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Abstract
In coastal urban areas, tidal flooding brings water carrying nutrients and particles back from land to estuarine and coastal 
waters. A statistical model to predict nutrient loads during tidal flooding events can help estimate nutrient loading from pre-
vious and future flooding events and adapt nutrient reduction strategies. We measured concentrations of dissolved inorganic 
nitrogen and phosphorus in floodwater at seven sentinel sites during 15 tidal flooding events from January 2019 to September 
2020. The study area was the Lafayette River watershed in Norfolk, VA, USA, which is prone to tidal flooding and is predicted 
to experience more frequent and intense flooding in the future. We calculated the difference in dissolved inorganic nitrogen 
(ΔDIN) or phosphorus (ΔDIP) concentrations between floodwater and those measured in the estuary prior to tidal flooding 
for each sentinel site and flooding event. We calculated the correlations between ΔDIN and ΔDIP with corresponding data 
on precipitation, wind, flooding intensity, average estuarine nutrient concentrations, population density, income, land eleva-
tion, land use, and land coverage. Using the variables with the highest R2 values for the linear regression with either ΔDIN 
or ΔDIP, we built multi-variable random forest regression models. ΔDIN showed the strongest correlations with floodwater 
nutrient concentrations, water level, and water temperature. ΔDIP also had a strong correlation with floodwater nutrient 
concentrations and water temperature, but had also a strong correlation wind speed. Models indicated that inputs per flood-
ing event ranged from − 5000 to 7500 kg N, for DIN, while those for DIP ranged from 2000 to 23,000 kg P, with net inputs 
of > 5000 kg N and > 100,000 kg P, respectively. Removing the dissolved nutrient concentration in floodwater variables 
from the models, we were able to calculate loads from events that occurred all the way back to 1946. Predicted DIN load per 
single flooding event ranged from ~ 0 to 1.5 × 105 kg N and showed a significant linear regression with time. Predicted DIP 
load estimates per single flooding event ranged from >  − 1.0 × 105 to < 1.5 × 105 kg P, with a significant positive trend over 
time. The positive trend in these load values over time shows that they have and will continue to be an increasing problem 
for the water quality of the local water systems. These results indicate that further action should be taken to control the input 
of dissolved nutrients during tidal flooding events in urban coastal areas.
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Introduction

Nutrient pollution poses a significant environmental, 
social, and economic risk to coastal communities around 
the globe (Cabral et al. 2019; Malone and Newton 2020). 
The nutrient imbalance can cause the proliferation of 
harmful algae, which can affect humans in direct contact 
with contaminated waters or indirectly by consuming 
affected fisheries (Berdalet et al. 2016). Nutrient inputs 
can come from point (e.g., the end of a pipe) and nonpoint 
sources (e.g., runoff; Sabo et al. 2022; Yadav and Pan-
dey 2017); the former are better constrained as sampling 
need only be conducted at a discharge point (Bouraoui and 
Grizzetti 2011; Tuholske et al. 2021). Because nonpoint 
sources of nutrients can be spatially diffuse and tempo-
rally variable, often driven by episodic meteorological or 
other events, they are difficult to quantify (Brown and Fro-
emke 2012). The statistical (e.g., regression) models used 
to calculate nonpoint source nutrient loads are generally 
based on only a few measurements that are then applied to 
heterogeneous systems (Zou et al. 2020; Adu and Kumar-
asamy 2018) leading to large uncertainties.

Due to sea level rise, many coastal areas around the 
world are already experiencing increased tidal flooding, 
and this trend is projected to continue or even accelerate 
in the decades to come (Nicholls and Cazenave 2010). 
During tidal flooding, water encroaches on the landscape, 
where it can remain for hours, before returning to estua-
rine and coastal waters carrying nutrients and particles 
(Macias-Tapia et al. 2021 and 2023). Although critical 
progress has been made to reduce point- and nonpoint 
sources of nutrients in coastal areas (Sabo et al. 2022), 
tidal flooding is not currently included in the models used 
to design restoration strategies. Material (e.g., sediment, 
nutrients, and contaminating bacteria) transported into 
local and regional waterways as floodwaters recede after 
tidally driven flooding events are not routinely quantified. 
Ignoring inputs from tidal flooding, due to challenges in 
quantifying these loads, will impede restoration and pres-
ervation projects in coastal waterways (Macias-Tapia et al. 
2021 and 2023).

Biotic and abiotic factors can influence the quality and 
quantity of nutrient inputs during tidal flooding. Rainfall 
prior to tidal flooding can saturate the ground and influ-
ence the magnitude of the floodwater volume (Xu et al. 
2014; van den Hurk et al. 2015; Joyce et al. 2018). In the 
lower Chesapeake Bay, sustained winds from the north/
northeast result in Ekman transport that drives higher 
than normal tides and enhanced tidal flooding (Shen and 
Gong 2009). Storms and high winds also result in sedi-
ment resuspension in this shallow estuarine system, which 
can enhance the flux of porewater nutrients to the water 

column (Kanoshinaa et al. 2003; Kalnejais et al. 2010). 
The amount of time flood water inundates the landscape, 
and the spatial extent of flooding varies by flooding event 
as well (Ezer 2018) and likely impacts nutrient loading 
(Macis-Tapia et al. 2021 and 2023). The heterogeneity of 
the land use (e.g., grass vs concrete) could also result in 
differences in the types of materials transported during the 
retreat of the flood tide thereby affecting estuarine water 
quality (Tu 2011). Studies have also shown that demo-
graphic changes, namely, increases in population and 
economic growth, are associated with decreases in water 
quality in natural water bodies (Juma et al. 2014; Liyanage 
and Yamada 2017).

Previous studies demonstrated that the nutrient loading 
associated with tidal flooding during perigean spring tides 
(i.e., king tides) between 2017 and 2021 was substantial but 
highly variable (Macias-Tapia 2021, 2023). These studies 
did not find clear correlations between nutrient loads due 
to tidal flooding and land use patterns. To better under-
stand variability in nutrient loading due to tidal flooding, 
we established seven sentinel sites that experience frequent 
tidal flooding and sampled them over 15 tidal flooding 
events between January 2019 and September 2020, dur-
ing major tidal flooding events. This allowed us to compare 
tidal flooding events over diverse meteorological conditions 
and seasonally varying biotic and abiotic factors that could 
influence nutrient loading from tidal flooding to the estuary. 
The initial hypothesis for the present study was that land 
use and meteorological conditions surrounding periods of 
tidal flooding play a major role in the quantity and quality 
of dissolved nutrient loads delivered to adjacent waters as 
tidewaters recede. The overarching goal of this study was to 
build a statistical model to predict nutrient loading to adja-
cent water bodies resulting from tidal flooding events. Such 
a model will allow us to estimate nutrient loading from tidal 
flooding during previous and future flooding events, and to 
adapt nutrient reduction strategies aimed at restoring aquatic 
ecosystems.

Methods

Study Area—Lafayette River

The study area was the Lafayette River watershed, an estu-
ary located within the city of Norfolk, VA, at the southern 
end of the Chesapeake Bay (Fig. 1). The site receives fresh 
water from runoff and groundwater, has a temperate climate, 
and is a micro-tidal estuary with semi-diurnal tides (Sisson 
1976). Most of the land that is located along the perimeter of 
the Lafayette River is prone to flooding because elevations 
are less than 5 m above mean sea level (Fig. S1A) (Klei-
nosky et al. 2007). Moreover, tidal flooding is predicted to 
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increase in frequency and intensity in the future (Fig. S1B) 
(Ezer 2018). The extent of the inundation in this region can 
be exacerbated by other factors like changes in the Gulf 
Stream and the occurrence of storms (e.g., Nor’easters) dur-
ing spring tides (Ezer et al. 2013; Ezer and Atkinson 2014). 
According to the US Census Bureau, 235,089 people were 
living in Norfolk in 2021, with the median income around 
$50,000 (Fig. S1C). The Lafayette River watershed area is 
predominantly residential (68.99%); dump pits (i.e., roads 
or building construction) are the second most common land 
use type (5.60%) (Fig. S1D). Tree coverage (19.22%), turf-
grass (14.18%), and impervious surfaces (12.38%) dominate 
the land cover along the perimeter of the estuary, with the 
percentage of wetlands (5.61%) increasing from the mouth 
to the head of the system (Fig. S1E). Landmarks located in 
the areas affected by flooding in Norfolk include the larg-
est naval base in the USA and the Virginia Zoo (Spanger-
Siegfried et al. 2014). Current precipitation estimates indi-
cate that there are about 150 days of rain in any given year 
for this region, with annual precipitation of about 500 mm 
(https://​www.​weath​er-​us.​com). According to the 2021 Vir-
ginia Coastal Resilience Master Plan (https://​www.​dcr.​virgi​
nia.​gov), the region is experiencing more intense and fre-
quent rainfall events when compared with long-term data. 
The windiest months are March and April, with an average 

peak wind speed of ~ 16 km h−1, while the lowest average 
peak wind speeds (~ 12 km h−1) occur in summer (Piecuch 
et al. 2016). Long-term monitoring by the Chesapeake Bay 
Program (CBP) shows average water temperatures in the 
Lafayette River ranging from ~ 5 °C in January to ~ 30 °C in 
July and average salinity values of ~ 19 in January and ~ 21 
in July (https://​data.​chesa​peake​bay.​net/​Water​Quali​ty).

Floodwater Samples

We measured dissolved nutrient concentrations in retreat-
ing floodwater at seven sentinel sites during 15 tidal flood-
ing events occurring in all seasons between January 2019 
to September 2020 (Fig. 1). Although most of the sites 
were residential or institutional, the sentinel sites had dif-
ferences in their soil type and land use (Table S1). From 
the mouth of the estuary to the head, “Myrtle Park” site 
was the most residential area with a combination of pave-
ment and turfgrass and a buffer wetland area planted at the 
edge of the water. “Carroll Place” is also residential, but 
a significant fraction of the flooded area is a park with a 
bulkhead located at the water’s edge. The “Student Hous-
ing” site was in a residential area, but it has little grass 
and most of the area that floods is pavement. This sentinel 
site commonly had opened trash cans and trash littering 

Fig. 1   Map showing sentinel sites (circles) where floodwater sam-
ples were collected during multiple tidal flooding events in 2019 and 
2020. Stars represent the Chesapeake Bay Program (CBP) sites from 
which we extracted baseline dissolved nutrient concentrations. The 

triangle represents the NOAA meteorological station where water 
level and temperature data were collected. The rhombus represents 
the weather station at Norfolk International Airport from where pre-
cipitation and wind data were extracted

https://www.weather-us.com
https://www.dcr.virginia.gov
https://www.dcr.virginia.gov
https://data.chesapeakebay.net/WaterQuality
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the landscape. “Low Mayflower” is a residential area with 
similar proportions of pavement and turfgrass; this site 
was located near a commercial strip with restaurants and 
a marina. “High Mayflower” was similar to the “Low 
Mayflower” site but without businesses. “Boat Ramp” 
was a public boat launch with adjacent parking located in 
a residential area. This site sports a high concentration of 
paved surfaces, people deploying and recovering boats, 
and an adjacent dog park that frequently floods. “Zoo” 
was located at the downriver edge of the Virginia Zoo on 
a street with houses on one side and the Zoo on the other. 
The edge of the water has recently planted wetlands, while 
the rest of the area affected by tidal flooding is primarily 
pavement and soil with little planted grass.

To plan for sampling excursions, we monitored the 
National Oceanic and Atmospheric Administration 
(NOAA) tide and storm surge prediction website (https://​
tides​andcu​rrents.​noaa.​gov) to determine when water 
height was expected to be above that of the highest astro-
nomically predicted high tide. During each sampling 
event, personnel drove to the sentinel sites at the peak of 
the high tide. At each site, we collected unfiltered flood-
water in 250 mL Nalgene™ polycarbonate bottles (acid-
cleaned, 10% HCl for 1 + days) near storm draining points. 
Bottles were rinsed three times with floodwater before 
sample collection. Three discrete samples were collected 
from each site to calculate an average and standard devia-
tion (SD) for all measured quantities. Sample bottles were 
placed in a cooler with ice packs and kept in the dark until 
all sampling was complete (less than 1 h) and then trans-
ported to a laboratory at Old Dominion University (ODU) 
for processing.

At the laboratory, samples were filtered using combusted 
(450 °C for 4 h) Whatman GF75 glass fiber filters (pore 
size ~ 0.3 μm), and the filtrate was frozen until analysis. 
These samples were thawed before analysis of dissolved 
inorganic nitrogen (DIN) and dissolved inorganic phospho-
rus (DIP). Ammonium (NH4

+) concentrations were quanti-
fied using the phenol hypochlorite method (Solorzano 1969) 
and a UV–Vis spectrophotometer (Shimadzu RF-1501). 
Nitrate plus nitrite (N + N) and DIP concentrations were 
measured using an Astoria Pacific Nutrient Autoanalyzer 
following the manufacturer’s specifications for the standard 
colorimetric techniques of each analyte (Hansen and Korol-
eff., 1999). To calculate DIN, we summed the ammonium 
(NH4

+) and N + N concentrations in each floodwater sample. 
The detection limit (DL) for each analyte was calculated 
using the SD of the lowest concentration used to construct 
the standard curve multiplied by three (3 × SD). Results 
below the limit of detection are reported as the detection 
limit. For each method, ultrapure water was analyzed in the 
same way as the samples to determine the value of the rea-
gent blank.

Data Analysis

Differences Between Floodwater and Estuarine 
Concentrations

For the estuarine concentrations, we used data available 
from the CBP (https://​data.​chesa​peake​bay.​net/​Water​Quali​
ty) at two sites, at the head and mouth of the Lafayette River 
(Fig. 1). Specifically, we used surface (< 1 m) data collected 
on dates before each sampling at the sentinel sites. With the 
available values in both sites, we calculated an average to 
represent the conditions of dissolved nutrients on the sur-
face waters of the system. Given the extensive variability 
in dissolved nutrient concentrations in floodwater samples 
collected during annual watershed-wide field campaigns 
between 2017 and 2021 (Macias-Tapia et al. 2021, 2023), 
outliers were removed before performing further data anal-
ysis. Upper and lower outliers were defined as values 1.5 
times above the third quartile or below the first quartile, 
respectively. After removing the outliers, we calculated 
the difference in dissolved nutrient concentrations between 
floodwater and concentrations measured in the estuary prior 
to tidal flooding (ΔDIN and ΔDIP) for each sentinel site and 
flooding event.

Environmental and Demographic Data

Data to evaluate the relationship between floodwater 
nutrient concentrations and biotic/abiotic variables was 
extracted from different sources. Daily values of accumu-
lated precipitation, and daily averages of wind speed and 
direction were collected from the Norfolk International Air-
port meteorological station (Fig. 1), whose data is publicly 
available (https://​www.​ncdc.​noaa.​gov). For precipitation, 
we calculated accumulated precipitation for the day of the 
sampling event and 3 days prior; for wind speed and direc-
tion, we used values from the day on which the sentinel site 
samples were collected. Maximum water temperatures and 
water levels were extracted from NOAA’s meteorological 
station at Sewells Point (https://​tides​andcu​rrents.​noaa.​gov/​
water​levels.​html?​id=​86386​10), which is located near the 
mouth of the Lafayette River (Fig. 1). For our analysis, we 
used values of water temperature and water level from the 
same date in which floodwater samples were collected at the 
sentinel sites. Water level data is available using different 
reference points; here, we used the mean higher high water 
(MHHW) tidal datum, which positive values are associated 
with land inundated during tidal flooding events. For median 
income and total population, we used the 2019 U.S. Cen-
sus Bureau data (https://​data.​census.​gov/). Land use data 
was extracted from the Soil Survey Geographic database 
(SSURGO, https://​data.​nal.​usda.​gov/), while land cover 
data was obtained via the Virginia Geographic Information 

https://tidesandcurrents.noaa.gov
https://tidesandcurrents.noaa.gov
https://data.chesapeakebay.net/WaterQuality
https://data.chesapeakebay.net/WaterQuality
https://www.ncdc.noaa.gov
https://tidesandcurrents.noaa.gov/waterlevels.html?id=8638610
https://tidesandcurrents.noaa.gov/waterlevels.html?id=8638610
https://data.census.gov/
https://data.nal.usda.gov/
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Network (VGIN, https://​vgin.​vdem.​virgi​nia.​gov/). As stated 
by the United States Department of Agriculture, the differ-
ence between land use and land cover is that the former 
involves elements of human activities, while land cover 
refers to physico-chemical properties specific to a given sub-
strate (Nickerson et al. 2015). Land elevation was obtained 
from the US Geological Survey’s National Elevation Data-
set (USGS NED, https://​www.​scien​cebase.​gov). Using Arc-
MAP™, we performed a spatial join between the sentinel 
sites and potential control parameters (i.e., demographic, 
land use, land coverage, and elevation data) of the sentinel 
sites to extract the characteristics at the sampling locations.

Multi‑Variable Random Forest Regression Model

Linear regression analyzes were performed between either 
ΔDIN or ΔDIP concentrations and a continuous variable. 
Before conducting linear regression analysis, we used the 
Kolmogorov–Smirnov test to check that the variables fit a 
normal distribution. For continuous variables, “Floodwater” 
is the concentration of DIN or DIP in floodwater, “Base-
line” is the DIP or DIN concentration in the estuary prior 
to flooding, “1Rain” is the rainfall accumulation from the 
24-h period prior to sampling, “3Rain” is the total accu-
mulated precipitation for 3 days prior to the flooding event, 
“WindDir” and “WindSpd” are the average wind direction 
and speed the day of the flooding event, “WTemp” and 
“MHHW” are the maximum temperature and water level 
recorded the day of the flooding event, “Income” and “Popu-
lation” are the median income per household and the total 
number of individuals in the area in which the floodwater 
sample was collected, and “Elevation” and “Slope” are the 
land elevation and slope steepness at the sites floodwater 
samples were collected. To perform the linear regression 
analysis and calculate its significance, we used the “linre-
gress” function available within the SciPy Python library 
(Virtanen et al. 2020). We calculated the coefficient of 
determination (R2) value and the p-value (p) and plotted the 
regression line when p < 0.05. To determine significant dif-
ferences among sites, we used the non-parametric signed-
rank. Differences were considered significant when p < 0.05.

Using the two variables with the highest R2 values for the 
linear regression with either ΔDIN or ΔDIP, we built multi-
variable random forest regression models. For all different 
combinations of variables, a total of 121 measurements were 
split into “training” (60%, n = 73) and “testing” (40%, n = 48) 
datasets. Grid Search cross-validation was performed on the 
fraction of training data to get the range of model accuracy 
using 2 to 40 “tree counts,” 2 to 40 “maximum depth,” and 10 
“splits.” “GridSearchCV” was used to assess the best combina-
tion of parameters. The results from the Grid Search were used 
to build the best possible model for ΔDIN and ΔDIP, respec-
tively. Using the testing dataset, a linear regression model of 

the predicted versus the measured ΔDIN and ΔDIP was run to 
evaluate the performance of the multi-variable random forest 
regression model. This procedure was repeated 70 times for 
each multi-variable random forest regression model. For each 
repetition, the “training” and “testing” split was performed on 
the original dataset. The average and standard deviation were 
calculated for each model.

Prior to this study and those of Macias-Tapia et al. (2021 
and 2023), biochemical characterization of tidal flooding 
has been limited. Thus, we built models without dissolved 
nutrient concentrations in floodwater as a predictor variable 
to allow us to calculate loads of dissolved inorganic N and P 
during flooding events for which floodwater nutrient concen-
trations are not available. The same tree counts, maximum 
depth, and splits were used to build these models, and the 
results were also tested by comparing predicted and meas-
ured values.

The temporal availability of data used in the multi-var-
iable random forest regression models varied among the 
three predicting variables (Fig. S11 A-D). Water level and 
temperature were available hourly from the Sewells Point 
NOAA meteorological station. Water level data was availa-
ble from 1930 to present, while records of water temperature 
are available since 1996 (Fig. S11 A-B). Daily wind data 
was available from 1984 to present at Norfolk International 
Airport weather station (Fig. S11 C).

Nutrient Inputs During Tidal Flooding Events

To calculate loads of dissolved nutrients delivered during 
previous tidal flooding events, we multiplied the inunda-
tion volume for each event by predicted ΔDIN and ΔDIP. 
To determine inundation volume, we calculated floodwater 
volumes for each event based on the MHHW data avail-
able from the NOAA meteorological station located near 
the mouth of the Lafayette River (Fig. 1) and the relation-
ship between the floodwater volume and MHHW during 
five perigean spring tides between 2017 and 2021 (Macias-
Tapia et al. 2023) (Fig. S2). For the ΔDIN and ΔDIP values, 
we used the best-performing multi-variable random forest 
regression models, when dissolved nutrient concentrations 
in floodwater were and were not available. To calculate net 
fluxes, we added the values (both positive and negative) 
calculated during single tidal flooding events. The sum of 
values extended temporarily as far as single nutrient flux 
estimations were available.

Results

We collected 190 floodwater samples from sentinel sites dur-
ing 15 tidal flooding events between January 2019 and Sep-
tember 2020 (Table 1). Not all sentinel sites were sampled 

https://vgin.vdem.virginia.gov/
https://www.sciencebase.gov
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during each incidence of tidal flooding due to differences 
in the extent of the tidal flooding in each event and the land 
elevation at each sampling site. Also, more tidal flooding 
events occurred during the time-period of this study, but 
personnel were not always available to collect samples.

Among the floodwater samples collected, median DIN 
concentrations over the entire length of the study ranged 
from 3.9 μM at Carroll Place to 10.6 μM at the Zoo sampling 
sites (Table 1). For DIP, median concentrations ranged from 
3.15 μM at the Zoo, to 7.88 μM at Myrtle Park. Only the 
Myrtle Park sentinel site had maximum values beyond the 
outlier threshold established for both DIN and DIP. The out-
lier concentrations were 178 and 49.1 μM of DIN and DIP, 
respectively. The day those samples were collected, there 
was colored water bubbling up from one of the drainage 
systems nearby (Fig. S3). Those values were removed before 
continuing with the remaining steps to build the model to 
predict nutrient loads during tidal flooding events.

Values for ΔDIN and ΔDIP were similar among senti-
nel sites (Fig. 2). The ΔDIN ranged from >  − 20 to < 30 μM 
(Fig.  2A); results from the non-parametric signed-rank 
tests indicate that values from the Carroll Place and Student 
Housing sentinel sites were statistically lower than those 
from the High Mayflower, Boat Ramp, and Zoo. For ΔDIP, 
values ranged from >  − 5 to 25 μM, with only the Myrtle 
Park and Zoo sites showing statistically significant differ-
ences from each other (Fig. 2B).

Relationship with Environmental and Demographic 
Variables

The slope and R2 value of the linear regressions between 
either ΔDIN and ΔDIP, and the various environmental 
and demographic data varied depending on the param-
eters compared (Table 2). The concentration of dissolved 
nutrients in floodwater had high correlation values with 
both ΔDIN (R2 = 0.73) and ΔDIP (R2 = 0.99). DIN con-
centrations in floodwaters ranged from the analytical DL 

to nearly 40 μM, while DIP concentrations ranged from 
DL to ~ 25 μM (Fig. S4 A-B). DIN estuarine concentra-
tions in baseline samples ranged from DL to nearly 20 μM, 
while estuarine DIP concentrations ranged from DL to 
about 2.0 μM (Fig. S4 C-D). R2 values were 0.05 for DIN 
and 0.01 for DIP (Table 2). Precipitation ranged from 0 to 
91.4 mm for the specific dates on which samples were col-
lected, while accumulated rain three days before sampling 
ranged from 0 to 134.6 mm (Fig. S5). The linear regres-
sions between precipitation and ΔDIP or ΔDIN were not 
statistically significant (Table 2). For most of the sampling 
events at the sentinel sites, the wind direction was between 
0 and 200 degrees (e.g., generally from the east; Fig. S6 
A-B). There was no correlation between wind direction 
and either ΔDIN or ΔDIP (Table 2). Wind speed ranged 
from 5.8 to 35.2 km h−1 (Fig. S6 C-D). For ΔDIN, there 
was a significant correlation with wind speed (R2 = 0.11, 
p = 1.13 × 10−5). The correlation between ΔDIP and wind 
speed was also significant (p = 1.4 × 10−10) and had a higher 
R2 (R2 = 0.15). Water temperature at the mouth of the Lafay-
ette River varied throughout the year from 5.2 to 28.2 °C 
(Fig. S7). Both ΔDIN and ΔDIP had significant albeit weak 
correlations with water temperature (R2 = 0.25 for ΔDIN and 
R2 = 0.18 for ΔDIP; Table 2). The extent of flooding during 
the sampling campaigns at the sentinel sites ranged from 0.1 
to 0.5 m above MHHW (Fig. S8). Both ΔDIN and ΔDIP had 
significant linear regressions with MHHW but differed in the 
R2 values (0.19 and 0.08, respectively; Table 2). The median 
income at the regions in which the sentinel sites were located 
ranged from < 20,000 to 100,000 $US (Fig. S9 A-B). The 
total population for the same regions ranged from 2000 to 
5000 individuals (Fig. S9 C-D). Income and population had 
low R2 values for both ΔDIP or ΔDIN (Table 2).

In terms of land use, Carroll Place, Boat Ramp, Myrtle 
Park, and High Mayflower sampling sites fell under “Dump 
pit” SSURGO characterization, which refers to areas of 
smoothed or uneven accumulations of general refuse; Zoo 
fell under “Bohicket muck,” which are poorly drained, 
slowly permeable soils that formed in marine sediments 
in tidal marshes; and the Student Housing and Low May-
flower sites were characterized as “Urban Complex,” which 
is dominated by impermeable surfaces like buildings and 
pavement. Values of both ΔDIN and ΔDIP were statistically 
similar among SSURGO land use categories (Fig. 3A, B). 
Following VGIN land cover data, Carroll Place, Boat Ramp, 
Low Mayflower, Myrtle Park, and Student Housing all were 
characterized as “impervious,” which refers to areas charac-
terized by a high percentage of constructed materials (e.g., 
asphalt and concrete); High Mayflower was characterized 
as “turfgrass,” which primarily includes grasses and herba-
ceous vegetation, planted and naturally occurring; and the 
Zoo site fell under “wetlands,” which includes fully formed 
and emergent vegetation in areas of land saturated with 

Table 1   The number of samples at each sentinel site (n), median, and 
maximum concentrations of DIN (μM) and DIP (μM) in floodwater 
samples collected at the sentinel sites during multiple flooding events. 
Maximum values marked with an asterisk (*) indicate outliers

DIN DIP

Sampling site n Median Max Median Max
Myrtle Park 52 5.73 177.67* 7.88 49.05*
Carroll Place 38 3.91 16.92 3.56 16.08
Student Housing 18 4.70 20.39 5.45 10.89
Low Mayflower 20 7.31 28.44 3.68 23.72
High Mayflower 21 8.73 25.85 7.64 20.48
Boat Ramp 29 6.86 23.11 7.09 14.20
Zoo 12 10.59 30.95 3.15 21.42
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water. There was no statistical difference between ΔDIN or 
ΔDIP and the different VGIN land cover categories (Fig. 3C, 
D).

Multi‑variable Random Forest Regression Model

Model with Dissolved Nutrient Concentrations 
in Floodwater Available

For ΔDIN, R2 values for the different versions of the ran-
dom forest regression models ranged from 0.65 to 0.94 
(Table  3, A). The model with the highest performance 
(R2 = 0.94 ± 0.01) was the one in which all the available 
variables were included (i.e., Flood, MHHW, and WTemp. 
See Table 2 for abbreviations), followed closely by the mod-
els that included floodwater DIN concentrations and either 
water temperature or water level data. The model with the 
lowest performance was the one that only used floodwater 
DIN as the predictor variable (R2 = 0.65 ± 0.08). For DIP, all 
the models had R2 > 0.98 (Table 3, B).

Using the best performing models for each nutrient, pre-
dicted ΔDIN ranged from − 15 to 15 μM, with slight differ-
ences among models (Fig. S10 A), while predicted ΔDIP 
had virtually the same values for all models and ranged 
between 2 and 14 μM (Fig. S10 B). Inundation volumes dur-
ing the different sampling events at the sentinel sites ranged 
from about 3 to 5.5 × 107 m3 (Fig. S10C). Using the esti-
mated ΔDIP or ΔDIN, with the inundation volumes during 
each sentinel site sampling, we calculated the nutrient loads 
delivered during each flooding event (Fig. 4). Based on these 
calculations, the DIN flux per event ranged from − 5000 to 
7500 kg N (Fig. 4A), while Net DIN load went from − 5000 
to > 5000 kg N. For DIP, the estimated flux in a single tidal 
flooding event ranged from 2000 to 23,000 kg P (Fig. 4B), 
while Net DIP load steadily accumulated to > 100,000 kg P.

Model Without Floodwater Dissolved Nutrient 
Concentration Data

When nutrient concentrations in floodwaters were not 
included, the capabilities of different multi-variable 

Fig. 2   Box and whisker plot 
of A ΔDIN and B ΔDIP at the 
different sentinel sites. The low-
ercase letters on top of each box 
indicate that ΔDIN and ΔDIP 
values at those sites are statisti-
cally different (Table S2). The 
orange line and the whiskers in 
each box represent the median 
and the SD of each group, 
respectively
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random forest regression models to predict N and P load-
ing dropped (Table 4, A and B). For each nutrient, only 
the two parameters with the highest R2 values were used 
in the model (Table 2). For ΔDIN, the best-performing 
model was the one using MHHW (R2 = 0.71 ± 0.04) 
as the only predictor variable followed by the model 
combining MHHW and WTemp as predictor variables 
(R2 = 0.70 ± 0.02) (Table 4, A). The model using WTemp 
as the only predictor variable showed the lowest perfor-
mance (R2 = 0.67 ± 0.09). For ΔDIP, the models with 
WindSpd and WTemp or just WTemp had R2 ≥ 0.70, while 
the model with WindSpd alone had an R2 = 0.41 (Table 4, 
B).

Predicted ΔDIN varied between the two models con-
sidered (i.e., MHHW and MHHW + WTemp) (Fig. S12A). 
Values for ΔDIN ranged between ~ 0 and 12 μM when using 
MHHW as the only predictor variable, while ΔDIN values 
ranged between ~ 4 and ~ 9 μM when adding WTemp as a 
predictor variable. Because of the differences in temporal 
availability of the data informing the models, ΔDIN pre-
dicted values using the MHHW model are available from 
1950, while results from the MHHW + WTemp model 
are only available from 1996. Results for predicted ΔDIP 
were similar for the two models considered (i.e., WTemp 

and WTemp + WindSpd) (Fig. S12B), with values ranging 
from − 3 to 3 μM.

Predicted ΔDIP was lower than 15 µM for the WTemp 
and WTemp + WindSpd models, but the WTemp + Wind-
Spd model predicted ΔDIP as low as − 15 µM (Fig. S12B). 
Both ΔDIP models show results from 1996 because of the 
availability restrictions on the WTemp data. Water levels 
measured during the maximum tidal-driven flooding event 
near the mouth of the study area each year since 1946 ranged 
from > 0 to < 1 m (Fig S13). Estimated inundation volumes 
calculated using the relationship between MHHW and inun-
dation volume observations (Fig. S2) ranged from 5 × 107 to 
9 × 107 m3 (Fig. S13).

Predicted loads of dissolved inorganic N and P (i.e., 
DIN and DIP, respectively) during past tidal-driven flood-
ing events changed depending on the model used, but 
it was overall positive and had an increasing trend over 
time (Fig. 5A, B). Predicted DIN load estimates were the 
highest when using the MHHW model, ranging from ~ 0 
to 1.5 × 105 kg (Fig. 5A), and showed a significant linear 
regression from 1950 to 1990 (R2 = 0.2 and p = 2 × 10−4) and 
a steeper for data after 1990 (R2 = 0.7 and p = 7 × 10−10). 
The MHHW + WTemp model estimates of net nutrient load 
ranged from − 2.5 × 104 kg to 1.0 × 105 kg and also had statis-
tically significant linear regressions with time (R2 = 0.6 and 
p = 2 × 10−6). Predicted DIP load estimates during past tidal-
driven flooding events were similar for the two models and 
ranged from − 1.0 × 105 to 1.5 × 105 kg (Fig. 5B). Results for 
both models showed a significant positive trend of net DIP 
loads over time and had similar R2 (0.3) and p (1 × 10−4).

Discussion

Tidal Flooding Events as a Source of Dissolved 
Nutrients

Five years of spatially extensive sampling during annual 
king tides revealed that tidal flooding events convey terres-
trial nutrients to adjacent waters (Macias-Tapia et al. 2021, 
2023). While the earlier studies were spatially extensive, 
they focused on singular perigean spring tide events each 
year (Macias-Tapia et al. 2023). To evaluate the effects of 
seasonality and antecedent meteorological conditions on the 
magnitude of nutrient loading during tidal flooding, more 
frequent floodwater sample collection was needed. Here, we 
present results from a sampling approach that included seven 
sampling sites, sampled fifteen times over the course of four 
seasons and 2 years. These sampling campaigns included 
diverse meteorological and biotic conditions that enabled 
us to build a statistical model to predict DIN and DIP loads 
from tidal flooding (Figs. 4 and  5), work that is essential for 
advising estuarine restoration as sea levels continue to rise.

Table 2   R2 and p-values (p) for each estimated linear regression 
between ΔDIP or ΔDIN (in µM) and environmental and demo-
graphic variables. Significant correlations are highlighted with bold 
font. “Floodwater” is the concentration of DIN or DIP in floodwater, 
“Baseline” is the DIP or DIN concentration in the estuary prior to 
flooding, “1Rain” is the rainfall accumulation from the 24-h period 
prior to sampling, “3Rain” is the total accumulated precipitation for 
3  days prior to the flooding event, “WindDir” and “WindSpd” are 
the average wind direction and speed the day of the flooding event, 
“WTemp” and “MHHW” are the maximum temperature and water 
level recorded the day of the flooding event, “Income” and “Popula-
tion” are the median income per household and the total number of 
individuals in the area in which the floodwater sample was collected, 
and “Elevation” and “Slope” are the land elevation and slope steep-
ness at the sites floodwater samples were collected

ΔDIN ΔDIP

Variable R2 p R2 p
Flood 0.73 4.7 × 10−49 0.99 3.7 × 10−228

Baseline 0.05 2.3 × 10−3 0.01 1.4 × 10−1

WTemp 0.25 5.9 × 10−12 0.18 2.8 × 10−12

MHHW 0.19 5.6 × 10−9 0.08 3.6 × 10−6

WindSpd 0.11 1.1 × 10−5 0.15 1.4 × 10−10

WindDir 0.01 2.3 × 10−1 0.01 2.6 × 10−1

1Rain 0.01 3.1 × 10−1 0.0 6.9 × 10−1

3Rain 0.00 3.8 × 10−1 0.0 4.8 × 10−1

Population 0.01 1.2 × 10−1 0.0 8.1 × 10−1

Income 0.0 7.8 × 10−1 0.0 5.8 × 10−1

Elevation 0.0 5.0 × 10−1 0.0 3.9 × 10−1

Slope 0.0 5.6 × 10−1 0.0 8.0 × 10−1
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The models in which floodwater nutrient concentrations 
were used as a predictor variable had high performance 
(R2 > 0.9) estimating ΔDIN and ΔDIP values. However, 
there is a lack of data on dissolved nutrient concentra-
tions (including N and P) in floodwaters during tidal flood-
ing events. Thus, we also built models without associated 
floodwater nutrient concentration data. Models built with 
and without dissolved nutrient concentrations in floodwater 
predicted positive net loads over time and, in all cases, load-
ing estimates exceeded annual load allocations established 
by the U.S. Environmental Protection Agency (EPA) for the 
Lafayette River. These values are known as Total Maximum 

Daily Loads (TMDLs) allocations, which were established 
in 2010 to restore the water quality of the Chesapeake Bay 
and its tributaries (Wainger 2012). These results are alarm-
ing because this load is not included in any existing TMDL, 
while the occurrence of this transportation of dissolved 
nutrients is increasing due to sea level rise (Macias-Tapia 
et al. 2021, 2023).

Along with the general results of this study on fluxes of 
dissolved nutrients during tidal flooding events, we found a 
decoupling in the direction and magnitude of N and P load-
ing estimates (Fig. 5). The magnitude and the trend for the 
DIN model differ more than those for DIP. The main driver 

Fig. 3   Relationships between ΔDIP or ΔDIN (both in µM) and 
SSURGO land use types A, B and VGIN designated land coverage 
C, D. Panels on the left are for ΔDIN, while panels on the right are 
for ΔDIP. The orange line and the whiskers in each box represent the 

median and the SD of each group, respectively. The lowercase let-
ters on top of each box indicate values that were statistically similar 
among land use or cover categories
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Table 3   R2 results for measured versus predicted A) ΔDIN and 
B) ΔDIP values from the multi-variable random forest regression 
model built with combinations of the best predicting variables (from 
Table 2). Model repetitions are shown on the left and subsequent col-
umns are model runs using different combinations of predicting vari-
ables (e.g., Flood/MHHW/WTemp, Flood/WTemp, Flood/MHHW, or 

Flood; see Table 2 for abbreviations). At the bottom of each column, 
we show the average R2 value and SD for each model. Columns with 
values in bold letters represent the models with the highest R2 results, 
which were used in the next step to calculate nutrient loads during 
flooding events

A) ΔDIN B) ΔDIP

Flood Flood
MHHW Flood Flood WindSpd Flood Flood

Repetition WTemp WTemp MHHW Flood WTemp WindSpd WTemp Flood
10 0.96 0.94 0.93 0.52 0.98 0.99 0.99 0.99
20 0.92 0.97 0.88 0.72 0.99 0.99 0.99 0.99
30 0.96 0.77 0.90 0.70 0.99 0.99 0.99 0.99
40 0.95 0.96 0.91 0.59 0.98 0.99 0.99 0.99
50 0.93 0.96 0.93 0.71 0.99 0.99 0.99 0.99
60 0.97 0.96 0.93 0.58 0.99 0.99 0.99 0.99
70 0.95 0.94 0.91 0.75 0.99 0.99 0.99 0.99
Avg 0.94 0.92 0.91 0.65 0.98 0.99 0.99 0.99
SD 0.01 0.06 0.01 0.08 0.00 0.00 0.00 0.00

Fig. 4   Nutrient load per flood-
water sampling event at the 
sentinel sites (in blue) and over-
all (in red) for DIN A and DIP 
B. The dotted line corresponds 
to the annual limit land-based 
allocation for total nitrogen 
(880 kg) and total phosphorus 
(58 kg) according to the EPA’s 
TMDLs

Table 4   R2 results from measured ΔDIN and ΔDIP versus values 
predicted using a multi-variable random forest regression model built 
with combinations of the best single environmental predictors when 
measurements of nutrient concentrations in floodwater are not avail-

able. Columns with values in bold letters represent the models with 
the highest R2 results, which were used in the next step to calculate 
nutrient loads during flooding events

A) ΔDIN MHHW B) ΔDIP WindSpd

WTemp WTemp MHHW Wtemp WindSpd Wtemp
avg 0.70 0.67 0.71 avg 0.68 0.41 0.66
SD 0.02 0.09 0.04 SD 0.01 0.01 0.08
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of this difference is the use of water level data to predict 
DIN but not DIP. These differences could affect the biologi-
cal processes in receiving waters as primary productivity in 
more saline waters is typically N limited while fresh waters 
tend to be P limited (Howarth and Marino 2006).

Variables That Control Nutrient Loads During Tidal 
Flooding

Meteorological and hydrological variables, namely, the 
extent of high waters during the flooding event, water tem-
perature, and wind speed were the best predictors of the 
magnitude of nutrient loads delivered from tidal flooding. 
Weather conditions have previously been recognized as 
playing a role in controlling nutrient loads during non-tidal-
driven flooding events (Hale et al. 2015). Prior precipitation 
can remove materials from the landscape, thereby reduc-
ing nutrient loading from tidal flooding (Selbig 2016). In 
addition, the magnitude of tidal flooding determines the 
amount of time floodwaters interact with the landscape (Ezer 
2018; Macias-Tapia et al. 2023). Wind speed and direction 
not only influence the magnitude of tidal flooding, but can 
cause materials to accumulate in specific areas (Pirazzoli 
2000; Shen and Gong 2009). Further, water temperature 
controls the rates of nutrient transformations and exchanges 

in estuarine waters as these processes are mediated by resi-
dent bacteria and phytoplankton (Hallegraeff 2010; Marinov 
et al. 2010; Lewandowska et al. 2014).

Similar to a previous study, correlations between con-
centrations of dissolved nutrients delivered and land use/
cover could not be discerned by this study (Macias-Tapia 
et al. 2023). In this study, neither land characteristics nor 
demographic data of the sampling sites correlated with the 
magnitude of inorganic nutrient loading during tidal flood-
ing events. This may have been because the land elevation, 
total population, income, land use, and land cover values 
were too similar in the Lafayette River (Fig. S1 A-E), or 
that nutrient loads are integrated over aggregated regions 
within a watershed. Future studies should target catchments 
in which the differences in the values of these and other 
variables are more pronounced.

Nutrient Hot Spots During Tidal Flooding

Similar to Macias-Tapia et al. (2021 & 2023), we found that 
certain sites were hot spots for dissolved nutrient concentra-
tions in floodwater with values orders of magnitude higher 
than the median of the samples collected at the sentinel 
sites over multiple flooding events. Hot spots appeared to 
coincide with drainage systems that backflow during high 

Fig. 5   Net Load represents the 
accumulated flux of A DIN and 
B DIP during tidal flooding 
events. Different colors repre-
sent the model used to predict 
the value. The name of the 
model represents the variables 
used to build the random forest 
regression model. The dashed 
line represents the fitting regres-
sion line when p < 0.05 for each 
model. R2 and p for each linear 
regression are shown at the end 
of each line
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tides (Fig. S3). Tidal flooding in Norfolk can be initiated 
through stormwater drains at high tides, causing streets to 
flood as water rises through the drains, even if they are not 
adjacent to the river (Shen et al. 2019). These drains can be 
hot spots for microbial activity as residual water is retained 
in the storm sewer system where it can incubate (Aryal et al. 
2021). Neither this nor previous studies conducted focused 
investigations at drainage sites. Better understanding of how 
storm drains act as microbial incubators could potentially 
increase estimates of nutrient inputs and microbial contami-
nation from tidal flooding. A study that targets these areas 
should be carried out to better understand microbial-nutrient 
interactions at these hotspots. Because these storm drains 
are located at points within the tidal watershed, they could 
potentially be targets for remediation.

Conclusions

After a spatially extensive sampling of floodwater in an 
urban tributary of the lower Chesapeake Bay, we found the 
following: (1) ΔDIN showed the strongest correlations with 
water level and water temperature, while ΔDIP was most 
highly correlated with wind speed and water temperature. 
(2) The lack of correlation between floodwater DIN and 
DIP with land elevation, total population, income, land use, 
and land cover might be because values for these variables 
were similar for the areas affected by tidal flooding in the 
Lafayette River. (3) Multi-variable random forest regression 
models in which nutrient concentrations in floodwater were 
available had R2 > 0.9, while models in which this variable 
was not used had R2 ≈ 0.7. This shows that although bio-
chemical characterization of tidal flooding events allows us 
to closely understand the fluxes of DIN and DIP in coastal 
areas, models without this variable still showed good pre-
dicting capabilities and allowed us to analyze long-term 
data. (4) There was a positive trend in nutrient loads cor-
responding to water level, demonstrating that loads are 
increasing as sea level rises and tidal flooding becomes more 
common, resulting in the eutrophication of the region. The 
biochemical characterization of more coastal areas affected 
by tidal flooding events with different weather conditions, 
will allow to build better models, enabling more effective 
management and mitigation strategies.
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