax, sunflower and hemp
(Gardner, Gaston, and Maclean 2021), as well as broad bean,
lentil, chickpeas, cow pea and soy bean (Manners, Varela-Ortega,
and van Etten 2020).

More complexmodels also have limitations for horizon scanning.
Statistical approaches require empirical observations on crop
parameters and climatic drivers at relevant spatial resolutions,
which are often unavailable for crops not currently grown within
the area of interest. Process-based models require development
and local parameterisation for each crop of interest, which is chal-
lenging across large numbers of crops. Results are often varied
depending on which model is used (Asseng et al. 2013; Jagermeyr
et al. 2021) and the assumptions made when parametrising
complex processes such as CO2 fertilisation (Rezaei et al. 2023).
Our approach allows us to use a single model to scope relative
climate change impacts across a wide range of crops without
historic observations, in line with the growing use of such

approaches (Aramburu Merlos and Hijmans 2022; Chemura,
Gleixner, and Gornott 2024; Heinz, Galetti, and Holzkämper
2024; Manners, Varela-Ortega, and van Etten 2020; Pironon et al.
2019). Our horizon scan can then be used to prioritise crops
for more detailed investigation via more complex models or
experimentation, which can explore areas that our modelling
approach does not address. Even without further modelling,
our 1-km gridded outputs can be overlain with other datasets
to identify spatial conflicts and trade-offs with other ecosystem
services or climate risks (e.g. Arnell et al. 2021).

4.3 Benefits of National Scale Horizon Scanning
Approaches

Climate change impacts on agricultural production are already
being felt (Ray et al. 2019; Sloat et al. 2020). Adaptation strategies
are being developed across agricultural systems, ranging from the
actions of individual farmers to the design of national policies.
In the United Kingdom, farmers are relatively able and willing
to adopt new crops, with 33%–39% of arable farmers planning
to increase the range of crops they grow in the immediate
future (Defra 2019). Indeed, several of the alternative crops
showing increased suitability under both warming levels have
had their first commercial UK harvests in recent years (e.g. soy,
chickpeas, common bean [Phaseolus vulgaris]). Others are not
yet grown in the United Kingdom but are grown elsewhere.
Such ‘orphan’, ‘neglected’ or ‘underutilised’ crops (Knight et al.
2022; Tadele 2019) have already been identified as important
potential sources of climate-resilient alternatives. However, if
adopting new crops is to succeed as an adaptation strategy, it
is vital that it is based on robust data at scales relevant to
the agricultural sector. Although assessments of climate impacts
on crops are often presented at global scale (Agnolucci et al.
2020; Aramburu Merlos and Hijmans 2022; Jagermeyr et al.
2021; Ray et al. 2019; Rosenzweig et al. 2014; Zabel, Putzen-
lechner, and Mauser 2014; Zhao et al. 2017), and the United
Kingdom is not a ‘breadbasket’ in terms of the global crop supply,
there are several reasons why horizon scanning exercises are
worth performing at the national/sub-national scales presented
here.

Firstly, these are the scales at which much agricultural policy
is formulated, and within which agricultural systems are likely
to be governed by similar market forces, land-use histories,
environmental constraints and agronomic practices. Secondly,
crops which are staples in an individual country may be excluded
from global analyses if they form a small part of the global
agricultural system (Pironon et al. 2019; Tadele 2019). Thirdly,
reliance on global breadbaskets is increasingly precarious under
climate change (Gaupp et al. 2019; Gaupp et al. 2020), so it
is important for individual nations to be able to plan their
agricultural futures to increase their resilience, and trends within
individual countries may contrast completely with those at global
scales. For example, our result of increasing suitability for maize
in the United Kingdom runs counter to predictions for decreased
maize yields under climate change in the regions that currently
produce most of the global supply (Jagermeyr et al. 2021; Rezaei
et al. 2023). Finally, as demonstrated by our results, countries are
not uniform spatial entities and can show considerable spatial
variation in the trajectories and impacts of climate change. As
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competition for land becomesmore intense under climate change
(Harvey and Pilgrim 2011; Lamb et al. 2016), spatial data enabling
agriculture to target the most productive crops and areas become
increasingly valuable. Indeed, one of the factors currently limiting
uptake of new crops is the lack of accessible information on
climatic suitability of crops for particular areas (Knight et al.
2022; Rial-Lovera, Davies, and Cannon 2017). Understanding
spatial variation in climate change impacts at within-nation
scales is thus key to successful adaptation of agricultural systems.
Without data on which to base plans for adaptation by alternative
crops, agricultural systems are likely to be ‘locked in’ to current
crops (Oliver et al. 2018), with adaptations failing to keep pace
with climate change (Sloat et al. 2020) or relying on practices
which exacerbate climate-driven issues, for example irrigation
increasing water scarcity (Grafton et al. 2018).

In conclusion, we have demonstrated a rapid and flexible way of
horizon scanning climatic suitability for multiple crops for the
United Kingdom, which is readily transferable to other countries
and situations. Our results illustrate the value of this approach
as a potentially valuable addition to national assessments, both
for shortlisting individual crops for further investigation and
for providing a systems-level overview of the opportunities
and challenges in adapting national crop systems for climate
resilience.
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