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S U M M A R Y 

Deep learning (DL) phase picking models hav e prov en ef fecti ve in processing large volumes of 
seismic data, including successfully detecting earthquakes missed by other standard detection 

methods. Despite their success, the applicability of existing extensi vel y trained DL models 
to high-frequency borehole data sets is currently unclear. In this study, we compare four 
established models [Generalized Seismic Phase Detection (GPD), U-GPD, PhaseNet and 

EQTransformer] trained on regional earthquakes recorded at surface stations (100 Hz) in 

terms of their picking performance on high-frequency borehole data (2000 Hz) from the 
Preston New Road (PNR) unconventional shale gas site, in the United Kingdom (UK). The 
PNR-1z data set, which we use as a benchmark, consists of continuously recorded waveforms 
containing over 38 000 seismic events previously catalogued, ranging in magnitudes from 

−2.8 to 1.1. Remarkably, all four DL models can detect induced seismicity in high-frequency 

borehole data and two might satisfy the monitoring requirements of some users without any 

modifications. In particular, PhaseNet and U-GPD demonstrate exceptional recall rates of 95 

and 76.6 per cent, respecti vel y, and detect a substantial number of ne w e v ents (ov er 15 800 

and 8300 e vents, respecti vel y). PhaseNet’s success might be attributed to its exposure to 

more e xtensiv e and div erse instrument data set during training, as well as its relativ ely small 
model size, which might mitigate overfitting to its training set. U-GPD outperforms PhaseNet 
during periods of high seismic rates due to its smaller window size (400 samples compared 

to PhaseNet’s 3000-sample window). These models start missing events below M w 

−0.5, 
suggesting that the models could benefit from additional training with microseismic data- 
sets. Nonetheless, PhaseNet may satisfy some users’ monitoring requirements without further 
modification, detecting over 52 000 events at PNR. This suggests that DL models can provide 
efficient solutions to the big data challenge of downhole monitoring of hydraulic-fracturing 

induced seismicity as well as improved risk mitigation strategies at unconventional exploration 

sites. 

Key words: Machine learning; Neural networks, fuzzy logic; Downhole methods; Computa- 
tional seismology; Earthquake monitoring and test-ban treaty v erificationv erification; Induced 

seismicity. 
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 I N T RO D U C T I O N  

ydraulic-fracturing induced seismicity (HFIS) can pose serious
isks to a country’s infrastructure, energy security and communities
Li et al. 2019 ; Atkinson et al. 2020 ; Schultz et al. 2020 ). Examples
f significant HFIS include the 2011 moment magnitude M w 4.8
agle Ford earthquake in Texas, United States (Frohlich & Brunt
013 ), the 2016 M w 4.1 Fox Creek earthquake in Alberta, Canada
Schultz et al. 2017 ) and the 2017 M w 4.7 Changning earthquake
n South Sichuan, China (Lei et al. 2017 ). The risks extend to
 aste w ater disposal sites (Chen et al. 2017 ), enhanced geothermal
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ites (Grigoli et al. 2018 ) and potentially carbon capture and storage
ites (Verdon & Stork 2016 ). 

Microseismic monitoring of HFIS by operators is critical for
otential risk mitigation measures and is a legal requirement in
any countries (e.g. Wong et al. 2015 ; Kao et al. 2016 ; Clarke

t al. 2019 ). In addition, high-resolution data sets of small events
an lead to a better understanding, modelling and forecasting of the
echanisms and hazards of HFIS (e.g. Eyre et al. 2019 ; Kettlety
 Verdon 2021 ; Mancini et al. 2022 ). To that end, arrays of high-

requency geophones installed in boreholes close to stimulation
ells are particularly useful for detecting and characterizing the
oyal Astronomical Society. This is an Open Access 
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quickly attenuating high-frequency content of small events (Klinger 
& Werner 2022 ; Holmgren et al. 2023 ). 

Ho wever , borehole arrays with high sampling frequencies can 
generate substantial volumes of data, as monitoring arrays may 
include tens to hundreds of seismic stations. Examples of large 
borehole data sets include the Tony Creek Dual Microseismic Ex- 
periment (ToC2ME) data set in Fox Creek, Alberta (Eaton et al. 
2018 ), the Horn River basin data set in British Columbia, Canada 
(Verdon & Budge 2018 ) and the Frontier Obser vator y for Re- 
search in Geothermal Energy (FORGE) data set in Utah, United 
States (Shi et al. 2022 ). Processing large data sets requires sig- 
nificant time and costly computational resources, posing an is- 
sue in generating event catalogues that are crucial for inform- 
ing our understanding of subsurface acti vities, especiall y in real 
time. 

Deep learning (DL) phase pickers offer a solution to efficiently 
picking seismic events in large volumes of continuous seismic 
data. Perol et al. ( 2018 ), Ross et al. ( 2018 ), Zhu & Beroza ( 2019 )
and Mousavi et al. ( 2020 ) demonstrated that DL models can pick 
e vents more ef ficientl y than standard approaches and human ana- 
l ysts. Specificall y, DL neural networks such as Generalized Seismic 
Phase Detection (GPD, Ross et al. 2018 ), U-GPD (Lapins et al. 
2021 ), EQT ransformer (Mousa vi et al. 2020 ) and PhaseNet (Zhu 
& Beroza 2019 ) have undergone extensive training to proficiently 
pick seismic phases within large data sets. Moreover, DL phase pick- 
ers have detected ne w e v ents ov erlooked by conv entional methods, 
thereby contributing, for instance, to uncovering the complexities 
of fault structures (Tan et al. 2021 ) and earthquake swarm dynam- 
ics, providing new insights into aseismic crustal processes (Ross & 

Cochran 2021 ). 
The aim of this paper is to assess the performances of various 

existing DL models when picking microseismic phases in high- 
frequency borehole data without training. Most existing DL models, 
including GPD , U-GPD , EQTransformer and PhaseNet, are trained 
using 100 Hz data collected from surface seismic stations. These 
training sets mainly consist of larger, regional-sized earthquakes 
( M w > 0) but also encompass a number of smaller, local earth- 
quakes ( M w < 0). Ho wever , it is not clear that the models can 
generalize to detect microseismicity in high-frequency data in a 
borehole setting. In this study, we apply and compare these models 
using the Preston New Road 1z (PNR-1z) shale gas exploration data 
set (Clarke et al. 2019 ), where the distance between the centroids 
of the event hypocentres and the borehole array is relati vel y small 
(328.7 m). This benchmark catalogue contained over 38 000 events, 
with moment magnitudes M w ranging from −2.8 to 1.1, recorded 
on an array of 24 borehole geophones during injection activities 
at a sampling rate of 2000 Hz (Fig. 1 ). Fur ther more, we assess 
whether DL models identify additional microseismic events, and 
we compare each model in terms of phase detection and picking 
ability. 

2  D L  M O D E L S  

We e v aluate four DL models (Table 1 ): the GPD model by Ross 
et al. ( 2018 ), the U-GPD model by Lapins et al. ( 2021 ), EQTrans- 
former (EQT) by Mousavi et al. ( 2020 ) and PhaseNet by Zhu & 

Beroza ( 2019 ). We select these models because the y hav e publicly 
available code, working GitHub repositories, and the models were 
e xtensiv ely trained on large data sets for generalized phase picking. 
Additionall y, a pre vious study b y M ünchmeyer et al. ( 2022 ) found 
that GPD, PhaseNet and EQT were the best-performing models for 
earthquake detection, phase classification and onset time determina- 
tion for regional and teleseismic data sets (not including downhole, 
high-frequency data sets). These models, ho wever , were primar- 
ily trained on 100 Hz three-component seismograms from surface 
seismic stations and were not specifically trained, nor tested, on 
high-frequency borehole data sets. 

GPD is a convolutional neural network (CNN) trained on 4.5 
million waveforms (1.5 million each for P , S and noise). Ross et al. 
( 2018 ) trained this model with magnitudes M from −0.81 to 5.7 
recorded by the Souther n Califor nia Seismic Network. The model 
uses a 400-sample sliding window on continuous three-component 
data to input into convolutional layers for feature extraction. These 
extracted features are then input into a fully connected neural net- 
work (FCNN) for phase classification. The model outputs single 
class probability values for P , S and noise (i.e., model output di- 
mensions are 3 × 1) for each window. When the phase probability 
is above a user-defined threshold, a phase is declared in the middle 
of the window. 

U-GPD is a DL model that modifies the GPD model by using 
a fully convolutional U-Net architecture and fine-tuning the base 
GPD weights with an additional data set. Lapins et al. ( 2021 ) fine- 
tuned the weights using a limited volcano-seismic data set (from 

the Nabro volcano, Eritrea) sampled at 100 Hz. The Nabro data set 
contains 2498 event waveforms with local magnitudes ranging from 

−0.4 to 3.6. U-GPD uses the same input as GPD (3 × 400 sliding 
window) but replaces the FCNN with additional convolutional lay- 
ers. The new la yers w ere initialized with randomized weights and 
then trained on the Nabro data set. As U-GPD is a fully convolu- 
tional model, its output differs from GPD as U-GPD estimates a 
class probability for each sample in the window (i.e. model output 
dimensions are 3 × 400). The probability traces help the network 
pick more precisely as it removes the ambiguity arising from a 
single class prediction over an entire signal window (Lapins et al. 
2021 ). 

The PhaseNet model, similar to U-GPD, is a U-Net fully CNN 

de veloped b y Zhu & Beroza ( 2019 ). Ho wever , unlike GPD and U- 
GPD, PhaseNet uses a larger 3000-sample sliding window as its 
input. PhaseNet’s training data set consists of over 600 000 event 
waveforms from the Northern California Earthquake Data Center. 
Their training data set comprises a magnitude range from M 0 
to 5. A unique characteristic of this training data set is that Zhu 
& Beroza ( 2019 ) included different types of instruments (e.g. ac- 
celerometers, high gain and low gain seismometers) during training, 
which might help generalize its ability to phase pick in different 
data. The only modification we apply to PhaseNet is the change 
the in the ‘sampling rate’ variable within the ‘data reader.py’ 
file from 100 to 2000 Hz so that it reads our input data 
correctly. 

EQT is an attention-based DL model trained using 1 mil- 
lion labelled earthquake waveforms and 300 000 noise waveforms 
Mousavi et al. ( 2020 ) from the STanford EArthquake Dataset 
(STEAD), a global data set of earthquakes. Out of the models in 
this study, EQT has the largest data input window of 6000 samples. 
The model has an encoder, which extracts high level representa- 
tions of the data from the continuous seismic signals and three 
decoder branches that use these data representations to generate 
three probability traces (for the presence of an earthquake, the P 

and S w aves, respecti vel y). EQT consists of convolutional layers 
(CNN), long-shor t-ter m-memor y (LSTM) layers and a hierarchical 
attention mechanism. EQT’s attention mechanism visually weights 
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Figure 1. A geographical map showing the (a) plan view of the PNR unconventional shale gas exploration site and a (b) 3-D section of the site including 
seismicity (circles), geophones (triangles), stages (diamonds) on the PNR-1z and PNR-2 wells. 

Table 1. The DL phase pickers used in this study. We include the input window sizes in samples, the input in time for 100 and 
2000 Hz data in seconds, the magnitude ranges for the training data set, the architecture types of the models and the number of 
trainable parameters for each model. 

Models GPD U-GPD EQTransformer PhaseNet 

Input window size 400 400 6000 3000 
Input (100 Hz) 4 s 4 s 60 s 30 s 
Input (2000 Hz) 0.2 s 0.2 s 3 s 1.5 s 
Magnitude range −0.81 to 5.7 −0.81 to 5.7 and −0.4 to 3.6 −0.5 to 7.9 0 to 5 
Architecture type CNN + FCNN U-Net CNN + LSTM + attention U-Net 
No. of params 1,741,003 672,419 376,935 269,675 
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ections of data in its 6000-sample input window both globally
full waveform) and locally (where it expects the P and S phases).
arthquake magnitudes in STEAD range from M −0.5 to 7.9. EQ-
ransformer comes in two versions: the ‘original’ model and the
conserv ati ve’ model. Both models are trained using the same train-
ng data sets, but their hyperparameters are optimized for different
evels of event detection. The ‘original’ model is tuned to maximize
he number of detected events whereas the ‘conserv ati v e’ v ersion
s tuned to minimize the number of false positives. For our study,
e use the ‘original’ EQT version that has been optimized to maxi-
ize the number of detections. As the ‘original’ model can produce
 large number of declarations that are not seismic events (Scotto
i Uccio et al. 2023 ; Yoon et al. 2023 ), we further validate these
eclarations in Section 4.4 . The EQT model from the repository au-
omatically resamples data to 100 Hz, automatically filters the data
rom 1 to 45 Hz and its sliding window is shifted in time (overlap

60 s) which is suited for 100 Hz. We update this code so that the
odel reads our input data correctly by not resampling to 100 Hz,

emoving the in-built filter and correcting the time-shift window for
000 Hz data (overlap × 3 s). 

Appl ying these di verse DL models allows for a comprehensi ve
omparison considering variations in model architecture, input win-
ow sizes, training data and the range of trained earthquake magni-
udes (Table 1 ). This assessment aims to identify the model specifi-
ations that are most advantageous for monitoring microseismicity
n high-frequency borehole data. 

art/ggae386_f1.eps
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3  DATA  

3.1 Preston New Road continuous downhole data set 

Cuadrilla Resources Ltd. monitored the hydraulic stimulation of the 
PNR-1z well using a borehole geophone array in the PNR-2 well 
(Clarke et al. 2019 ). Fig. 1 shows the downhole array of 24 Avalon 
Geochain Slimline 15 Hz geophones that continuously recorded 
seismic data of the operations that took place from 2018 October 
15 to December 17. Hydraulic fracturing operations were carried 
out from October 15 to November 2, followed by an injection hiatus 
from 2018 November 3 to December 7 and then further stimulations 
from 2018 December 8 to 17. The distance between geophones in the 
borehole array is 30 m. The average distance between the centroids 
of the geophones and the injection stages is approximately 878 m. 

The PNR-1z continuous downhole data set was recorded at 
2000 Hz from 2018 October 8 to December 18 and a total data 
volume of 3.92 Tb w as acquired, av ailable in 16-s SEG-Y files. 
Each SEG-Y file contains three-component seismic data for 24 sta- 
tions, resulting in 72 traces per file. These continuous traces serve 
as input to the DL models. 

From visual inspection of the wa veforms, w e observe that the am- 
plitudes of events above moment magnitude M w −0.237 are clipped 
because the operators set a high gain on the recording instruments 
to detect more microseismic events (Verdon, personal communi- 
cation). In previous work, Lim ( 2021 ) visually checked and found 
that seismograms of earthquakes down to M w −0.237 are clipped 
on at least one station. Assuming all events down to M w −0.237 
are clipped, approximately 133 of the 38 452 pre viousl y catalo gued 
events (0.3 per cent) are clipped. Although 133 of the larger events 
were clipped, this should not greatl y af fect phase detection as DL 

models that employ relati vel y short sliding windows will primarily 
focus on the onset of phase arri v als (Ross et al. 2018 ). Zhu & Beroza 
( 2019 ) have also shown that PhaseNet is successfully able to pick 
phases even in strongly clipped data. Still, we consider the effects of 
clipping in Section 5.3 , for these models and more complex phase 
picking models that exploit the full waveform content with longer 
time windows (i.e. EQTransformer). 

3.2 Existing catalogue and injection data 

We use the Coalescence Microseismic Mapping (CMM) catalogue 
as a benchmark to compare with the other DL models. Cuadrilla’s 
contracted processor produced a seismic catalogue of event origin 
times, locations and magnitudes, from the PNR-1z data set, using 
proprietary code based on the CMM method (Drew et al. 2013 ). 
The CMM catalogue contains event origin times and locations of a 
total of 38 452 events with magnitudes that span −2.839 ≤ M w ≤
1.155. Fig. 2 shows the events and their magnitudes overlaid with 
the injection rate data over time. 

The CMM method is a computationally intensive multistation 
simultaneous detection and location approach that generates char- 
acteristic functions for each station using shor t-ter m av erage ov er 
long-term average (ST A/LT A) ratios (Drew et al. 2013 ). The mi- 
gration of signals from multiple stations to a coherent source in 
time and space makes CMM a robust method for earthquake de- 
tection, with the added advantage of simultaneously determining 
hypocentres. While it has been proven to be a robust method for 
microseismic monitoring (Smith et al. 2015 ), it is constrained by 
the sliding time windows it employs on continuous data, detecting 
only the largest event (energy maxima) within a fixed time window. 
We set the CMM as a good benchmark for these single station DL 
models while also exploring whether they can outperform the CMM 

method and provide a more efficient alternative for monitoring mi- 
croseismicity. 

4  M E T H O D S  

4.1 Data pre-processing 

We pre-process the raw continuous data by rotating the waveforms 
from their respective station orientations to the E, N and Z compo- 
nents. For each model’s input, we then apply a 50 Hz Butterworth 
high-pass filter. This ensures that the pre-trained models can pick 
microseismic phases within the noisy downhole data as microseis- 
micity typically has low signal-to-noise ratio (SNR). We choose 
a 50 Hz high-pass filter by examining the fast Fourier transform 

event spectra on the geophones closest to (deepest) and farthest 
from (most shallow) the source (perforations in the PNR-1z well). 
Holmgren et al. ( 2021 ) also highlight electrical noise occurring be- 
low 50 Hz in the PNR-1z data. In addition, as most of the events are 
smaller than M w 1, their corner frequencies would likely be above 
50 Hz (Shearer 2019 ) and so, the 50 Hz high-pass filter is suitable 
for event detection. 

4.2 Classification test 

We first compare each model’s ability to classify seismic phases ( P , 
S and noise) in the PNR-1z continuous downhole waveform data 
from single stations, which we refer to as phase classification tests. 
Our test data set comprises 750 sections of data from 250 random 

events (i.e., 250 P , 250 S and 250 noise) on random stations. We then 
record the class labels produced by each model for each section. 
Each section is a 3-s (6000 sample) window of three-component 
continuous data containing a phase arri v al in the window. We filter, 
visually inspect, and manually select each section from the CMM 

catalo gue. We also randoml y select stations to avoid bias, especiall y 
as some stations are less noisy or closer to events than other stations 
(e.g. shallow stations are further away from the events). If a model 
produces more than one label in the section, we record the class 
label closest to the manually determined pick time. 

We calculate recall, precision and F1-scores for each phase as 
well as overall metrics to assess the classification performance of 
each model. For overall recall and precision, we compute the average 
values for each class ( P , S and noise). Overall F1-score is calculated 
by using the average precision and recall values. 

Recall measures the completeness of positive predictions and is 
calculated as 

Recall = 

( TP ) 

( TP + FN ) 
, (1) 

where TP is the number of true positives and FN is the number of 
false ne gativ es. 

For example, when calculating the recall value for the ‘ P ’ phase 
of a model, we determine that: true positives (TP) are the number 
of ‘ P ’ labels correctly identified as ‘ P ’; false ne gativ es (FN) are the 
number of ‘ P ’ labels that the model misclassified as ‘ S ’ or ‘noise’; 
and their sum (TP + FN) is the total number of actual ‘ P ’ labels in 
the test data set, which is fixed at 250. 

Recall values close to 1 signify that the model produces a low 

number of false ne gativ es. For e xample, a high R value for the P 

phase shows that the model does not miss a lot of P labels that are 
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Figure 2. Temporal plot of the injection rates (blue line, left-hand axis) and CMM catalogued events (circles) with their respective moment magnitudes, 
M w , (right-hand axis) for (a) the whole duration of the PNR-1z continuous downhole data, (b) during a period of high injection rates (2018 December 11, 
9am–10am) and (c) during a period without injection (2018 December 11, 11am–12pm). The largest earthquake ( M w 1.1) of the catalogue is shown as a star. 
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Precision measures the accuracy of positive predictions by the
odel and is calculated as 

recision = 

( TP ) 

( TP + FP ) 
, (2) 

here FP is the number of false positives. When calculating the
recision value for the ‘ P ’ phase of a model, we define: TP are the
umber of ‘ P ’ labels correctly identified as ‘ P ’; FP are the number
f ‘ S ’ or ‘noise’ labels that the model misclassified as ‘P’; their sum
TP + FP) is the total number of ‘P’ classifications that the model
redicted in the test data set. 

High precision (close to 1) signifies a low number of false positive
lassifications (i.e. a high precision shows that the model does not
alsely classify S or noise labels as P phases). The F1-score weighs
he precision and recall v alues equall y and represents the harmonic
ean of both values. F1-scores close to 1 suggest a good balance of

igh precision and recall for the model. The F1-score is given by 7 

F 1 = 

2TP 

2TP + FP + FN 

= 2 × Precision × Recall 

Precision + Recall 
. (3) 

.3 Catalogue comparison 

.3.1 PNR-1z downhole data set 

o complement the phase classification tests, we also compare the
rigin time catalogue generated from arri v al picks of each model
hen applied to the PNR-1z continuous downhole data set. The ini-

ial (CMM) method catalogue serves as our benchmark. We analyse
he proportion of events recalled from the CMM catalogue, new
andidate seismic events (i.e. prior to quality control of the events)
nd the events missed by the DL models. 

Our w orkflo w is structured to group phase picks into events,
ssociate phases ( P to S ) and then locate events to produce an ori-
in time catalogue. We start by constructing an e vent catalo gue
sing phase picks output from each model across multiple geo-
hones in the borehole arra y. Here, w e define a candidate seis-
ic event as a group of P phase picks from at least four dif-

erent stations within a fixed 0.2 s time window. We choose a
.2 s window because it corresponds to the latest traveltime for
 phase of the same event to travel from one end to the other
nd of the borehole array, given the available velocity model
 doi: 10.5281/zenodo.13135600 ). We set the event defining thresh-
ld to at least four different stations because it is the typical mini-
um number of stations required to constrain location in time and

pace. 
Next, we employ a straightforward approach for P to S phase

ssociation. We impose a fixed-time window from the initial P ar-
i v al time at each station. Specifically, we use a time difference
f 0.3 s. This assumes that any S phase that is picked within the
ime range t p < t s ≤ t p + 0.3 will be associated with the ini-
ial P pick. The fixed time difference of 0.3 s theoretically corre-
ponds to a 1.8 km radius. This time window for phase associa-
ion adequately encompasses all the events in the target area (see
ig. S1 , Supporting Information). Finally, we use the Non-Linear
ocation (NonLinLoc) algorithm (Lomax et al. 2000 ) to obtain ori-
in times. For the full w orkflo w, we conduct the model tests with
ne NVIDIA GeForce RTX 2080 Ti GPU on a cluster node with one
PU. 
Each DL model has a user-defined detection threshold parameter.
hen the probability of a phase ( P or S ) crosses that threshold,

he model picks and labels the arri v al in time. As Zhu & Beroza
 2019 ) recommended the lowest threshold (0.3) compared to the
ther models, we set the same probability threshold for most of the
odels (GPD, U-GPD and PhaseNet). Ho wever , initial detection

ests indicated that EQT requires a lower threshold to detect events
n the PNR-1z data set, so we use a threshold of 0.1 for EQT.
ompared to the other models, EQT’s phase picking performance

s significantly influenced by overlap (Pita-Sllim et al. 2023 ). We
onducted a performance test for EQT using the default (0.3) overlap
nd optimized overlap (0.92) suggested by Pita-Sllim et al. ( 2023 )
nd found that it took approximately 8.8 times longer with the 0.92
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overlap (14 hr 36 min and 14.1 s) to run on an hour of test data. 
Based on these initial parametric tests, we select an overlap of 0.3 
to achieve a balance between computational runtime and picking 
performance. 

We compare the event origin times derived from DL model phase 
picks with the CMM catalogue. We assume that DL events within 
a window of ± 0.25 s of an origin time listed in the benchmark 
(CMM) catalogue are considered matches. We label any event that 
is not a match in the CMM catalogue as a new candidate event. In 
Fig. S2 (Supporting Information), we show that 99 per cent of the 
origin time residuals between the PhaseNet and CMM catalogues 
are within a ± 0.07 s window. The small origin time residuals 
validate the adequacy of the ± 0.25-s window for matching DL 

phase pick-deri ved e vent origin times with the CMM-catalogued 
events. 

4.3.2 Selected time-series 

To provide a more detailed comparison, we focus on two different 
periods of interest to assess each model: on 2018 December 11, 
from 9am to 10am, and from 11am to 12pm. We select an hour 
of data when the injection rate and seismicity were high (9am to 
10am, Fig. 2 b) and an hour when the seismicity w as relati vel y quiet 
and injection was paused (11am to 12pm, Fig. 2 c). We can thus 
observe which models are able to pick phases during a very active 
period (i.e. with high event rates) and during a quieter period of 
seismicity. The 11am to 12pm period also contains the largest ( M w 

1.1) earthquake in the data set. We additionally use this period to 
assess whether the models detect more aftershocks after the M w 1.1 
event. 

4.4 Candidate seismic event validation using LinMEF: a 
Linear Moveout Event Filter 

As DL models have demonstrated the ability to detect a substantial 
number of new events (Beroza et al. 2021 ; Garc ́ıa et al. 2022 ), 
we develop an automated validation method to ensure that the new 

events originate from our target area, i.e., from within the zone of the 
hydraulic fracturing stimulations. We visuall y e v aluate the subsets 
of the new events to ensure that we do not exclude potentially 
interesting events (see Section 5.2 ) 

Our method exploits the e xpected mov eout of phase arri v als 
across a near-linear borehole array (Fig. 3 ). By imposing the near- 
linear moveout pattern, we filter the model detections (candidate 
events) to focus on events arriving from the PNR-1z well stimula- 
tions. This method leverages the information gathered from multiple 
geophones, taking advantage of the wealth of data obtained from a 
borehole array of individual geophone observations. We restrict our 
approach to just the P picks of each new event, as the DL models 
picked more P phases compared to S phases. 

Because the hydraulic fracturing stimulations occur below the 
borehole arra y, w e mak e two k ey assumptions: first, the P picks 
should exhibit moveout from the deepest to the most shallow geo- 
phone, and secondly, the P -wav e v elocity across the array should 
approximately be the velocity of a P -wave travelling through shale 
(4700 m s −1 ). These assumptions allow us to filter candidate events 
that deviate from the expected near-linear moveout, thereby retain- 
ing only the seismicity originating from the stimulated volume of 
rock (i.e. from the in-zone). 

To validate the thousands of new machine learning-picked de- 
tections, we utilize the above information and apply a method we 
call the Linear Moveout Event Filter (LinMEF) to the seismic phase 
picks of each event. LinMEF is a simple and robust method con- 
sisting of three steps (Fig. 3 ). 

First, for each new event, we use the group of P picks across the 
borehole array associated with the specific event origin time. We 
obtain a list of time differences t diff between each pick time in the 
group, t pick , and the earliest arri v al time, t 0 : 

t diff = t pick − t 0 . (4) 

When plotting each t diff against each corresponding station 
depth, we observe that the data points roughly follow a 
straight line for events arriving from the in-zone (Fig. 3 b). 
The inverse of this gradient is representative of the P -wave 
velocity. 

Secondly, after calculating t diff from all available picks across 
the array for all events, we choose a random subset of 250 ne wl y 
identified candidate events as our calibration data set. We visually 
check the pick moveouts for each event and labelled this calibration 
data set as either ‘target’ or ‘non-target’ events depending on their 
moveout (Fig. 3 c). ‘Target’ events refer to events that: have a near- 
linear mov eout; arriv e from the bottom to the top of the array; 
and have apparent velocities close to the P -wave velocity in shale 
(4700 m s −1 ) shown in Fig. 3 (a). 

‘Non-target’ events are candidate events that characteristically 
deviate from the ‘target’ events. We further discuss these non-target 
events in Section 5.2 . 

We use this data set to constrain the range of gradients (i.e. 
the approximate inverse of P -wave velocity) of the P picks that 
belong to ‘target’ and ‘non-target’ labelled events. We estimate 
the L1-norm best-fitting line of the arri v al pick times across all 
stations for every event. The L1-norm reduces undesired effects 
from pick time outliers on the arri v al time gradient estimates, as 
compared to the L2-norm. Fig. 3 (c) shows that the linear regression 
slopes of ‘target’ and ‘non-target’ labelled events fall into a bimodal 
distribution. 

Lastly, we calculate the 90 per cent range (using the 5th 
and 95th percentiles) of the resulting gradients around the ‘tar- 
get events’ labelled distribution to define our event filter. We 
subsequently classify any new candidate events with a lin- 
ear moveout slope within this 90 per cent range as ‘target’ 
e vents and an y that fall outside this range as ‘non-target’ 
events. 

5  R E S U LT S  

5.1 Picking assessment: classification test results 

We compute precision, recall and F1-scores from the confusion 
matrices of each model (see Suppor ting Infor mation). The clas- 
sification test results show that PhaseNet outperforms other mod- 
els in terms of precision and recall (Fig. 4 ). EQT follows closely 
with high precision and recall values (0.81 and 0.77, respecti vel y). 
The U-GPD and GPD models have precision and recall values 
ranging between 0.44 and 0.64, implying occasional misclassifi- 
cations. Overall, PhaseNet consistently demonstrates the highest 
precision, recall and F1-score values, highlighting its accuracy in 
classifying known seismic phases. Most models exhibited supe- 
rior performance in classifying individual P phases compared to S 
phases (Fig. 4 f). Higher F1-scores for P -phase classifications also 
suggest that the DL models more successfully identified P phases 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae386#supplementary-data
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Figure 3. (a) An example of a new event picked by PhaseNet with P (red) and S (green) arri v al picks arri ving across the borehole array (geophones numbered 
on the side of each seismogram from 1 to 24). The vertical blue line represents the event origin time. (b) Time differences between the earliest P arri v al pick 
time ( t 0 ) and each individual pick time ( t pick ) of the new event against station depth. We fit an L1-norm best-fitting line to the data points. (c) A histogram of 
estimated linear regression slopes (slowness) of 250 random new candidate seismic events. The target events (blue) and non-target events (orange) labelled 
from manual visual inspection. The dotted lines represent the median value of the gradients for each label (target and non-target HFIS). Panels (b) and (c) 
illustrate the process of candidate event validation using the LinMEF. 
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Visual inspection of PhaseNet’s phase misclassifications revealed
eightened noise levels around the phase in the data or when a
arger e vent w as present within the normalized window, making the
maller magnitude target phase located in the middle of the window
ppear smaller and more challenging to detect. 

In terms of the picking precision of each model, PhaseNet
onsistently demonstrates the most precise and accurate picks
Fig. 5 ). In contrast, the GPD model exhibits less precise pick-
ng due to its output of a single phase probability value for each
ata window shift, leading to ambiguity in the arri v al timing. The
haseNet and U-GPD models, which follow a U-Net styled archi-

ecture, show precise picking with temporally continuous proba-
ility traces. Fig. 5 illustrates the phase arri v al picks from each
odel, clearly indicating the precise phase picking by the U-GPD

nd PhaseNet models, while the GPD model produces imprecise
icks. It should be noted that the EQT model, although capable
f picking phases precisel y, frequentl y misses phase arri v als in
eneral. 
s  
.2 Characterization of non-tar g et events 

e observe that the DL models consistently detect events or phase
rri v als that we do not believe to be induced seismic events associ-
ted with the injection. Figs 5 and 6 illustrate the two types of candi-
ate e vents detected, namel y ‘target e vents’ and ‘non-target e vents’,
especti vel y. The non-target e vents belong to at least four types of
vents that do not exhibit characteristics indicative of induced seis-
icity resulting from the hydraulic fracturing stimulations through

he PNR-1z borehole. We label these signals as ‘zig-zag’ events,
tube waves 1’, ‘tube waves 2’ and ‘emergent’ events. Through
isual observations and event characterization based on apparent
elocities and angle of incidence, we determine that these signals
re likely unrelated to our target events. 

‘Zig-zag’ events are waves that arrive from the opposite di-
ection (from shallow to deep) compared to induced seismicity
from deep to shallow). They have an average apparent velocity of
500 m s −1 . This is significantly faster than the P -wave velocity in
hale ( ∼4700 m s −1 ) and in the steel casing ( ∼4500 m s −1 ). Most

art/ggae386_f3.eps
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Figure 4. The left-hand column of panels shows the (a) overall precision, (c) overall recall and (e) overall F1-scores of each model. The right-hand column 
shows the individual P (pink, left bar), S (dark blue, middle bar) and noise (purple, right bar) phases of the (b) precision, (d) recall and (f) F1-scores. 
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of these events do not have S picks, and they we only occur during 
working hours, between 8am to 4pm. 

‘Tube waves 1’ are low frequency and travel at an average ap- 
parent velocity of 1445 m s −1 , which is slower than the P -wave 
velocity in shale but close to the velocity of P waves in water 
( ∼1500 m s −1 ). Tube waves are a product of Rayleigh waves inter- 
acting with the wellbore, propagating along the walls of a fluid-filled 
borehole (Sheriff 2002 ; Gadallah & Fisher 2008 ). 

‘Tube waves 2’ are higher frequency tube waves that appear to 
arrive at the broadside of the borehole array and travel from between 
the geophones on the PNR-2 well throughout the array. They do not 
arri ve at an y particular single station and their average velocity is 
similar to that of tube waves ( ∼1445 m s −1 ). 

The ‘emergent’ events, which occur at high frequencies and do 
not follow a consistent moveout, present a unique challenge. We 
observe a gradual energy buildup in these arri v als, rendering it 
challenging for the models to precisely identify the phase onset. 
The emergent nature of these events complicates picking, which re- 
sults in an inconsistent moveout pattern. These e vents arri ve almost 
instantaneousl y, though the arri v al patterns v ary randoml y along 
the array. In addition, both the frequency content and amplitude of 
these events deviate characteristically among the geophones. None 
of these events correspond to any catalogued regional earthquakes 
in UK. Given the unusual observations, we conclude that these 
‘emergent’ events are not HFIS. 

We visually label a random sample of 250 candidate seismic 
events detected by the best-performing DL model, PhaseNet. Our 
observations show that 55.6 per cent (139) of these events were 
induced seismicity with a near-linear P -wave moveout (i.e. target 
events), while 34.8 per cent (87) were ‘zig-zag’, 2.8 per cent (10) 
corresponded to ‘tube waves 1’ or ‘tube waves 2’, 2.4 per cent (11) 
were ‘emergent’ events and 1.2 per cent (3) were false positives. 
When we manually assess the residual percentage of non-HFIS 

events, we find that LinMEF successfully eliminates 93.7 per cent 
(104) non-target events from the test set. LinMEF decreases the 
non-target event rate from 44.4 per cent to 2.8 per cent. To verify 
the detection of HFIS using these DL models, we implement the 
LinMEF method (detailed in Section 4.4 ) to robustly eliminate these 
non-target events from the DL event catalogues. 

5.3 Model catalogue comparison 

Fig. 7 shows that PhaseNet successfully recalls the most previously 
catalo gued e vents (36 75 e vents, 94.6 per cent) from the full contin- 
uous data set, missing only 5.4 per cent (2077 events) of the CMM 

e vents. Additionall y, PhaseNet detects the highest number of unde- 
tected events ( + 41.2 per cent), corresponding to 15 35 new events 
after filtering out non-target events using LinMEF. Comparati vel y, 
U-GPD outperforms GPD as it recalls more catalo gued e vents (76.6 
and 59.5 per cent, respecti vel y) and detects more new events (8302 
events, + 21.6 per cent and 1918 events, + 4.99 per cent, respec- 
ti vel y). On the other hand, EQT struggles to detect events, identi- 
fying around 45.8 per cent of the CMM catalogue (17 11 events) 
and 809 ne w e vents ( + 2.1 per cent). We show the event locations 
of these catalogues in Fig. S3 (Supporting Information). 

Most of the models begin to miss events at magnitudes below M w 

−0.5 (Fig. 8 ). Additionally, we note the magnitude ranges for the 
recalled and missed events of each model. Fig. 8 shows that EQT 

started missing events with M w below 0.7, suggesting its limitation 
in recogni-zing microseismic phases within the higher frequency 
data set. PhaseNet recalls events from benchmark (CMM catalogue) 
v ery well (ov er 90 per cent) over the −3 ≥ M w ≥ 1 range. We also 
show that U-GPD can recall events down to lower magnitudes more 
so than the GPD model. 

We remark that most DL models’ phase picks are not affected by 
clipping by visually checking the picks of 100 of the largest events 
with clipped amplitudes. The modelled P and S phase picks for 
GPD, U-GPD and PhaseNet are still picked accuratel y. Howe ver, 
the detection performance of EQT might be affected by amplitude 
clipping. Although EQT detects both P and S phases of the largest 
clipped event, the earthquake detection probability trace shows a 
steep drop off where the S wave is clipped and lower S arri v al 
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Figure 5. Seismograms (Z component) of the same event across the borehole array from Stations 1 (top ro w, most shallo w) to 24 (bottom row, deepest) 
showing the phase classification and picking precision with P picks (red vertical lines) and S picks (green vertical lines) from the (a) GPD, (b) U-GPD, (c) 
EQTransformer and (d) PhaseNet models. The blue vertical line across all stations is the inferred event origin time. 
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robability values ( Fig. S4 , Supporting Information) compared to
nclipped events ( Fig. S5 , Supporting Information). These obser-
ations explain the unstable decrease in recall rates for the clipped
ange of magnitudes ( M w > −0.3) in Fig. 8 followed by a more
table recall rate decrease for events M w < −0.5. 

Results from the selected hours show that during the injection
eriod (Fig. 9 ), both PhaseNet and U-GPD successfully recall a
ajority ( > 90 per cent) of the CMM catalogue, while also de-

ecting the highest number of new events within the hour. Dur-
ng high injection rates, U-GPD detects more new events than
haseNet, whereas the reverse is true during the quieter period.
e also observe increases in seismicity rates during both se-

ected hours for PhaseNet and U-GPD compared to the CMM

ethod. 

b  
Figs 10 (b) and (d) demonstrate that PhaseNet outperforms U-
PD during the quieter period, with the exception of struggling to
etect small events after the initial largest event when a cluster of
ftershocks occurred. This suggests that PhaseNet’s performance is
dversel y af fected b y high seismicity rates. Fur ther more, we note
hat PhaseNet begins missing more small events during high seismic
cti vity, likel y due to the smaller amplitudes of these events as
ormalization may be biased towards the increased presence of
arger events. 

.4 Model runtimes and computational efficiency 

e present the model runtime statistics and performance metrics
ased on one hour of continuous borehole data (Table 2 ). We use the
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Figure 6. Seismograms of the four types of non-target events: (a) ‘zig-zag’, (b) ‘tube waves 1’, (c) ‘tube waves 2’ and (d) ‘emergent’ events across the borehole 
array from Stations 1 (top row, most shallow) to 24 (bottom row, deepest) showing the P picks (red vertical lines) and S picks (g reen ver tical lines) from 

PhaseNet. The blue vertical line across all stations is the inferred event origin time. 
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NVIDIA Tesla K80 12 GB GPU on Google Colab for these tests. 
Our findings reveal that that most DL models (with the exception of 
EQT) take less time to process than the given data window length 
(one hour of data). In ascending order, PhaseNet, GPD and U-GPD 

demonstrate processing speeds surpassing real time by 3.72, 4.94 
and 12.75 times faster, respecti vel y. Although these figures might 
seem modest, it is crucial to consider the high sampling frequency 
of our test data (2000 Hz). One hour of 2000 Hz data are equi v alent 
to 20 hr of 100 Hz data. When scaled to standard 100 Hz data, the 
processing speed of the models are 74.4, 98.8 and 255 times faster, 
respecti vel y. These results highlight the remarkable efficiency of 
these models, highlighting their suitability to real-time microseis- 
mic monitoring. 
6  D I S C U S S I O N  

The results demonstrate the applicability of U-GPD and PhaseNet 
to high-frequency borehole data, although to var ying deg rees. Our 
study shows that, in particular, PhaseNet outperforms the CMM 

method, as it recalls up to 95 per cent of the catalogue and detected 
approximatel y 15 800 ne w e v ents. In total, PhaseNet detects ov er 
52 000 target events. Although U-GPD detects fewer earthquakes 
than the CMM method, it still identifies a significant number of 
events within the data set (over 37 800). GPD and EQT (detected 
over 17 800 and over 24 900, respecti vel y) can detect events in 
high-frequency borehole data, but EQT yields fewer results due to 
its picking performance, while GPD’s limitations are due to both 
detection performance and picking precision. Most models (GPD, 

art/ggae386_f6.eps
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Figure 7. A comparison of the total number of model event detections in the full continuous PNR-1z data set, including the new (y ellow), recalled (b lue) and 
missed (red) events. We filtered the new candidate seismic events using the LinMEF method, so the cross-hatched yellow sections represent the number of 
non-target events, and the non-hatched yellow sections illustrate the number of target events (i.e. QC’ed new events). The annotations in squares refer to the 
percentage with respect to the total number of CMM-detected events. 
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-GPD and PhaseNet) had no issue picking phases on amplitude-
lipped events. 

Although EQT displays good classification scores (precision of
.81 and recall of 0.77), it underperforms in consistently detect-
ng events with M w below 0.7 in high-frequency borehole data.
s shown in Fig. 8 , and Figs S4 and S5 (Supporting Information),
QT struggles with detection on clipped data ( M w > −0.3), leading

o inconsistent recall rates. Ho wever , this does not completely ac-
ount for the unclipped missed events ( M w < −0.3). These smaller
issed events could mean that EQT is also encountering challenges
ith its attention mechanism as it does not perform as well in
000 Hz data compared to 100 Hz data. This issue arises from the
eeper, more complex model learning data representations that may
ot generalize well to higher frequency data. The attention mech-
nism in EQT, which predicts the arri v al of seismic phases after
etermining the presence of an earthquake, may face difficulties
hen the P and S phases arrive at different positions and appear dif-

erently in the 2000 Hz data compared to the 100 Hz training data.
onsequently, the complex transformer-based EQT model struggles

o detect lower magnitude events with low SNR in high-frequency
ata. 

The precision of phase picking heavily depends on the network
rchitecture. Models like U-GPD and PhaseNet, which utilize fully
on volutional netw orks, provide more precise picks b y le veraging
igher resolution continuous probability phase traces. Similarly,
QT leverages these continuous probability traces to achieve pre-
ise phase picks. The pick precision of the GPD model is influenced
y its combination of convolutional and FCNNs, which output a sin-
le probability value per class for each data-window shift. There-
ore, in GPD’s case, pick precision is significantly dependent on the
ize of the window shift across the data. 

PhaseNet outperforms other models in terms of precision, recall
nd F1-score for microseismic phase classification. It exhibits high
etric scores for both P and S arri v als, while other models show

nconsistencies in classifying P and S phases. GPD, U-GPD and
QT have better metric scores for classifying P phases compared

o S phases due to S waves characteristically having lower SNR. 
PhaseNet’s success on this data set may be attributed to its ex-

osure to different types of instrument data during training. The
odel’s training incorporated seismic data from several frequency
ands and instruments (Zhu & Beroza 2019 ), resulting in an ap-
arently improved generalization for phase picking in the HFIS
etting. Fur ther more, the relati vel y small model size of PhaseNet
10 layers, 269 675 parameters) combined with a large training data
et reduces the risk of overfitting to its initial training set (623 054
raining samples). Although U-GPD has a similar architecture and
odel size to PhaseNet (9 layers, 672 419 parameters), it displays

igns of overfitting to the small volcanic data set (in 100 Hz) used
o fine-tune the model (Lapins et al. 2021 ). Overfitting can be mit-
gated through stronger data augmentation, such as resampling the
raining data to lower and higher sample rates to vary the number
f samples between a P and S phase and expanding the training
ata set to include more diverse events with different P to S time
if ferences. Lastl y, as the deepest of all models tested (56 layers,
76 935 parameters), EQT might be susceptible to overfitting be-
ause of its number of layers and the lack of data diversity of its
riginal training set (1.3 million samples). The deep transformer-
ased model might have learned more complex and abstract fea-
ures that is more tailored to the 100 Hz training data as the number
f layers increase (Goodfellow et al. 2016 ) and therefore, EQT
ight struggle to recognize extracted features in higher frequency

ata. 
As observed in Fig. 10 , U-GPD performs better at picking events

uring high seismic rates due to its smaller window size (400 sam-
les) compared to PhaseNet (3000 samples). This enables U-GPD
o handle the presence of multiple events within the same temporal
ata window more ef fecti vel y. Although PhaseNet struggles (rela-
ive to U-GPD) during higher event rates, it still detects more small
vents ( M w ≤ −2) than U-GPD overall (Fig. 10 ). 

The limitations of the CMM method become apparent when
ultiple events overlap within the same user-defined time win-

ow (see Fig. S6 , Supporting Information). When there is more
han one event within this window, CMM detects only the largest
vent based on energy maxima (Drew et al. 2013 ), potentially miss-
ng smaller events. Reducing the time step window in the CMM

ethod could enhance its performance, but this would increase
ts computational intensity and overall cost, thereby limiting its
easibility. 
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Figure 8. Magnitude distributions for the recalled events detected by (a) GPD (blue), (b) U-GPD (red), (c) EQT (green) and (d) PhaseNet (yellow) compared 
to the benchmark CMM (black bars) catalogue. The recall function (black line) of each model catalogue is plotted with their respective marker colours. The 
recall function shows the percentage of CMM events recalled from the benchmark for a given magnitude bin, M. Magenta circles in the legend mark the recall 
for magnitude bins at M w 0, −0.5, −1, −1.5, −2 and −2.5. We use the estimated magnitudes from the CMM catalogue so ne w e vents are not included in this 
plot. 
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In contrast, DL models have the potential to pick out overlapping 
events ( Fig. S6 , Supporting Information). Ho wever , our current ap- 
proach to phase association and event grouping lacks the sophistica- 
tion needed to differentiate multiple closely arriving events within 
in a fixed time window. Future research should consider more ad- 
vanced phase associators such as REAL (Zhang et al. 2019 ), an 
optimized grid-search algorithm, GaMMA (Zhu et al. 2022 ), which 
considers arri v al time moveout and amplitude decay with distance, 
or PyOcto (M ünchmeyer 2023 ), a 4-D space–time partitioning algo- 
rithm to separate ov erlapping ev ents in time. These more advanced 
techniques could leverage DL-detected phases arriving in close tem- 
poral proximity, thereby significantly enhancing event detection. 

All models might benefit from additional training or exposure 
through fine-tuning with microseismic data sets ( −3 ≤ M w ≤ 0) 
to improve their ability to recognize smaller events recorded at 
higher sampling rates. Ho wever , PhaseNet already exhibits promis- 
ing performance and can be deployed without any modification. The 
e vents missed b y PhaseNet are primaril y small e vents ( M w ≤ −0.5) 
that occur during high seismic rates, where larger events may over- 
shadow the smaller ear thquakes. Shor tening PhaseNet’s input win- 
dow length could potentially isolate smaller events for detection, but 
there would be a trade-off with increased computational time due to 
the greater number of windows to be processed. Since most of these 
models can be employed in near real-time, finding a balance between 
ef ficiency and ef fecti veness is crucial. The efficiency of DL models 
makes them suitable for automated detection methods in real-time 
monitoring. 
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Figure 9. Temporal plots of the cumulative number of model detections (right y -axis) (a) across the PNR-1z continuous data set with injection rates overlaid 
(in grey, left y -axis) for PhaseNet (orange), U-GPD (red), CMM (black), GPD (blue) and EQT (green). The solid lines represent the cumulative number of 
events in the LinMEF-filtered catalogue, whereas the dashed lines show the cumulative number of the pre-filtered catalogue. Cumulative number for each 
model (b) during high injection rate and high event rate, and (c) during no injection and when the largest PNR-1z event occurred. The inset list of models in 
(b) and (c) represent the performance ranking of the DL models and CMM method. 
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Figure 10. (a) and (c) Time–magnitude plots of the high injection rate hour and (b) and (d) the quieter period with injection rates (black line, left-hand axis) 
for the U-GPD (top row) and PhaseNet (bottom row) models. Missed (red) and recalled (blue) events are plotted with their respective moment magnitudes, M w 

(right-hand axis). The largest earthquake ( M w 1.1) is plotted as a star and is denoted with a dashed line. 
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Table 2. Model runtime statistics for GPD, U-GPD, EQTransformer and PhaseNet on Google Colab, using an NVIDIA Tesla 
K80 12 GB GPU. These processing times are for one hour of PNR-1z data (2000 Hz), which is equi v alent to 20 hr of 100 Hz 
data. We also include results (recall rate and number of new events) for the selected hour during high injection. 

Models Time taken (24 stations) Data window length 
Time taken Recall rate ( n events) Number of new events 

GPD 12 min 8.53 s 4.94 87.5 per cent (863) 143 ( + 14.5 per cent) 
U-GPD 4 min 42.37 s 12.75 99.5 per cent (981) 632 ( + 64.1 per cent) 
EQT 99 min 35.7 s 0.60 68.2 per cent (672) 331 ( + 33.6 per cent) 
PhaseNet 16 min 5.88 s 3.72 91.6 per cent (903) 396 ( + 40.2 per cent) 

doi:10.1126/sciadv.aav7172. 
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7  C O N C LU S I O N S  

In this study, we compare the ability of four DL models (GPD, U- 
GPD, EQT and PhaseNet) to detect HFIS through phase picking in 
high-frequency (2000 Hz) downhole data. We find that PhaseNet 
is most suitable for microseismic monitoring applications, when 
comparing the phase classification abilities of the models and their 
resulting event detections. PhaseNet shows the best phase classifi- 
cation results and the most precise picking compared to the other 
models. 

Based on our e v aluation, we conclude that while additional trans- 
fer learning might further enhance the performance of PhaseNet, 
it can still be readily applied ‘off-the-shelf’ (recall rate of 
94.6 per cent) for downhole monitoring of induced seismicity with 
moment magnitudes M w greater than −0.5. Models such as GPD 

and U-GPD (recall rate of 59.5 and 76.6 per cent respectfully) re- 
quire transfer learning to improve their microseismic detection, to 
detect events with M w below −0.5. EQT, on the other hand, currently 
requires retraining to detect both clipped events as well as events 
below M w 0.7 for it to be ef fecti vel y applied to high-frequency 
downhole data. 

We infer that model architecture and exposure to different training 
data influences microseismic phase detection and picking precision, 
which are important for event location and moment magnitude es- 
timation. Network architectures such as fully convolutional U-Nets 
with a small model size that provide continuous high-resolution 
probability traces offer more precise phase picking and better gen- 
eralization to pick events in high-frequency data compared to more 
complex transformer models (e.g. EQT) or models comprising fully 
connected layers (e.g. GPD). 

In addition to the over 38 000 catalogued earthquakes already 
detected on site, PhaseNet identified around 15 800 new events oc- 
curring within the PNR-1z data set. The identification of thousands 
of additional events could lead to improved observations of the spa- 
tiotemporal characteristics of HFIS within the context of various 
driving mechanisms (e.g. Kettlety & Verdon 2021 ; Herrmann et al. 
2022 ) and facilitate the real-time tracking of seismicity during well 
stimulations. 
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