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Abstract
1.	 Biodiversity monitoring schemes periodically measure species' abundances and 

distributions at a sample of sites to understand how they have changed over 
time. Often, the aim is to infer change in an average sense across some wider 
landscape. Inference to the wider landscape is simple if the species' abundances 
and distributions are similar at sampled to non-sampled locations. Otherwise, the 
data are geographically biased, and some form of correction is desirable.

2.	 We combine causal diagrams with ‘superpopulation models’ to correct time-
varying geographic biases in biodiversity monitoring data. For a given time-
period, expert-derived causal diagrams are used to deduce the set of variables 
that explain the geographic bias, and superpopulation models adjust for these 
variables to produce a corrected estimate of a landscape-wide mean of for 
example abundance or occupancy. Estimating a time trend in the variable of 
interest is achieved by fitting models for multiple time-periods and, if the drivers 
of bias are suspected to change over time, by constructing per period causal 
diagrams. We test the approach using simulated data then apply it to real data 
from the UK Butterfly Monitoring Scheme (UKBMS).

3.	 If the variables that explain the geographic bias are known and measured without 
error, our method is unbiased. Introducing measurement error reduces the 
method's efficacy, but it is still an improvement on using the sample mean. When 
applied to data from the UKBMS, the approach gives different results to the 
scheme's current method, which assumes no geographic bias.

4.	 Where the goal is to estimate change in some variable of interest at the landscape 
level (e.g. biodiversity indicators), models that do not adjust for geographic bias 
implicitly assume it does not exist. Our approach makes the weaker assumption 
that there is no geographic bias conditional on the adjustment variables, so it 
should yield more accurate estimates of time trends in many circumstances. 
The method does require assumptions about the drivers of bias, but these are 
codified explicitly in the causal diagrams. Operationalising our approach should 
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1  |  INTRODUC TION

1.1  |  Monitoring biodiversity

The goal of biodiversity monitoring is to understand how some vari-
able of interest Y, often when summarised across the relevant land-
scape or study area, has changed over time (cf. Yoccoz et al., 2001). 
Y might be a species' (relative) abundance, occupancy or some sum-
mary thereof across many species. The landscape is often delim-
ited by national boundaries (Moussy et  al.,  2022), but in principle 
it could be any geographic area. Y is usually summarised across the 
landscape periodically by taking its mean or something similar (e.g. 
a categorical year effect from a model in which 𝑌 is the response; 
Brereton, Roy, et al., 2011; Powney et al., 2019; Stroh et al., 2023).

To calculate the landscape-wide mean of Y directly, one would 
need to know its distribution across the landscape as a whole (i.e. 
its value at every location). Generally, however, the landscape dis-
tribution of Y is not known, because it is not possible to collect data 
at every location. Instead, the usual strategy is to split the landscape 
into areal units, or ‘sites’, and to collect data at some of them. The 
landscape-wide mean of Y is then estimated from the sample of sites 
for which data are available.

1.2  |  Geographic sampling biases

When estimating the landscape-wide mean of Y from a sample of 
sites, there is a risk of geographic sampling bias. A dataset is geo-
graphically biased if the distribution of Y across sampled sites dif-
fers from its distribution across the wider landscape. An analogous 
definition is the existence of a non-zero correlation between Y and a 
sample inclusion indicator R, which takes the value 1 at sampled sites 

and 0 elsewhere (Aubry et al., 2024; Boyd, Powney, & Pescott, 2023; 
Meng, 2018; see Table 1 for list of key variables). If the correlation is 
positive, then the bias is positive (i.e. the mean of Y is larger across 
sampled sites than across the landscape as a whole), and vice versa. 
The greater the magnitude of the correlation, the more severe the 
bias.

Biodiversity monitoring data are often collected in such a way 
that the same factors affect R and Y, which induces a correlation 
between the two (and therefore a bias). To give one simple exam-
ple (many others are possible), Y might be some species' abundance, 
which is positively affected by habitat quality. Habitat quality might 
also have a positive effect on R, because data collectors are often 
volunteer naturalists (i.e. citizen scientists) and prefer to visit sites 
that are interesting in terms of wildlife (Bowler et al., 2022; Forister 
et  al.,  2023). In this situation, Y would be larger at sampled sites, 
which is to say that there would be a positive bias. The reverse would 
be true if sampling was more likely at sites where species are far-
ing poorly: say, in built-up areas that have poor quality habitat, but 
which are easy for recorders to access by road (Hughes et al., 2020).

Data from structured monitoring schemes are less suscep-
tible to geographic biases than those from most other sources 
(Geldmann et al., 2016), but they are not immune. Many structured 
monitoring schemes aim to collect data at a random sample of 
sites (e.g. Pescott et al., 2019; Robbins et al., 1986). If implemented 
properly, random sampling ensures no correlation between R and 
Y in expectation (i.e. on average over many possible samples; see 
Meng, 2018). Obtaining a true random sample is challenging, how-
ever, especially if there is a reliance on volunteers to collect the 
data (which is true of many monitoring schemes). The volunteers 
might be unwilling or unable to visit some randomly selected sites, 
whether because they are difficult to access, uninteresting in 
terms of wildlife or for some other reason (Pescott et al., 2015). 

be less costly than full probability sampling, which would be needed to satisfy the 
assumptions of conventional approaches.

K E Y W O R D S
directed acyclic graph, expert consultation, imputation, sampling bias, species abundance, time 
trend

Variable Denoted by Description

Species (relative) 
abundance

Y An index of the number of individuals of the focal 
species present at each site or some other variable of 
analytic interest (e.g. occupancy)

Sample inclusion 
indicator

R Binary variable taking the value 1 for sampled sites and 
0 elsewhere

Auxiliary variables 
(adjustment set)

A A set of variables that are not of direct analytic interest 
and which we assume to be measured at every site (e.g. 
via satellite). A good set of auxiliary variables explain the 
dependence between R and Y

TA B L E  1  Description of key variables 
and sets of variables.
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    |  3BOYD et al.

Nominally random samples with incomplete uptake of sites, or 
‘nonresponse’ in survey sampling parlance, are almost certain to 
be biased (Bailey, 2023a).

1.3  |  Mitigating geographic biases

Various ‘model-based’ approaches have been developed to miti-
gate sampling biases (Buckland et al., 2000), many of which exploit 
the fact that some set of variables A could explain the correlation 
between R and Y (Lohr, 2022b; Meng, 2022). (Other model-based 
approaches to dealing with sampling biases work on different 
premises; we do not cover these here except for a brief overview 
in the Section 4.) If, to use the above example, R and Y are both 
greater at sites with good quality habitat, then the presence of 
that habitat will explain some of the correlation between the two. 
When the variables in A can be identified—a point we come back 
to below—and are reflected in available data, statistically ‘adjust-
ing for’ them will reduce the sampling bias (Collins et  al.,  2001; 
Mohan et al., 2013).

One way to adjust for A is to fit a ‘superpopulation model’, which 
is a regression (or other type of) model for Y that includes A as co-
variates (Elliott & Valliant,  2017). In effect, the superpopulation 
model stratifies sites based on levels of A and predicts the average 
or expected value of Y for each stratum. If A explains the correla-
tion between R and Y, the two should be uncorrelated within each 
stratum, and the predicted within-stratum means should be close to 
their true values (as there is no sampling bias). Averaging the within-
stratum means of Y with respect to the distribution of A across all 
sites in the landscape yields an ‘adjusted’ estimate of the landscape-
wide mean of Y (the target quantity). More simply, the average of 
the superpopulation predictions across all sites is the estimate of 
the landscape-wide mean—or, in practice, the average of the predic-
tions for non-sampled sites and the observations for sampled sites 
(Elliott & Valliant, 2017)—and it is unbiased if A completely explains 
the geographic bias.

1.4  |  Causal diagrams and what to adjust for

To identify the variables in A, insight can be gleaned from causal in-
ference, where a similar challenge arises. Recall that A is the set of 
variables that explains the correlation between R and Y . In causal 
inference, where to goal is to estimate the causal effect of one 
variable on another, analysts must identify and adjust for the set 
of variables that explain the non-causal portion of the relationship 
between the two (Pearl et  al.,  2016). One way to identify these 
variables, which could also be used to identify the variables in A, is 
to construct ‘causal diagrams’ (Greenland et al., 1999; Thoemmes 
& Mohan, 2015).

Causal diagrams—not to be confused with parametric structural 
equation models—will not be familiar to some ecologists (but see 
Grace & Irvine,  2020), so we will introduce the relevant concepts 

using the example in Figure  1 (a full description of the graph in 
Figure  1 is provided in the Methods section). An arrow from one 
variable to another indicates a direct causal effect; that is, it indi-
cates that the cause is part of the real-world function that deter-
mines the value of the effect (Pearl et al., 2016). In Figure 1, annual 
temperature (annual_temp) has a direct effect on Y, which is a spe-
cies' abundance. A path consists of several variables linked by arrows 
regardless of the direction of those arrows. Figure 1 depicts a path 
linking R (site inclusion) to Y: R ← heather_grass → heather_grass_
quality → Y. The existence of a path between two variables implies 
that they are correlated, whether by association or a causal link. 
Hence, Figure 1 implies a correlation between R and Y and therefore 
a geographic bias.

While a path between two variables implies that they are cor-
related (dependent1), it does not imply that the dependence is un-
breakable. Rather, it might be possible to “block” paths between 
variables, which is to say, to block the flow of association. Blocking a 
path is achieved by adjusting for certain variables (i.e. A), and a set of 
rules—the rules of d-separation—tell us which ones (Cinelli et al., 2022; 
Pearl et  al.,  2016). It is not necessary to spell out the rules of d-
separation here, partly because they are described elsewhere (see the 
references above) and partly because they are built into software 
packages such as the R package dagitty (Textor et al., 2016). The im-
portant point is that the rules can be used to determine the sets of 
variables A that, when statistically adjusted for, will render R and Y in-
dependent (if such a set exists; Thoemmes & Mohan, 2015).

Identifying the correct set of variables in A is contingent on the 
causal diagram being an accurate reflection of reality, and there are 
broadly two ways to achieve this (which are not mutually exclusive). 
One is to consult domain experts, who understand the relevant 
system, when constructing the diagram (Grace & Irvine, 2020). The 
other is to develop the diagram iteratively and test the implied con-
ditional independencies (according to the rules of d-separation) of 
each iteration (Pearl et al., 2016). Where data are missing on Y for 
most sites (i.e. where R = 0), it will not be possible to test many of a 
diagram's implied conditional independencies, in which case consult-
ing domain experts is even more important than usual. Of course, 

 1For convenience, we will use the terms correlation and dependence interchangably. 
Strictly speaking, a nonlinear dependence might not imply a correlation. 

F I G U R E  1  A simplistic causal diagram depicting causes and 
effects of sample inclusion R and a species' abundance Y.
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4  |    BOYD et al.

experts cannot be expected to have a perfect understanding of most 
systems, and we come back to this point in several places below.

1.5  |  Structure of this paper

In this paper, we demonstrate how one might combine expert knowl-
edge with causal diagrams and superpopulation models to mitigate 
geographic biases in biodiversity monitoring data (see Figure 2 for 
an overview). We assume that a time trend in the mean of Y across 
all sites in the relevant landscape is the target quantity, and it is 
estimated by fitting separate superpopulation models for each of 
several time-periods. (An alternative approach is to estimate param-
eters describing the time trend in Y itself, which is perfectly valid 
but which we do not consider here.) Starting with some simple simu-
lations, we test the abilities of superpopulation models including A 
as covariates to recover the landscape-wide mean of Y from per-
fect and imperfect (i.e. subjected to measurement error) data on A. 
Next, we apply our method to empirical data from the UK Butterfly 
Monitoring Scheme (UKBMS). The scheme estimates time trends 
in the mean abundances butterflies in the UK using a model that 

does not adjust for geographic bias, and we compare these trends to 
those produced using superpopulation models. In the final section, 
we discuss the pros and cons of our approach and how it could be 
improved in future.

2  |  METHODS

2.1  |  Demonstrating superpopulation modelling via 
simulation

Although superpopulation models can mitigate geographic biases in 
theory, reality is more complex. It is likely, for example, that data will 
not be available on some variable(s) in A at the exact location of a 
site. Instead, the available data might represent an average across 
some larger area in which the site is situated. Alternatively, data 
might be available on A at the precise location of the site but not 
for the relevant time-period. In these cases, we would expect the 
data to correlate with the true variable(s) in A, but not to be a per-
fect proxy. To test the implications of including imperfect data on A 
in a superpopulation model, as well as some other methodological 

F I G U R E  2  Schematic depicting a simple scenario that illustrates how causal diagrams can be used to identify and correct sampling biases 
in biodiversity monitoring data. In this example, the target parameter is the mean of a variable Y (e.g. species abundance) across a predefined 
set of sites, a fraction of which have been sampled.
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    |  5BOYD et al.

choices, we conducted a simple simulation study. (see Supporting 
Information S3 for an additional simulation that includes two time-
periods and the estimation of a trend).

Our simulation was based on the causal diagram in Figure 1. The 
diagram depicts the causes of some species' abundance Y and sam-
ple inclusion R across 250,000 sites in a simple virtual landscape. It 
implies that the quantity of good quality heather grassland (heather_
grass_quality) and annual temperature at each site directly affect Y. 
The quantity of good quality heather grassland at a site is determined 
by the total quantity of heather grassland (of any quality; heather_
grass) and the proportion that is well managed (management). R is 
greater at sites with more heather grassland, because recorders know 
that it is a favourable habitat for the focal species, which they hope to 
see. The presence of major roads near a site makes it more accessible 
so it also affects R. According to the rules of d-separation, the causal 
diagram in Figure 1 implies that R is independent of Y given heather 
grassland (i.e. there is only one variable in A).

To simulate the data, we used the simulateSEM function in the R 
package dagitty (Textor et al., 2016). With the exception of R, all vari-
ables are standard normal (i.e. mean of 0 and unit variance). Other 
than causes of R (see below), each variable explains ~25% of the vari-
ation in its direct descendent. R is a binary variable (0 if the data is 
missing and 1 otherwise), so we could not simulate it in the same 
way as the others. Instead, following Thoemmes and Rose  (2014), 
we simulated a latent standard normal variable and discretized it by 
assigning all values above the first percentile the value 1 and the 
remainder the value 0 (i.e. we assume data on Y are missing for 99% 
of sites). A consequence of this strategy is that each cause of R ex-
plains less than 25% of its variance, because discretizing the latent 
normal variable attenuates the correlation between the two. Strictly 
speaking, the latent normal variable should be included in the causal 
diagram in Figure 1, but it does not affect its implied conditional in-
dependencies, so we omit it for simplicity.

Having simulated the data, we estimated the mean of Y across all 
sites using the data at sites where R = 1 (i.e. the sample). We used six 
estimators, which are listed in Table 2. The first is the sample mean, 
and the remainder are superpopulation models—in this case, linear 
regressions—including different covariates. The first superpopu-
lation model includes A (heather_grass) as a covariate. The second 
includes A and an additional cause of Y (annual_temp), which should 
increase precision (Cinelli et al., 2022). The remainder of the super-
population models include correlates of A (with different strengths 
of correlation) to reflect the fact that the available data are unlikely 
to be error-free.

We evaluated the superpopulation models' performances in 
terms of their estimation error. The procedure involved simulating 
1000 datasets based the causal diagram in Figure 1 and calculating 
the difference between the true, landscape-wide mean of Y and the 
superpopulation model estimate for each one. The 1000 datasets 
differed slightly from one another, as there is a random component 
to the simulateSEM function. Averaging the estimation error across 
the 1000 estimates of mean Y for each method gives an estimate of 
its estimator bias.

2.2  |  UKBMS case study

2.2.1  |  The scheme

To demonstrate how causal diagrams and superpopulation models might 
be used to correct biases in a real dataset, we applied them to data from 
the UK Butterfly Monitoring Scheme (UKBMS). The UKBMS has been 
running since 1976 (Pollard & Yates, 1996). Data are collected by volun-
teers, who walk transects at a network of sites in the UK and count the 
butterflies they see within an imaginary 5-m box when weather permits 
(Pollard, 1977). The volunteers are free to decide where to establish tran-
sects and generally do so in good quality semi-natural habitat, where 
butterflies are most abundant (Brereton, Roy, et al., 2011). Recorders are 
asked to walk UKBMS transects at least once in each of the 26 weeks 
from April 1 to September 29 to cover the main flight periods of UK 
butterflies. On average, however, ~20 weeks are sampled due to poor 
weather conditions, recorder availability and so forth.

In 2009, the Wider Countryside Butterfly Survey (WCBS) was 
established and incorporated in the UKBMS. The primary motivation 
for the WCBS was to increase coverage of habitats that were poorly 
represented by the UKBMS (Brereton, Cruickshanks, et  al.,  2011). 
Hence, rather than being chosen by the volunteers, WCBS sites 
are located within randomly selected 1 km grid squares in the UK. 
Importantly, however, volunteers are not willing/able to visit all 
WCBS squares: they prefer to visit and to re-visit sites that are ac-
cessible or where they are likely to see species that interest them. 
Consequently, WCBS squares are not truly random. WCBS transects 
also differ from traditional UKBMS transects in that volunteers are 
asked to walk them a minimum of twice in July–August (although 
some do more) at least 10 days apart.

2.2.2  |  Existing analytical method

The current method used to analyse the UKBMS (including WCBS) 
data has three steps (Dennis, Morgan, Freeman, Brereton, & 

TA B L E  2  Six analytical approaches to estimating the mean of 
Y (species abundance) across all sites in the simulated landscape. 
The adjustment set is the set of covariates included in the 
superpopulation model.

Estimator Adjustment set Details

1 NA Sample mean

2 Heather_grass Superpopulation 
model

3 Heather_grass, 
annual_temp

Superpopulation 
model

4 Correlate of heather_grass 
(� = 0.5)

Superpopulation 
model

5 Correlate of heather_grass 
(� = 0.7)

Superpopulation 
model

6 Correlate of heather_grass 
(� = 0.9)

Superpopulation 
model
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6  |    BOYD et al.

Roy, 2016). The first is to fit a GAM to estimate normalised seasonal 
abundance curves for each species and year (these do not vary geo-
graphically; Dennis et al., 2013). The second is to estimate annual 
site indices of relative abundance using the fitted GAMs. The total 
observed counts are scaled by the proportion of the seasonal abun-
dance curve that was surveyed to provide an estimate of the ex-
pected total had the entire season been surveyed. Finally, a Poisson 
GLM with site and year effects is fitted to the annual site indices, 
and the estimated year effects are used as annual indices of rela-
tive abundance. In the final GLM, each site/year index is weighted in 
proportion to the fraction of the 26-week flight curve that was sam-
pled (rather than imputed). Consequently, the WCBS sites, which are 
sampled as little as twice per year, should be heavily downweighted.

2.2.3  |  New analytical method

We modified the current UKBMS framework by replacing the final 
GLM with superpopulation models that adjust for A. Steps one and 
two, which produce seasonally adjusted annual site indices of rela-
tive abundance, remain the same and the superpopulation models 
are fitted to these indices. Taxon and dataset experts provided the 
information needed to construct causal diagrams and identify the 
variables in A (more details below).

For demonstrative purposes, we focused on two species of 
butterfly, whose geographic distributions and ecologies are very 
different: the meadow brown (Maniola jurtina) and the small pearl-
bordered fritillary (Boloria selene). The causes and effects of Y, that 
is relative abundance, differ between the two species. As we are 
only working with one dataset, collected by the UKBMS (including 
WCBS sites), the causes and effects of R (site inclusion) do not differ 
between species.

We asked two taxon and UKBMS experts to provide informa-
tion on the causes and effects of R and Y via the forms in Supporting 
Information  S1 and S2. Both experts (DBR and IM) are authors on 
this paper. To constrain their answers, we asked the experts to select 
causes and effects from a list of 49 land cover (i.e. habitat), biocli-
matic, geological and other variables on which data are available (see 
Supporting Information S3 for details of the data). Of course, this strat-
egy risks omitting important variables—a point we come back to in the 
Discussion. The experts provided their feedback independently.

Rather than the transect-level, we asked the experts to think 
about causes and effects of R and Y at the coarser resolution of 
1 × 1 km, which was necessary for two reasons. First, it is the fin-
est resolution at which data on some variables in A are available. 
The second reason is more complex. Recall that the superpopulation 
model predictions of Y must be averaged across all sites in the land-
scape. It would be conceptually challenging the split the landscape 
into imaginary transects, which are the ‘true’ sites, but splitting it 
into 1 × 1 km grid squares is simple. In the few cases where multiple 
UKBMS transects fell within the same grid square, we averaged the 
site indices across those transects in a given year to obtain a grid 
square-level data point.

The information provided by the experts enabled us to construct 
causal diagrams and, using the rules of d-separation, to identify the 
variables in A (according to each expert). In total, we produced four 
causal diagrams: one for each species and expert. For any one di-
agram, there may be multiple sets of variables A that d-separate R 
and Y. We selected the ‘minima’ (i.e. smallest) set that only included 
variables on which data are available (listed in Table 3).

Both experts indicated that some land cover (habitat) types 
have negative effects on R and Y, but we did not include these in 
the causal diagrams. Our logic is that these land cover types are only 
detrimental to the species in the sense that they are not the right 
habitat (indeed, this is how it was phrased by expert two [IM]). The 
land cover data are expressed as the proportion of each 1 km grid 
square covered by each land cover type (Morton et al., 2022), which 
means that a large proportion of one necessarily means a small pro-
portion of another (i.e. the land cover types are not independent). 
That is, a high proportion of favourable habitat would imply a low 
proportion of unfavourable habitat, and vice versa, so it is not neces-
sary to include unfavourable land cover types in the causal diagrams.

Having identified two sets of variables A (one from each expert) 
for each species, the next step was to fit superpopulation models 
including these variables as covariates. We fitted one model per spe-
cies, expert (i.e. A) and year. As the data are (normalised) counts, and 
for consistency with the current UKBMS method, we used Poisson 
GLMs with a log link function (Dennis, Morgan, Freeman, Brereton, 
Roy, Ecology, et al., 2016):

where λi is the expected count at grid square i , Ai is the vector of ad-
justment variables A at grid square i , and � is the vector of coefficients 
to be estimated. A prediction of the expected count for grid square i  is

where �̂ is the iteratively reweighted least squares estimate of �. If s 
is the set of sampled grid squares and s is the set of non-sampled grid 
squares, the superpopulation model estimate of the landscape-wide 
mean of Y is (Elliott & Valliant, 2017)

Yi ∼ Pois
(

λi

)

log
(

λi

)

= Ai� ,

λ̂i = eAi �̂ ,

TA B L E  3  Minimal adjustment sets derived from the experts' 
knowledge for each species. The adjustment set need not include 
all predictors of the species' abundances.

Expert Species Minimal adjustment set

1 Meadow brown Calcareous grassland

1 Small pearl-bordered 
fritillary

Broadleaved woodland

2 Meadow brown Calcareous grassland and 
elevation

2 Small pearl-bordered 
fritillary

Broadleaved woodland, 
calcareous bedrock and 
heather
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    |  7BOYD et al.

That is, it is the sum of the observed counts at sampled sites and the 
predicted counts at non-sampled sites divided by the total number of 
sites in the landscape N. To measure change over time, we used the 
slope from a linear regression of ̂YN on year.

For simplicity, we treated the model covariates (i.e. A) as constant 
over time. This was a natural choice for elevation and calcareous bed-
rock, which are genuinely time-invariant (at least since 1976). Our ap-
proach might seem less appropriate for the three land cover classes that 
featured in at least one of the models (Table 3), but inspection of the 
available land cover maps shows that there has been little change in the 
recent past (85% of 25 × 25 m grid squares in Great Britain were the same 
land cover class in 2015 as in 1990; Supporting Information S3). Full de-
tails of the auxiliary data are provided in Supporting Information S3.

2.2.4  |  Comparing trends from the current and new 
methods

To enable comparisons between the year effects from the current 
UKBMS models and the annual estimates of mean abundance from 
the superpopulation models, we present all outputs on the log10 scale 
and relative to the values in the final year of the time-series (2022).

2.2.5  |  Variance estimation

For both the superpopulation models and the simpler GLM used 
by the UKBMS, we estimated the sampling variance in each year's 
index of relative abundance by bootstrapping across sites. We cre-
ated 1000 bootstrap samples by resampling the site indices with 
replacement within each year (since different sites were sampled in 
different years) and fitted a model to each sample. We present per-
centile (95%) confidence intervals for each year from the bootstrap 
distribution of the annual indices (year effects from the simple GLM 
and estimates of mean Y from the superpopulation models). In prin-
ciple, one could also use bootstrapping to estimate the variance of 
the species' seasonal flight curves. Since we are primarily interested 
in the effects of geographic bias on the recoverability of mean abun-
dance in each time-period, and for consistency with the UKBMS, we 
did not go to these lengths here, but we acknowledge that the un-
certainty intervals could be larger (for both approaches) if we had.

3  |  RESULTS

3.1  |  Simulations

Figure 3 shows the estimation error—the difference between the true, 
landscape-wide mean of Y and the estimate thereof—of each analyti-
cal method listed in Table 1. The sample mean is highly biased (mean 

error, i.e. bias, of ~0.35 in units of standard deviations of Y). Using a 
superpopulation in which A is the sole covariate (A comprises just one 
variable in this example), the estimate of mean Y across all sites is un-
biased (scenario 2; mean error ~0). The estimate is also unbiased if A 
plus an additional cause of Y are included as covariates (scenario 3), 
and it has slightly lower variance than the estimate from scenario 2. 
Including a correlate of A as the covariate reduces the bias relative to 
the sample mean but does not eliminate it (scenarios 4–6; see Table 2). 
The stronger the correlation between A and its proxy, the closer the 
bias to that from scenario 2, where A itself was included as a covariate.

3.2  |  UKBMS case study

3.2.1  |  Identifying the variables in A

The experts provided different perspectives on the causes and ef-
fects of R (UKBMS site inclusion including WCBS sites) and Y (the 
abundances of the meadow brown and small pearl-bordered fritil-
lary). Their feedback is provided in full in Supporting Information S1 
and S2. Figure 4 shows the causal diagram reflecting expert two's 
knowledge of the causes and effects of R and the Y in the case of the 
small pearl-bordered fritillary.

A major difference between the two experts' feedback is that 
expert two indicated positive effects of several land cover classes 
(habitats) on Y conditional on the way that they are managed. That is, 
the habitats support high abundances of the species, but only if they 
are managed appropriately. We codified these conditional effects in 

̂
YN =

∑

i∈ s

yi +
∑

i∈ s

λ̂i

N
.

F I G U R E  3  Estimation error (difference between the true, 
landscape-wide mean of Y and the estimate thereof) under each 
of the six scenarios in Table 2. The dots represent the mean error 
across 1000 simulated datasets, and the error bars depict the 2.5th 
and 97.5th percentiles.
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8  |    BOYD et al.

the causal diagrams by introducing new, unobserved variables. One is 
‘management’, which indicates whether the habitat is managed appro-
priately for the species, and the others are variables that denote the 
proportion of each site that is both the relevant land cover class and 
managed appropriately (i.e. ‘good’ quality). For example, the expert 
indicated that heather grassland has a positive effect on the abun-
dance of the small pearl-bordered fritillary conditional on appropriate 
management. In the causal diagram, the effect of heather grassland 
on Y is heather grassland → quality heather grassland → Y, where 

management also has a direct effect on quality heather grassland 
(Figure 4). Note that we did not specifically ask the experts to provide 
information on conditional effects, which is why expert one did not.

From each of the four causal diagrams—one for each species and 
expert—we identified the minimal adjustment set A (the variables 
on which R and Y are hopefully conditionally independent) using the 
rules of d-separation (Table 3). For each diagram, it is possible to d-
separate R and Y without having to adjust for any of the unobserved 
variables introduced to depict the conditional effects of land cover 

F I G U R E  4  Causal diagram depicting causes and effects of sample inclusion in the UK Butterfly Monitoring Scheme (R) and the abundance 
of the small pearl-bordered fritillary (Y). The diagram reflects the knowledge of a taxon and UKBMS expert (expert two). N_dep is nitrogen 
deposition, mean_T_wet_Q is the mean temperature of the wettest quarter of the year, elev is elevation, bl_wood is broadleaved woodland, 
protected is the proportion of each grid square that is some form of protected area and variables suffixed by ‘_quality’ denote the proportion 
of each grid square that is both the relevant land cover type (indicated by the rest of its name) and managed appropriately for the species. 
The other variables are self-explanatory.
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    |  9BOYD et al.

classes on Y (i.e. management or ‘quality’ habitats). For both species, 
the variables in A differ between experts, which meant that two su-
perpopulation models had to be fitted for each one.

3.2.2  |  Current versus new model outputs

We compared the superpopulation models' outputs to those of 
the current UKBMS GLM in terms of the annual estimates and the 

long-term trend, which is the coefficient from a regression of an-
nual index on year (Figures 5 and 6). For both species, the outputs of 
the superpopulation models are markedly different to those of the 
UKBMS method. For the meadow brown, the two superpopulation 
models (one for each expert) agree that there has been a decline in 
abundance, whereas the UKBMS method suggests that abundance 
has been stable over time. For the small pearl-bordered fritillary, the 
current UKBMS method suggests a decline in abundance over time, 
whereas the two superpopulation models indicate a slight increase.

F I G U R E  5  Time trends in the annual indices of abundance for the meadow brown produced by the current UKBMS GLM (UKBMS), the 
superpopulation model based on expert one's knowledge (SM_1) and the superpopulation model based on expert two's knowledge (SM_2). 
The left panel shows the time-series, and the right panel shows the estimated trends, which are the coefficients from a regression of index 
value on year. The uncertainty in both panels was derived by bootstrapping across sites. The vertical lines in the right-hand panel represent 
the median slopes.

F I G U R E  6  Time trends in the annual indices of abundance for the small pearl-bordered fritillary produced by the current UKBMS GLM 
(UKBMS), the superpopulation model based on expert one's knowledge (SM_1) and the superpopulation model based on expert two's 
knowledge (SM_2). The left panel shows the time-series, and the right panel shows the estimated trends, which are the coefficients from a 
regression of index value on year. The uncertainty in both panels was derived by bootstrapping across sites. The break in the Y axis on the 
left panel was introduced to show the full uncertainty in SM_2 whilst also enabling comparison of the three models. The vertical lines in the 
right-hand panel represent the median slopes.
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10  |    BOYD et al.

4  |  DISCUSSION

We have demonstrated how causal diagrams and superpopulation 
models might be used to estimate the landscape-wide mean of some 
variable of interest Y (e.g. a species' abundance or occupancy) from 
geographically biased monitoring data. Our simulations show that, if 
the variables that explain the geographic bias (i.e. A) are measured 
(without error), known and included in the superpopulation model, 
then that model is unbiased (Figure 3). Clearly, these ideal conditions 
are unlikely, a point we come back to below. By fitting models for 
multiple time-periods, we estimated time trends in the mean relative 
abundances of two species of butterfly using data from the UKBMS. 
The trends are different to those estimated using the UKBMS's ex-
isting method, which does not adjust for geographic bias (Figures 5 
and 6).

The experts (DBR, IM, MB and RF) were not confident about 
whether the superpopulation models more accurately captured 
the UK-wide trends for the two species than the existing UKBMS 
method. The UKBMS conducts a regional breakdown of each spe-
cies' trend in the UK (https://​ukbms.​org/​offic​ial-​stati​stics​). For the 
small pearl-bordered fritillary, it reports a strong decline in England 
but a strong increase in Scotland. Scotland is relatively underrep-
resented in the UKBMS data, so a good adjustment should place 
more weight on the trend in this region. The superpopulation mod-
els clearly give more weight to the Scottish trend than the UKBMS 
method—one even suggests that the species is increasing at the UK 
level. Nevertheless, two experts (DBR and RF) are sceptical that the 
small pearl-bordered fritillary is not declining at the UK level (based 
on e.g. an observed decline in its distribution). All experts felt that 
the superpopulation model estimates for the meadow brown are 
plausible (although none were highly confident). Their reasoning is 
that the species is probably doing better or at least as well at sam-
pled than at non-sampled locations.

Unfortunately, it is not possible to say for sure whether a super-
population model has successfully corrected sampling biases, that 
is reduced the correlation between R and Y, because data on Y are 
not available where R = 0 (Lohr,  2022a). Instead, the analyst must 
use extra-statistical logic to assess the plausibility of the assump-
tion that sampling bias is smaller having accounted for A. Insight into 
the plausibility of this assumption can be gleaned directly from the 
causal diagrams. For example, the diagram might reveal that a vari-
able on which no data are available induces a dependence between R 
and Y, in which case, according to that diagram, the superpopulation 
model will not have eliminated the bias.

Since it is not possible to quantify sampling biases, or the extent 
to which any given adjustment has corrected them, qualitative “risk-
of-bias” assessment tools might prove useful. One example, which 
was developed specifically for biodiversity monitoring, is ROBITT 
(Boyd et al., 2022). ROBITT comprises a series of questions about 
whether there is evidence of sampling bias (geographic and other-
wise) and how the analyst intends to correct it. Causal diagrams de-
picting the assumed drivers of the sampling bias could be used to 
answer these questions.

From a theoretical perspective, there are some limited cases 
in which the UKBMS model and others like it could capture the 
true trend in the landscape-wide mean of a species' abundance 
Y despite not adjusting for A. If, for example, the bias is time-
invariant in terms of both sign and magnitude, then no adjustment 
is needed. This scenario is highly unlikely, however. The distribu-
tion of sample inclusion R changes over time, because different 
sites are sampled in different years. So too does the distribution 
of Y unless the focal species' relative abundance remains the same 
at each site in each time-period, which is clearly implausible. As 
the distributions of R and Y change over time, it is highly unlikely 
that the correlation between the two, that is the bias, would re-
main constant. We also note that the existing UKBMS model could 
produce unbiased estimates of alternative estimands using the 
UKBMS data. For example, one might be interested in the trend 
in the mean abundance across occupied sites (i.e. where Y ≥ 1), in 
which case sampling all populations would permit unbiased infer-
ence. Of course, this would require knowing the locations of all 
populations, and range shifts would complicate matters.

Whether a superpopulation model estimate of the landscape-
wide mean of Y is less biased than a naïve (i.e. unadjusted) one 
depends on several factors, some of which were captured by our 
simulations. Where data on all A are available, but they were mea-
sured with error, the adjustment should reduce but not eliminate 
bias (Figure 3). Matters are more complex where some variables in 
A are omitted from the model and/or where some variables that are 
not in A are erroneously included (both of which may result from 
mis-specifying the causal diagram). Erroneously included/omitted 
variables that are more strongly related to R and Y have greater po-
tential to cause a bias, because they can induce a larger correlation 
between the two (Collins et  al.,  2001; Thoemmes & Rose,  2014). 
However, the sign of the relationships is also relevant: if one erro-
neously omitted/included variable induces a negative geographic 
bias and another induces a positive one, then the two might cancel 
each other out and cause no bias (Thoemmes & Rose, 2014). Our 
simulations do not capture the effects of mis-specifying the causal 
diagrams, because any choice of a select few scenarios of strengths 
and directions of effects and causal diagram structures would have 
been necessarily arbitrary, but analysts should recognise that the 
success of the superpopulation modelling approach is contingent on 
accuracy of the causal diagram.

Indeed, constructing accurate causal diagrams is the major 
practical limitation of our approach. Analysts might have hundreds 
or even thousands of species in mind, and experts might not have 
the knowledge to construct causal diagrams for each one (noting 
that, for multispecies surveys such as the UKBMS, it is only the 
Y part of the causal diagram that must be constructed separately 
for every species, not the R part). Even if they did, it would be a 
time-consuming exercise (although less costly than full probabil-
ity sampling, which would be needed to satisfy the assumptions of 
conventional methods). One option for reducing this burden might 
be to identify and adjust for a set of variables that have very large 
causal effects on R and Y for many species: for example, woodland 
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in the case of woodland birds or grassland in the case of grassland 
butterflies. Such a strategy is likely to miss important variables in A 
for some species, however, so it should only be used as a last resort. 
Another option might be to crowd-source information on the causes 
and effects of R and Y from taxon and dataset experts. This strategy 
could yield feedback from more than two experts (as here) and po-
tentially many possible adjustment sets A. A decision would need to 
be made about whether to fit a model for each unique A or whether 
to ask the experts to reach a consensus. We think that fitting models 
for each A is preferable, as it allows the analyst to assess the sensi-
tivity of the results to the experts' feedback. Indeed, it is apparent 
in Figure 6 that the results can vary appreciably depending on the 
structure of the causal diagram and by extension which variables are 
included in the superpopulation model. If needed, a single measure 
of change could be derived by averaging across the models whilst 
propagating the inter-model uncertainty.

Another question for the analyst is how comprehensive the 
causal diagrams need to be. Variables that explain a negligible por-
tion of the correlation between R and Y do not have the capacity to 
cause much bias (Thoemmes & Rose, 2014) and can be safely omit-
ted from the causal diagram (assuming they are truly “unimportant”). 
Such variables might be distal in the sense that their effects are 
highly indirect (i.e. they are far upstream of R and Y), or they could 
have small but direct effects. In our examples, the experts did not 
report on variables whose causal effects on R and Y they considered 
to be very small (of course, this was based on intuition), and we did 
not ask them to report on distal variables. We do not claim that lim-
iting the diagrams in this way will always be the best approach, but 
unnecessarily complex causal diagrams will result in a large set of 
variables in A, which could increase the variance in the superpopula-
tion model estimates for very little benefit (especially if collinearity 
becomes a problem).

Having identified the variables in A, superpopulation mod-
els are just one of several methods that could be used to adjust 
for them. Alternatives include inverse probability weighting (Fink 
et al., 2023; Johnston et al., 2020), poststratification (Boyd, Stewart, 
& Pescott, 2023; Van Swaay et al., 2002) and more elaborate tech-
niques such as Multilevel Regression and Poststratification (MRP; first 
conceived by Gelman & Little, 1997). If Y is uncorrelated with R for 
given values of A, then sufficient information is available for each of 
these methods to recover the landscape-wide mean of Y in principle 
(Lohr, 2022a; Meng, 2022). In practice, however, violation of modelling 
assumptions (e.g. about the form of the relationships between R, Y and 
A) can introduce bias, so it might be preferable to opt for a model that 
permits flexible functional forms etc. (e.g. Fink et al., 2023).

Alternative methods exist that do not require complete knowl-
edge of or data on the variables in A, but these too come with strong 
assumptions. A practical option is to model geographic bias using 
spatial random fields, which assign a value of sampling intensity to 
every location in the landscape based on spatial autocorrelation in 
the sampling locations (e.g. Simmonds et al., 2020). Use of this ap-
proach essentially substitutes the assumption that R and Y are inde-
pendent given A for the assumption that they are independent given 

the spatial field and other covariates in the model (Diggle et al., 2010). 
Selection models, which involve modelling R and Y separately and 
making assumptions about their joint distribution, are another alter-
native (Bailey,  2023b). For an interesting discussion of the relative 
merits of methods that do and do not assume that R and Y are uncor-
related given A, see Bailey (2023a) and commentaries thereon.

5  |  CONCLUSIONS

Although alternatives are available, most model-based estimators of 
population parameters (here the landscape-wide mean of a species' 
abundance) assume that there is no sampling bias once a set of aux-
iliary variables has been adjusted for. In any given situation, there 
might exist a set of auxiliary variables that satisfy this assumption 
but identifying them is notoriously challenging. Historically, analysts 
have relied on empirical rules of thumb to identify the auxiliaries, 
but this strategy is unlikely to yield the correct set (Schuessler & 
Selb,  2023). Consequences of adjusting for the wrong set of vari-
ables range from failing to eliminate bias (best case) to inadvertently 
increasing it (Thoemmes & Rose, 2014). Expert-informed causal dia-
grams are a viable alternative to empirical criteria and can, in theory, 
identify the exact set of auxiliary variables needed to eliminate sam-
pling bias (Thoemmes & Mohan, 2015). Readers considering the use 
of causal diagrams to identify auxiliary variables might find our code 
(Boyd, 2025) helpful and should work with domain experts who have 
knowledge of the chosen dataset and taxon in question.

AUTHOR CONTRIBUTIONS
Robin J. Boyd and Oliver L. Pescott conceived the idea and devel-
oped the methodology. Robin J. Boyd led the writing of the man-
uscript. All authors commented critically on the manuscript. Ian 
Middlebrook and David B. Roy provided the information needed 
to construct the causal diagrams. Colin Harrower and Emily Dennis 
provided the data and demonstrated how to use it. Marc Botham 
quality checked the data.

ACKNOWLEDG EMENTS
R.J.B. and O.L.P. were supported by the NERC Exploring the 
Frontiers award number NE/X010384/1 “Biodiversity indicators 
from nonprobability samples: Interdisciplinary learning for science 
and society”. R.J.B. was also supported by the UKCEH National 
Capability for UK Challenges programme NE/Y006208/1. O.L.P. 
was also supported by the NERC award number NE/R016429/1 as 
part of the UK-SCAPE programme delivering National Capability. 
The UK Butterfly Monitoring Scheme is organised and funded by 
Butterfly Conservation, the UK Centre for Ecology & Hydrology, 
British Trust for Ornithology, and the Joint Nature Conservation 
Committee. The UKBMS is indebted to all volunteers who contrib-
ute data to the scheme.

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflicts of interest to disclose.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14492 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12  |    BOYD et al.

PEER RE VIE W
The peer review history for this article is available at https://​www.​
webof​scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1111/​2041-​
210X.​14492​.

DATA AVAIL ABILIT Y S TATEMENT
All code and data needed to reproduce the small pearl-bordered 
fritillary example and the simulations are available on Zenodo at 
https://​doi.​org/​10.​5281/​zenodo.​14605048 (Boyd, 2025).

ORCID
Robin J. Boyd   https://orcid.org/0000-0002-7973-9865 
Emily Dennis   https://orcid.org/0000-0003-2692-4415 
Richard Fox   https://orcid.org/0000-0001-6992-3522 
Oliver L. Pescott   https://orcid.org/0000-0002-0685-8046 

R E FE R E N C E S
Aubry, P., Francesiaz, C., & Guillemain, M. (2024). On the impact of 

preferential sampling on ecological status and trend assessment. 
Ecological Modelling, 492, 110707. https://​doi.​org/​10.​1016/j.​ecolm​
odel.​2024.​110707

Bailey, M. A. (2023a). A New paradigm for polling. Harvard Data Science 
Review, 5(3). https://​doi.​org/​10.​1162/​99608​f92.​9898eede

Bailey, M. A. (2023b). Polling at a crossroads: Rethinking modern urvey re-
search. Cambridge University Press (forthcoming). https://​doi.​org/​
10.​2753/​RSL10​61-​19752​30163​

Bowler, D. E., Bhandari, N., Repke, L., Beuthner, C., Callaghan, C. 
T., Eichenberg, D., Henle, K., Klenke, R., Richter, A., Jansen, F., 
Bruelheide, H., & Bonn, A. (2022). Decision-making of citizen scien-
tists when recording species observations. Scientific Reports, 12(1), 
1–12. https://​doi.​org/​10.​1038/​s4159​8-​022-​15218​-​2

Boyd, R. J. (2025). Code and data from: Using causal diagrams and super-
population models to correct geographic biases in biodiversity moni-
toring data. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​14605048

Boyd, R. J., Powney, G. D., Burns, F., Danet, A., Duchenne, F., Grainger, M. 
J., Jarvis, S. G., Martin, G., Nilsen, E. B., Porcher, E., Stewart, G. B., 
Wilson, O. J., & Pescott, O. L. (2022). ROBITT: A tool for assessing 
the risk-of-bias in studies of temporal trends in ecology. Methods 
in Ecology and Evolution, 13(March), 1497–1507. https://​doi.​org/​10.​
1111/​2041-​210X.​13857​

Boyd, R. J., Powney, G. D., & Pescott, O. L. (2023). We need to talk about 
nonprobability samples. Trends in Ecology & Evolution, 38(6), 521–
531. https://​doi.​org/​10.​1016/j.​tree.​2023.​01.​001

Boyd, R. J., Stewart, G. B., & Pescott, O. L. (2023). Descriptive inference 
using large, unrepresentative nonprobability samples: An introduc-
tion for ecologists. Ecology, 105(2), e4214.

Brereton, T., Cruickshanks, K. L., Risely, K., Noble, D. G., & Roy, D. B. 
(2011). Developing and launching a wider countryside butterfly 
survey across the United Kingdom. Journal of Insect Conservation, 
15(1), 279–290. https://​doi.​org/​10.​1007/​s1084​1-​010-​9345-​8

Brereton, T., Roy, D. B., Middlebrook, I., Botham, M., & Warren, M. (2011). 
The development of butterfly indicators in the United Kingdom and 
assessments in 2010. Journal of Insect Conservation, 15(1), 139–151. 
https://​doi.​org/​10.​1007/​s1084​1-​010-​9333-​z

Buckland, S. T., Goudie, I. B. J., & Borchers, D. L. (2000). Wildlife pop-
ulation assessment: Past developments and future directions. 
Biometrics, 56(March), 1–12. https://​acade​mic.​oup.​com/​biome​
trics/​​artic​le/​56/1/​1/​7263482

Cinelli, C., Forney, A., & Pearl, J. (2022). A crash course in good and bad 
controls. Sociological Methods & Research, 53, 1–30. https://​doi.​org/​
10.​1177/​00491​24122​1099552

Collins, L. M., Schafer, J., & Kam, C. (2001). A comparison of restric-
tive strategies in modern missing data procedures. Psychological 
Methods, 6(June), 330–351. https://​doi.​org/​10.​1037/​1082-​989X.6.​
4.​330

Dennis, E. B., Freeman, S. N., Brereton, T., & Roy, D. B. (2013). Indexing 
butterfly abundance whilst accounting for missing counts and vari-
ability in seasonal pattern. Methods in Ecology and Evolution, 4(7), 
637–645. https://​doi.​org/​10.​1111/​2041-​210X.​12053​

Dennis, E. B., Morgan, B. J. T., Freeman, S. N., Brereton, T. M., & Roy, D. B. 
(2016). A generalized abundance index for seasonal invertebrates. 
Biometrics, 72(4), 1305–1314. https://​doi.​org/​10.​1111/​biom.​12506​

Dennis, E. B., Morgan, B. J. T., Freeman, S. N., Brereton, T. M., Roy, D. 
B., Ecology, C., Lane, B., & Gifford, C. (2016). A generalized abun-
dance index for seasonal invertebrates. Biometrics, 72, 1305–1314. 
https://​doi.​org/​10.​1111/​biom.​12506​

Diggle, P. J., Menezes, R., & Su, T.-L. (2010). Geostatistical inference 
under preferential sampling. Applied Statistics, 59(2), 191–232. 
http://​www.​black​wellp​ublis​hing.​com/​rss

Elliott, M. R., & Valliant, R. (2017). Inference for nonprobability sam-
ples. Statistical Science, 32(2), 249–264. https://​doi.​org/​10.​1214/​
16-​STS598

Fink, D., Johnston, A., Auer, M. T., Hochachka, W. M., Ligocki, S., Oldham, 
L., Robinson, O., Wood, C., Kelling, S., Rodewald, A. D., & Fink, D. 
(2023). A double machine learning trend model for citizen science 
data. Methods in Ecology and Evolution, 2023(June), 1–14. https://​
doi.​org/​10.​1111/​2041-​210X.​14186​

Forister, M. L., Black, S. H., Elphick, C. S., Grames, E. M., Halsch, C. A., 
Schultz, C. B., & Wagner, D. L. (2023). Missing the bigger picture: 
Why insect monitoring programs are limited in their ability to doc-
ument the effects of habitat loss. Conservation Letters, 16, e12951. 
https://​doi.​org/​10.​1111/​conl.​12951​

Geldmann, J., Heilmann-Clausen, J., Holm, T. E., Levinsky, I., Markussen, 
B., Olsen, K., Rahbek, C., & Tøttrup, A. P. (2016). What determines 
spatial bias in citizen science? Exploring four recording schemes 
with different proficiency requirements. Diversity and Distributions, 
22(11), 1139–1149. https://​doi.​org/​10.​1111/​ddi.​12477​

Gelman, A., & Little, T. (1997). poststratification into many categories 
using hierarchical regression. Survey Methodology, 23(2), 127–335.

Grace, J. B., & Irvine, K. M. (2020). Scientist's guide to developing explan-
atory statistical models using causal analysis principles. Ecology, 
101(4), 1–14. https://​doi.​org/​10.​1002/​ecy.​2962

Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epi-
demiologic research. Epidemiology, 10(1), 37–48. https://​doi.​org/​10.​
1097/​00001​648-​19990​1000-​00008​

Hughes, A., Orr, M., Ma, K., Costello, M., Waller, J., Provoost, P., Zhu, C., 
& Qiao, H. (2020). Sampling biases shape our view of the natural 
world. Ecography, 44, 1259–1269. https://​doi.​org/​10.​1111/​ecog.​
05926​

Johnston, A., Moran, N., Musgrove, A., Fink, D., & Baillie, S. R. (2020). 
Estimating species distributions from spatially biased citizen sci-
ence data. Ecological Modelling, 422(December 2019), 108927. 
https://​doi.​org/​10.​1016/j.​ecolm​odel.​2019.​108927

Lohr, S. (2022a). Comments on “Statistical inference with non-probability 
survey samples”. Survey Methodology, 48(12), 331–338.

Lohr, S. (2022b). Sampling: Design and analysis (3rd ed.). CRC Press.
Meng, X.-L. (2018). Statistical paradises and paradoxes in big data (I): Law 

of large populations, big data paradox, and the 2016 us presiden-
tial election. Annals of Applied Statistics, 12(2), 685–726. https://​doi.​
org/​10.​1214/​18-​AOAS1​161SF​

Meng, X.-L. (2022). Comments on the Wu (2022) paper by Xiao-Li Meng 
1: Miniaturizing data defect correlation: A versatile strategy for 
handling non-probability samples. Survey Methodology, 48(2), 
1–22.

Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models for inference with 
missing data. Advances in Neural Information Processing Systems, 
1277–1285.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14492 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14492
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14492
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14492
https://doi.org/10.5281/zenodo.14605048
https://orcid.org/0000-0002-7973-9865
https://orcid.org/0000-0002-7973-9865
https://orcid.org/0000-0003-2692-4415
https://orcid.org/0000-0003-2692-4415
https://orcid.org/0000-0001-6992-3522
https://orcid.org/0000-0001-6992-3522
https://orcid.org/0000-0002-0685-8046
https://orcid.org/0000-0002-0685-8046
https://doi.org/10.1016/j.ecolmodel.2024.110707
https://doi.org/10.1016/j.ecolmodel.2024.110707
https://doi.org/10.1162/99608f92.9898eede
https://doi.org/10.2753/RSL1061-1975230163
https://doi.org/10.2753/RSL1061-1975230163
https://doi.org/10.1038/s41598-022-15218-2
https://doi.org/10.5281/zenodo.14605048
https://doi.org/10.1111/2041-210X.13857
https://doi.org/10.1111/2041-210X.13857
https://doi.org/10.1016/j.tree.2023.01.001
https://doi.org/10.1007/s10841-010-9345-8
https://doi.org/10.1007/s10841-010-9333-z
https://academic.oup.com/biometrics/article/56/1/1/7263482
https://academic.oup.com/biometrics/article/56/1/1/7263482
https://doi.org/10.1177/00491241221099552
https://doi.org/10.1177/00491241221099552
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1111/2041-210X.12053
https://doi.org/10.1111/biom.12506
https://doi.org/10.1111/biom.12506
http://www.blackwellpublishing.com/rss
https://doi.org/10.1214/16-STS598
https://doi.org/10.1214/16-STS598
https://doi.org/10.1111/2041-210X.14186
https://doi.org/10.1111/2041-210X.14186
https://doi.org/10.1111/conl.12951
https://doi.org/10.1111/ddi.12477
https://doi.org/10.1002/ecy.2962
https://doi.org/10.1097/00001648-199901000-00008
https://doi.org/10.1097/00001648-199901000-00008
https://doi.org/10.1111/ecog.05926
https://doi.org/10.1111/ecog.05926
https://doi.org/10.1016/j.ecolmodel.2019.108927
https://doi.org/10.1214/18-AOAS1161SF
https://doi.org/10.1214/18-AOAS1161SF


    |  13BOYD et al.

Morton, R., Marston, C., O'Neil, A., & Rowland, C. (2022). Land cover 
map 2018 (1km summary rasters, GB and N. Ireland). NERC EDS 
Environmental Information Data Centre. https://​doi.​org/​10.​5285/​
9b68e​e52-​8a95-​41eb-​8ef1-​8d29e​2570b00

Moussy, C., Burfield, I. J., Stephenson, P. J., Newton, A. F. E., Butchart, S. 
H. M., Sutherland, W. J., Gregory, R. D., McRae, L., Bubb, P., Roesler, 
I., Ursino, C., Wu, Y., Retief, E. F., Udin, J. S., Urazaliyev, R., Sánchez-
Clavijo, L. M., Lartey, E., & Donald, P. F. (2022). A quantitative global 
review of species population monitoring. Conservation Biology, 
36(1), 1–14. https://​doi.​org/​10.​1111/​cobi.​13721​

Pearl, J., Glymour, M., & Jewell, N. (2016). Causal inference in statistics: A 
primer. Wiley.

Pescott, O. L., Walker, K. J., Harris, F., New, H., Cheffings, C. M., Newton, 
N., Jitlal, M., Redhead, J., Smart, S. M., & Roy, D. B. (2019). The de-
sign, launch and assessment of a new volunteer-based plant mon-
itoring scheme for the United Kingdom. PLoS One, 14(4), 1–30. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​0215891

Pescott, O. L., Walker, K. J., Pocock, M. J. O., Jitlal, M., Outhwaite, C. L., 
Cheffings, C. M., Harris, F., & Roy, D. B. (2015). Ecological monitor-
ing with citizen science: The design and implementation of schemes 
for recording plants in Britain and Ireland. Biological Journal of the 
Linnean Society, 115(3), 505–521. https://​doi.​org/​10.​1111/​bij.​
12581​

Pollard, E. (1977). A method for assessing changes in the abundance of 
butterflies. Biological Conservation, 12(2), 115–134. https://​doi.​org/​
10.​1016/​0006-​3207(77)​90065​-​9

Pollard, E., & Yates, T. J. (1996). Monitoring butterflies for ecology and con-
servation. Chapman & Hall.

Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E., 
Woodcock, B. A., & Isaac, N. J. B. (2019). Widespread losses of pol-
linating insects in Britain. Nature Communications, 10(2019), 1–6. 
https://​doi.​org/​10.​1038/​s4146​7-​019-​08974​-​9

Robbins, C., Bystrak, D., & Geissler, P. (1986). The breeding bird survey: 
Its first fifteen years, 1965-1979. https://​pubs.​usgs.​gov/​publi​cation/​
5230189

Schuessler, J., & Selb, P. (2023). Graphical causal models for survey in-
ference. Sociological Methods & Research, 1–32. https://​doi.​org/​10.​
1177/​00491​24123​1176851

Simmonds, E. G., Jarvis, S. G., Henrys, P. A., Isaac, N. J. B., & Hara, R. B. 
O. (2020). Is more data always better? A simulation study of bene-
fits and limitations of integrated distribution models. Ecography, 43, 
1413–1422. https://​doi.​org/​10.​1111/​ecog.​05146​

Stroh, P. A., Walker, K., Humphrey, T. A., Pescott, O. L., & Burkmar, R. 
(2023). Plant atlas 2020: Mapping changes in the distribution of the 
British and Irish Flora. Princeton University Press.

Textor, J., van der Zander, B., Gilthorpe, M. S., Liśkiewicz, M., & Ellison, 
G. T. (2016). Robust causal inference using directed acyclic graphs: 
The R package “dagitty”. International Journal of Epidemiology, 45(6), 
1887–1894. https://​doi.​org/​10.​1093/​ije/​dyw341

Thoemmes, F., & Mohan, K. (2015). Graphical representation of miss-
ing data problems. Structural Equation Modeling, 22(4), 631–642. 
https://​doi.​org/​10.​1080/​10705​511.​2014.​937378

Thoemmes, F., & Rose, N. (2014). A cautious note on auxiliary vari-
ables that can increase bias in missing data problems. Multivariate 
Behavioral Research, 49(5), 443–459. https://​doi.​org/​10.​1080/​
00273​171.​2014.​931799

Van Swaay, C. A. M., Plate, C. L., & Van Strien, A. J. (2002). Monitoring 
butterflies in the Netherlands: How to get unbiased indices. 
Proceedings of the Section Experimental and Applied Entomology of 
the Netherlands Entomological Society, 13, 21–27.

Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biolog-
ical diversity in space and time. Trends in Ecology & Evolution, 16(8), 
446–453. https://​doi.​org/​10.​1016/​S0169​-​5347(01)​02205​-​4

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Supporting Information S1. Expert feedback form (expert 2)
Supporting Information S2. Expert feedback form (expert 1)
Supporting Information S3. Figure S1. Causal diagram depicting 
causes and effects of sample inclusion R and a species’ abundance Y.
Figure S2. Estimates of change in the landscape-wide mean of Y 
relative to its mean in period 1 from the superpopulation model 
(spm) and the model with site and year effects (lm). All estimates are 
averaged over 200 bootstrap samples.
Figure S3. Land cover in Great Britain in 1990 and 2015. Categories 
are 1 = woodland, 2 = arable, 3 = grassland, 4 = freshwater, 
5 = built-up and 6 = “other” (e.g. saltwater and inland rock).
Table S1. Details of the auxiliary variables used as covariates in the 
superpopulation models. Some of the variables in this table were not 
used, but we include details of the full set for completeness.

How to cite this article: Boyd, R. J., Botham, M., Dennis, E., 
Fox, R., Harrower, C., Middlebrook, I., Roy, D. B., & Pescott, 
O. L. (2025). Using causal diagrams and superpopulation 
models to correct geographic biases in biodiversity 
monitoring data. Methods in Ecology and Evolution, 00, 1–13. 
https://doi.org/10.1111/2041-210X.14492

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14492 by U
K

 C
entre For E

cology &
 H

ydrology, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5285/9b68ee52-8a95-41eb-8ef1-8d29e2570b00
https://doi.org/10.5285/9b68ee52-8a95-41eb-8ef1-8d29e2570b00
https://doi.org/10.1111/cobi.13721
https://doi.org/10.1371/journal.pone.0215891
https://doi.org/10.1111/bij.12581
https://doi.org/10.1111/bij.12581
https://doi.org/10.1016/0006-3207(77)90065-9
https://doi.org/10.1016/0006-3207(77)90065-9
https://doi.org/10.1038/s41467-019-08974-9
https://pubs.usgs.gov/publication/5230189
https://pubs.usgs.gov/publication/5230189
https://doi.org/10.1177/00491241231176851
https://doi.org/10.1177/00491241231176851
https://doi.org/10.1111/ecog.05146
https://doi.org/10.1093/ije/dyw341
https://doi.org/10.1080/10705511.2014.937378
https://doi.org/10.1080/00273171.2014.931799
https://doi.org/10.1080/00273171.2014.931799
https://doi.org/10.1016/S0169-5347(01)02205-4
https://doi.org/10.1111/2041-210X.14492

	Using causal diagrams and superpopulation models to correct geographic biases in biodiversity monitoring data
	Abstract
	1  |  INTRODUCTION
	1.1  |  Monitoring biodiversity
	1.2  |  Geographic sampling biases
	1.3  |  Mitigating geographic biases
	1.4  |  Causal diagrams and what to adjust for
	1.5  |  Structure of this paper

	2  |  METHODS
	2.1  |  Demonstrating superpopulation modelling via simulation
	2.2  |  UKBMS case study
	2.2.1  |  The scheme
	2.2.2  |  Existing analytical method
	2.2.3  |  New analytical method
	2.2.4  |  Comparing trends from the current and new methods
	2.2.5  |  Variance estimation


	3  |  RESULTS
	3.1  |  Simulations
	3.2  |  UKBMS case study
	3.2.1  |  Identifying the variables in A
	3.2.2  |  Current versus new model outputs


	4  |  DISCUSSION
	5  |  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


