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Abstract 

Worldwide, coral reefs are facing risk from climate change. The Western Indian Ocean (WIO) harbours about 16% of global coral reefs 
with highly reef-dependent local communities. Coastal protection and food security depend on effective conservation management, 
which requires understanding species abundances. Here, we explore how fish group distribution and abundance across the WIO, cat- 
egorized by their trophic function, are explained by oceanographic connectivity, sea surface temperature (SST), and chlorophyll a . We 
designed a proportional oceanographic connectivity metric describing the relative strength of connectivity between all WIO coral reefs 
and each survey site. We created statistical models for four trophic groups: grazers and detritiv ores, herbiv orous excavators, coralli- 
vores, and primary piscivores across 51 sites in the WIO. We show that SS T and chloroph yll a are strong predictors of all trophic fish 

groups and that the proportional oceanographic connectivity metric improved the model predictions significantly for grazers and de- 
triti vores and excavator s. For excavator s, peak abundances were predicted at medium connecti vity, and for grazer s and detriti vores, at 
low and medium connectivity, suggesting that larvae dispersal predominates at a local scale. Decision making should include connec- 
tivity for efficient conservation area prioritization, for which our proportional oceanographic connectivity metric is a valid and useful 
parameter. 

Keywords: connectivity; coral reefs; environmental drivers; functional diversity; larvae dispersal; marine protected areas; reef fish ecology; spatial structure 
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Introduction 

Indian Ocean sea surface temperatures (SSTs) have increased 

by 1.04 

◦C during 1950–2015 (IPCC 2022 ), at a rate of about 
0.1 

◦C per decade since the 1950s (Dhame et al. 2020 ). This is 
faster than the warming seen in the other tropical oceans and,
together with the Western Pacific Ocean, the Indian Ocean is 
the most vulnerable ocean region to thermal stress (Dhame et 
al. 2020 , Obura et al. 2021 ). With ongoing climate impacts, it 
is vital to understand present circulation patterns, larvae dis- 
persal, and fish population dynamics, how these might change,
and how this will affect reef resilience and food security (Gra- 
ham et al. 2015 , Hughes et al. 2017 , van Hooidonk 2020 ).
Functionally important fish groups encompass the variety of 
functional processes critical to reef resilience (Bellwood et al.
2019 , Brandl et al. 2019 , Sheppard et al. 2023 ). On coral reefs 
a major focus for reef persistence and recovery is on different 
trophic fish groups like piscivores or herbivores that show dif- 
ferent feeding mechanisms (Bellwood et al. 2019 , Brandl et al.
2019 , Sheppard et al. 2023 ). Herbivorous fish can be divided 

into sub-groups, such as grazers, detritivores, and excavators 
by their impact on coral-algal dynamics on reefs (Heenan and 

Williams 2013 , Samoilys et al. 2019 ). Thus, functional di- 
versity is hypothesized to support resilience through comple- 
mentarity of niches or functional redundancy where several 
species can perform one ecological function (Fox and Bell- 
wood 2013 , Heenan and Williams 2013 ). Enhancing reef re- 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
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reuse, distribution, and reproduction in any medium, provided the original work 
ilience by managing trophic fish groups with differing func- 
ional roles (Fox and Bellwood 2013 , Bellwood et al. 2019 )
an support the capacity of an ecosystem to withstand and re-
over from environmental disturbance events (Nyström et al.
008 ). 
Reef fish are also critical to food security as seen in the

ields of small-scale fisheries which can supply up to 99% of
rotein uptake for coastal communities and around 82% of 
ouseholds’ income in the WIO (Barnes-Mauthe et al. 2013 ).
eanwhile the Indian Ocean coastlines are home to some of

he world’s poorest communities, who often rely on coral reef
esources for their livelihoods (Barnes-Mauthe et al. 2013 ,
opova et al. 2019 , Obura et al. 2021 ). For the years 2000–
020, these coastlines have seen a striking 33% human pop-
lation growth within a 100 km radius of coral reefs and a
1% increase within a 5 km radius substantially increasing 
he pressure on these ecosystems (Sing Wong et al. 2022 ). Reef
egradation and severe annual coral bleaching are expected to 

ccur regionally by 2040 and for most reefs by 2067, there-
ore actions that help build resilience and mitigate these im-
acts are urgently needed (Hattam et al. 2020 , van Hooidonk
020 ). 
Climate change has a predominant effect on larval disper- 

al with the pelagic larval duration (PLD) of reef fish pre-
icted to decrease by 12%–25% for a 3 

◦C temperature rise
ue to an increased larvae metabolism, resulting in lower 
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ispersal and connectivity (Botsford et al. 2009 , Johansen and
ones 2011 , Lloyd et al. 2012 ). Additionally, SST increases
ead to coral bleaching and mortality (Hughes et al. 2017 , Hat-
am et al. 2020 ) that causes habitat fragmentation (Botsford
t al. 2009 , McMahon et al. 2012 ). Oceanographic currents
re predicted to change under future climate change scenar-
os which will likely have large impacts on species population
ersistence because of the effects on larvae dispersal (Coleman
t al. 2017 , Gennip et al. 2017 ). Small-scale patterns are dif-
cult to model, but understanding the relative importance of
urrents compared to other local environmental variables can
elp prioritize decision-making in marine conservation (Gen-
ip et al. 2017 , Mayorga-Adame et al. 2017 , Hidalgo et al.
019 , Obura et al. 2021 ). Chlorophyll a is an environmental
ariable that is predicted to change with ocean warming alter-
ng biological productivity which can impact fish larvae and
rophic group composition dynamics (Kaunda-Arara et al.
009 , Beaulieu et al. 2013 , Samoilys et al. 2019 ). Remotely
ensed SST and chlorophyll a data are commonly used for
arge scales but limitations in sensor algorithms and coastal
reas resulting in inaccuracies and low resolutions need to
e considered (Chen et al. 2013 , Sathyendranath et al. 2019 ,
ahiri and Vissa 2022 , Sudre et al. 2023 ). 
Connections between different coral reef regions and self

r non-self-recruiting populations remain mostly unstudied—
specially in the WIO (Crochelet et al. 2016 , Gamoyo et al.
019 , Obura et al. 2021 ). Limited resources, infrastructure,
ocal expertise, and security issues lead to poor ecological
nowledge of how species abundance and PLD are impacted
y environmental factors in the WIO (Gennip et al. 2017 ,
opova et al. 2019 , Obura et al. 2021 ). High connectivity
nd strong currents with high larval inflow can strengthen
eef resilience and predict persistence of species across regions
nd temperature scenarios (Mayorga-Adame et al. 2017 , Mc-
anus et al. 2021 ). However, these factors may also disturb

cclimatization and thus, impact coral sensitivities to temper-
ture anomalies (Roche et al. 2018 ). Furthermore, high levels
f connectivity may have negative side effects, such as spread
f pollutants, invasive species and pathogens or limited asyn-
hrony of species (Hughes et al. 2010 , Mayorga-Adame et al.
017 ). 
Quantifying connectivity is complex and, depending on the

ype of connectivity being considered, different factors play
mportant roles. In the case of fish, which have a meroplank-
onic stage early in their lifecycles, connectivity is a function
f transport, larval survival, settlement, and post-larval sur-
ival (Pineda et al. 2007 ). The latter three variables mean that
ceanographic transport alone is a proxy for true ecological
onnectivity, as connectivity is also influenced by traits of the
pecies in question (Balbar and Metaxas 2019 , Virtanen et al.
020 ). Passive dispersal by ocean currents is a key mecha-
ism driving the transport of organisms (Jönsson and Watson
016 ), but other mechanisms include active migratory con-
ectivity (Cowen et al. 2006 , Popova et al. 2019 ). 
We utilized a subset of trajectories from pre-existing La-

rangian particle tracking experiments (Popova et al. 2019 )
o define and develop a metric called ‘proportional oceano-
raphic connectivity’ describing the strength of ocean circula-
ion connectivity between all WIO coral reefs (UNEP-WCMC,

orldFish Centre, WRI, TNC 2021 ) and each fish survey site
 Fig. 1 ). Lagrangian particle tracking involves releasing virtual
particles’ into the (pre-calculated) time-evolving velocity field
f an ocean general circulation model and tracking them ei-
her forwards in time (downstream) to their destinations or
racking them backwards in time (upstream) to their sources.
o assess connectivity among the fish survey sites we used the
onnectivity from backtracked passively transported particles,
hich is the transport of particles along ocean currents (Gen-
ip et al. 2017 , Popova et al. 2019 ). 
There is a need for linking ocean circulation model pre-

ictions with ecological population models as ocean currents
re a major driver of pelagic larval dispersal (Botsford et al.
009 , Mayorga-Adame et al. 2017 , Vaz et al. 2022 ). This is a
ovel approach that can inform reef management by identify-
ng key areas of interconnectivity and source reefs for conser-
ation prioritization through MPA networks (Gamoyo et al.
019 , Hidalgo et al. 2019 , McManus et al. 2021 , Figueiredo
t al. 2022 ). Current models of trophic fish group abun-
ances often lack larval dispersal and oceanographic connec-
ivity parameters, which are critical factors that influence the
ate of reefs after disturbance events such as bleaching (Gra-
am et al. 2015 , Magris et al. 2016 , Mayorga-Adame et al.
017 ). 
Our broad aim is to explore how trophic reef fish groups are

mpacted by their environment and how they respond to vari-
tions in oceanographic connectivity, SST, and chlorophyll a .
ST and chlorophyll a changes have been shown to be two of
he four main stressors under global change for marine species
long with ocean acidification and de-oxygenation (Gennip et
l. 2017 , Samoilys et al. 2019 , Obura et al. 2021 ). Chloro-
hyll a concentration shows phytoplankton pigmentation in
he oceans and is used as an indicator for ecosystem health and
roductivity (Feng and Hu 2016 ). SST measured to a depth of
0–20 m is a critical parameter for coral reefs and reef fish
arval development (Hughes et al. 2017 ). For the analysis, we
eveloped generalized additive models (GAMs) to assess how
ST, chlorophyll a , and oceanographic connectivity relate to
rophic group abundance. 

ethods 

cological data 

he reef fish data were collected between 2009 and 2015 using
 SCUBA-based underwater visual census along five 50 × 5 m
ransects per fish survey site (Samoilys et al. 2019 ). Fish tran-
ect surveys were completed for 51 sites across coral reefs in
omoros, Madagascar, Mozambique, and Tanzania ( Fig. 1 ).
he survey sites are standardized fore reefs between 0.5 and
3 m depth, with most between 7 and 15 m (Samoilys et al.
019 ). Four trophic groups essential for reef resilience were
hosen and encompassed six taxonomic families ( Table 1 ). 

nvironmental data 

ST and chlorophyll a were extracted as monthly mean
ata series from NOAA’s Environmental Research Division
ata Access Program archive ( https://coastwatch.pfeg.noaa.

ov/ erddap/ index.html ) at a spatial resolution of 4 × 4 km
 Supp. Figs S1 and S2 ). The monthly mean data were summa-
ized to annual means and matched to the site and year of the
cological data ( Supp. Table S1 ). 

odelled oceanographic connectivity 

ur proportional oceanographic connectivity metric gives
he percentage of total WIO reefs that are connected to
ach survey site within 30 days, according to pre-existing

https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
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Figure 1. Map of the Western Indian Ocean (WIO) showing the locations of the 51 fish transect survey sites in Comoros, Madagascar, Mozambique, 
and Tanzania (source: Samoilys et al. 2019 ). 

Table 1. Trophic groups of coral reef fish families used in this research describing their biology and impacts on coral reefs. 

Trophic group Biology and impacts on coral reefs 

GRAZERS AND DETRITIVORES 
Families 
( Acanthuridae, Siganidae ) 

Feed on algal turf by searching the epilithic algal matrix for detritus, act as indicator for number of 
algae (Marshell and Mumby 2012 , Heenan and Williams 2013 ) 

LARGE AND SMALL EXCAVATORS 
Families 
( Labridae: Scarinae ) 

Actively bite pieces off the reef, which results in settlement space for corals and crustose coralline 
algae, can enhance resilience, play key role in bioerosion, limit fleshy and turf algae due to their 
higher amount of feeding off the reef matrix (Heenan and Williams 2013 , Hussey et al. 2014 ) 

CORALLIVORES 
Families 
( Chaetodontidae ) 

Feed on corals, abundance linked to coral cover (Heenan and Williams 2013 , Hussey et al. 2014 ) 

PRIMAR Y PISCIV ORES 
Families 
( Lutjanidae, Serranidae: 
Epinephelinae ) 

Prey on lower trophic level fishes, indicators for fishing pressure (Hussey et al. 2014 ) 
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Lagrangian trajectories of the coastal zones of four countries 
(Comoros, Madagascar, Mozambique, and Tanzania) taken 

from (Popova et al. 2019 ) ( Fig. 2 ). To calculate this connectiv- 
ity metric each individual polygon from the WIO (30 

◦S, 12 

◦N,
30 

◦E, 70 

◦E) was extracted from the UNEP-WCMC database 
(UNEP-WCMC, WorldFish Centre, WRI, TNC 2021 ), yield- 
ing 18 981 reef polygons. A bounding box with a 0.25 

◦-buffer 
was added to each polygon to define a “reef-associated” area 
( Supp. Fig. S3 ). Equivalent boxes were considered around 
ach of the fish survey sites. For each fish survey site, the La-
rangian particles initialized within that site’s bounding box 

ere considered, which amounted to between 300 and 848 

articles per site. These particles were backtracked upstream 

or 30 days, and if their trajectories intersected with one
f the reef polygon bounding boxes, that reef was deemed
o be connected to the survey site. The fraction of all WIO
eefs connected to each survey site was used as the metric
or proportional oceanographic connectivity for each site 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
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Figure 2. Oceanographic connectivity bac ktrac king model for (a) Comoros, (b) Madagascar, (c) Mozambique, and (d) Tanzania for the year 20 1 0. Particle 
release locations along the coast are plotted in black and the duration of time elapsed is colour coded such that, for example, a particle starting at the 
easternmost tip of the orange line would take 30 days to arrive at the initialization site marked in black. Trajectories are showing every 10th particle for 
each country. 
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 Fig. 3 ). For each particle, the first 30 days of backtracking
ere used to represent a weighted mean for the reef fish taxa
ost common in our data from the families Acanthuridae ,

caridae , Serranidae , and Lutjanidae with annual spawn-
ng phenologies (Victor and Wellington 2000 , Lester and
uttenberg 2005 , Kulbicki 2015 , Roberts et al. 2021 ). 
Our setup used the trajectories from Popova et al. ( 2019 )

hat were generated with the ARIANE Lagrangian software
Blanke and Raynaud 1997 ) to perform particle tracking sim-
lations based on modelled ocean hydrodynamics. The hydro-
ynamic results came from a 1/12 

◦ horizontal resolution run
f the Nucleus for European Modelling of the Ocean (NEMO)
eneral circulation model (Madec 2014 ), forced with hind-
ast data from the DRAKKAR Forcing Set (DFS) version 5.2
Brodeau et al. 2010 ). 1/12 

◦ is state of the art for global
irculation models and sufficient for mesoscale eddies to be
ell resolved at the latitudes relevant to the simulations per-

ormed here (Holt et al. 2014 , Biastoch et al. 2018 ). Particles
ere traced back in time for up to one year, with particle re-

eases initialized quarterly (January, April, July, October) over
 decade (2005–2014). Particle trajectories were calculated,
nd the particles’ locations were recorded at daily frequency.
ith herbivorous reef fish having maximum travel distances

n one direction of up to 10 km and piscivorous reef fish up
o tens of kilometres we allow for a 0.25 

◦ ( ∼28 km) buffer
round the reef polygon or fish survey sites to capture all
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Figure 3. Bar plots for the proportional oceanographic connectivity metric for each year and for all 51 sites. 

Table 2. Variance explained in the abundance of trophic groups of coral reef fish by environmental variables in the Western Indian Ocean. 

Model 
Deviance 

explained (%) AICc edf � AICc 

GRAZERS AND DETRITIVORES 
mean sea surface temperature + mean chlorophyll a + connectivity ( K = 14) 89.9 880.7195 37.33163 0 
mean sea surface temperature + mean chlorophyll a ( K = 14) 63.3 1142.161 26.15785 261.4415 

LARGE AND SMALL EXCAVATORS 
mean sea surface temperature + mean chlorophyll a + connectivity ( K = 10) 73.8 702.8713 26.17412 0 
mean sea surface temperature + mean chlorophyll a ( K = 10) 53.4 892.5468 17.07838 189.6755 

CORALLIVORES 
mean sea surface temperature + mean chlorophyll a ( K = 10) 57.1 471.3942 15.3773 0 
mean sea surface temperature + mean chlorophyll a + connectivity ( K = 10) 66.6 482.8149 22.28583 11.4207 

PRIMAR Y PISCIV ORES 
mean sea surface temperature + mean chlorophyll a ( K = 16) 61.9 318.9211 17.21521 0 
mean sea surface temperature + mean chlorophyll a + connectivity ( K = 16) 62.8 323.8636 17.69656 4.9425 

Top-ranked models (bold) of environmental condition and coral reef fish trophic group abundance. AICc = Akaike information criterion corrected for small 
sample size, edf = estimated degrees of freedom, � AICc = difference of AICc relative to the best-fit model. 
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modelled particles that are reef-associated whilst limiting 
overlap of the boxes (Green et al. 2015 ). 

Data modelling 

We used GAMs to evaluate the relationship of the abundance 
of the four trophic reef fish groups—grazers and detritivores,
excavators, corallivores, and primary piscivores—with the an- 
nual mean of both SST and chlorophyll a as well as pro- 
portional oceanographic connectivity. Visual data inspection 

showed non-linear relationships for most predictors and thus,
GAMs were fitted with the modelling package mgcv (1.9–
0). Poisson distribution was selected for the abundance data 
and model assumptions were confirmed through inspection 

plots. To avoid multicollinearity issues, predictor variables 
with significant Pearson correlations were not included in the 
same model. All models were fitted with the Maximum Like- 
lihood method, which performs more robustly under smooth- 
ing (Wood 2017 ). The models were selected based on Akaike’s 
information criterion for small sample sizes (AICc) (Akaike 
1998 , Wood et al. 2013 , R Development Core Team 2018 ).
he final models were run with different numbers of smooth
unctions (between k = 4 and k = 16; default k = 10) and
he final k parameter was chosen based on capturing the di-
ensionality of the underlying function and a resulting sta- 
le model fit confirmed via AICc values (Wood 2004 , 2017 ,
ood et al. 2013 ) ( Table 2 ; Supp. Table S2 ), k-index values,

nd visual diagnostics plots ( Supp. Figs S4 –S7 ; Supp. Table
3 –S6 ). 

esults 

he proportional oceanographic connectivity metric is below 

5% across all sites and the same sites exhibit high or low
onnectivity patterns throughout the years with the exception 

f 2013 and 2014 ( Fig. 3 ). Hence, the most highly connected
sh survey sites are linked to 75% of coral reefs whereas the
east connected sites are linked to just under 5% of coral reefs
n the WIO region. 

For grazers and detritivores and large and small excava- 
ors, models including connectivity were favoured in model 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae125#supplementary-data
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Figure 4. Relationship between the abundance of grazers and detritivores with (a) mean sea surface temperature, (b) mean chlorophyll a , and (c) 
oceanographic connectivity. The best-fit functions are shown with 95% confidence interval in grey and standard errors of both a partial effect combined 
with the model intercept. The x -axis shows the amount of data points, and the y -axis was shifted to include the intercept. 
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Figure 5. Relationship between the abundance of large and small excavators with (a) mean sea surface temperature, (b) mean chlorophyll a , and (c) 
oceanographic connectivity. The best-fit functions are shown with 95% confidence interval in grey and standard errors of both a partial effect combined 
with the model intercept. The x -axis shows the amount of data points, and the y -axis was shifted to include the intercept. 
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election (lowest AICc) with the best fits ranging from 89.9%
eviance explained for grazers and detritivores to 73.8% de-
iance explained for excavators ( Table 2 ). For corallivores and
rimary piscivores, the best-fit models include SST and chloro-
hyll a but the models, including connectivity have only minor
ICc differences of 11.4 or 4.9, respectively. For grazers and
etritivores and excavators all three variables were highly sig-
ificant ( P -value < 0.001). For corallivores and primary pis-
ivores, the best-fit models did not include connectivity, but
he other two parameters (SST and chlorophyll a ) were highly
ignificant ( P -value < 0.001). 

The abundance of grazers and detritivores peaked at
8.5 

◦C–29 

◦C, the highest peak temperatures of all groups,
 Fig. 4 a) and at levels of 0.8–1 mg/m 

3 and above 1.2 mg/m 

3 

hlorophyll a ( Fig. 4 b). For proportional oceanographic con-
ectivity highest abundances were predicted at the connectiv-
ty levels of below 5%, between 20% and 40%, and at 55%
 Fig. 4 c). 

Higher SST led to higher excavator abundances with peaks
t 27.5 

◦C–28.2 

◦C, whereas for chlorophyll a the pattern is
ore extreme with a sudden peak at 0.9 mg/m 

3 which then
ropped sharply ( Fig. 5 a, b). For proportional oceanographic
onnectivity, a peak of excavator abundance appeared be-
ween levels of 20% and 50% ( Fig. 5 c). 
The relationship of corallivores with mean SST shows
ighly non-linear patterns with predicted abundance peaks at
7.3 

◦C and 28.2 

◦C ( Fig. 6 a). The model indicates a clear trend
redicting higher corallivore abundances with chlorophyll a
evels greater than 1 mg/m 

3 ( Fig. 6 b). 
Primary piscivore abundances were variable with SST, with

 peak at 27.2 

◦C, lower than the other three groups, but a
econd peak above 28.7 

◦C ( Fig. 7 a). Primary piscivore abun-
ances show a strong peak in abundances at chlorophyll a
evels between 0.8 mg/m 

3 and 1 mg/m 

3 ( Fig. 7 b). 

iscussion 

ere we have shown oceanographic connectivity plays an im-
ortant environmental role in driving abundance of herbiv-
rous fish groups such as grazers and detritivores and ex-
avators. Connectivity is accounting for 26.6% variation in
bundance levels of grazers and detritivores and 20.4% for
xcavators ( Table 2 ). The best-fit models for corallivores and
rimary piscivores included only SST and chlorophyll a and
onnectivity explained less than 10% of deviance ( Table 2 ).
owever, connectivity can still be considered an important

river of their abundances as the difference in AICc val-
es between models with and without connectivity is minor
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Figure 6. Relationship between the abundance of corallivores with (a) mean sea surface temperature, and (b) mean chlorophyll a . The best-fit functions 
are shown with 95% confidence interval in grey and standard errors of both a partial effect combined with the model intercept. The x -axis shows the 
amount of data points, and the y -axis was shifted to include the intercept. 
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Figure 7. Relationship between the abundance of primary piscivores with (a) mean sea surface temperature, and (b) mean chlorophyll a . The best-fit 
functions are shown with 95% confidence interval in grey and standard errors of both a partial effect combined with the model intercept. The x -axis 
shows the amount of data points, and the y -axis was shifted to include the intercept. 
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( � AICc < 12). Interestingly, different trophic groups were 
found to have different relationships with oceanographic con- 
nectivity. This may in part be due to different movement 
patterns and habitat confidentiality (Roberts and Ormond 

1992 , Green et al. 2015 , Mayorga-Adame et al. 2017 , Roberts 
et al. 2021 ). Grazer and detritivore and excavator abundances 
peaked at medium connectivity levels. Hence, sites with in- 
termediate connectivity can play a larger role in supporting 
grazers and detritivores and excavators than ones with high 

levels of connectivity. This may suggest that population size 
for species within these trophic groups is driven by repro- 
duction and larvae dispersal at a local scale. This is consis- 
tent with findings of limited home ranges for herbivorous 
reef fish (Mumby and Wabnitz 2002 , Welsh and Bellwood 
014 ) but contradicts the idea of herbivores as linking or-
anisms between habitats (Nyström et al. 2008 ). High con-
ectivity can also come with side effects, such as stronger
ave exposure or increased pollutant dispersal, which may 
ave adverse impacts on population sizes (Hughes et al.
010 , Mayorga-Adame et al. 2017 ). The sharp abundance in-
rease at very low connectivity for grazers and detritivores 
ould be due to statistical issues (e.g. overfitting—see below) 
Wood 2008 , Marra and Wood 2011 , Wood et al. 2016 ).

hile a range of smooth functions and model fits were com-
ared, the amount of available data can result in such pat-
erns and limits the model interpretations to large-scale dy- 
amics (Wood et al. 2013 , 2016 , Wood 2017 , Yates et al.
018 ). 
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Grazers and detritivores exhibit patterns of increased abun-
ance with higher temperatures and higher chlorophyll a lev-
ls and a large drop in abundance after certain thresholds.
or excavators (parrotfishes) higher abundances were pre-
icted with medium SST (27.5 

◦C–28.2 

◦C) and high chloro-
hyll a levels (0.8–1.0 mg/m 

3 ). It is known that reef fish abun-
ances are negatively impacted by increasing SST above a
ertain threshold, although fish are more resilient to temper-
ture anomalies than corals when reef structural complex-
ty is maintained (Lloyd et al. 2012 , Graham et al. 2015 ,
randl et al. 2019 ). All trophic group models show abun-
ance increasing with higher chlorophyll a up until 1 mg/m 

3 

ith further increases for grazers and detritivores and coralli-
ores. This is consistent with a previous study (Samoilys et al.
019 ) and supports evidence that fish species in the WIO
ight have adapted to changes in SST or chlorophyll a due

o monsoon seasons (Kaunda-Arara et al. 2009 , Marshall et
l. 2014 , Mayorga-Adame et al. 2017 ). As chlorophyll a is
sed as a proxy for nutrient levels in seawater, it is not sur-
rising that higher productivity along the east African coast
esults in higher fish abundance due to higher food availabil-
ty (Williams et al. 2015 , Samoilys et al. 2019 ). This trend
as also been shown for higher fish biomass across the Pa-
ific (Williams et al. 2015 ). However, there are still draw-
acks in the algorithms of sensors and performance of re-
otely sensed chlorophyll a data in ultra-oligotrophic, eu-

rophic, and optically-complex waters, limiting the conclu-
ions that can be drawn from these data (Williams et al. 2015 ,
heng and DiGiacomo 2017 , Sathyendranath et al. 2019 ,
ahiri and Vissa 2022 ). Corallivores may not be as impacted
y connectivity due to their shorter PLDs, limited home ranges
ostly under 1384.9 m 

2 , and territorial behaviour (Booth
nd Parkinson 2011 , Mayorga-Adame et al. 2017 , Roberts et
l. 2021 , Takagi et al. 2023 ). However, their abundances de-
rease with higher temperatures confirming their dependency
n live coral for food (Roberts and Ormond 1992 , Stuart-
mith et al. 2021 ). Primary piscivores (largely groupers) are
he most sensitive group to fishing and hence can be used as
n indicator for fishing impacts (Hussey et al. 2014 ). The mod-
ls show a non-linear relationship with temperature with pre-
icted abundance peaks at lower temperatures compared to
he other groups suggesting higher temperature susceptibility
f piscivores or of their prey (Clark et al. 2017 , Stuart-Smith
t al. 2021 ). Piscivore abundances were not significantly in-
uenced by connectivity, which supports the notion that these
igger fish with larger home ranges travel further and hence,
he number of connections of their reef habitats to other reefs
hrough ocean currents is less critical (Mayorga-Adame et al.
017 ). 
Our mean SST data has a range from 26.78 

◦C to 29.28 

◦C.
or equatorial regions, this is considered large and rising tem-
eratures above 28 

◦C will alter future trophic fish commu-
ities through habitat degradation and decreased metabolic
r swimming capabilities of adult fishes (Johansen and Jones
011 , Stuart-Smith et al. 2021 , Samoilys et al. 2022 ). Further,
igher temperatures will accelerate fish larval development
hortening dispersal durations and thus, altering fish abun-
ance and distribution patterns (Johansen and Jones 2011 ,
lvarez-Noriega et al. 2020 ). Local and seasonal upwelling
atterns affect remotely sensed SST data, which often over-
stimate temperatures in coastal regions (Ramanantsoa et al.
018 , Meneghesso et al. 2020 , Lahiri and Vissa 2022 , Spring
nd Williams 2023 ). Hence, our model predictions are less
uited for local contexts but focus on large-scale impacts of
ST on fish abundances (Samoilys et al. 2019 , 2022 , Hochberg
t al. 2020 , Obura et al. 2021 ). Chlorophyll a levels ranged in
ur study from 0.4 to 1.2 mg/m 

3 and high levels can indicate
educed water quality (Feng and Hu 2016 ). Since in-situ data
re costly across large spatial and temporal scales, we used
emotely sensed ocean colour chlorophyll a data for our stan-
ardized fore reef sites across the WIO (Samoilys et al. 2019 ,
022 , Hochberg et al. 2020 , Keighan et al. 2023 ). Remote data
uality is consistent with less turbidity at fore reefs and ocean
olour technologies capture temporal and spatial variations
etter than other methods (Gohin et al. 2008 , Samoilys et al.
019 , Lahiri and Vissa 2022 ). Positive relationships of fish lar-
ae with chlorophyll a have been reported before in a Kenyan
eld study and this might change if chlorophyll a levels alter
ith ocean warming (Kaunda-Arara et al. 2009 , Benyounes et
l. 2017 ). This could be investigated with future work linking
bundance patterns with climate projections. Trophic groups
n our study followed this trend for fish abundance, with the
xception of piscivores which showed a weak negative trend
or chlorophyll a (Williams et al. 2015 , Samoilys et al. 2019 ).

The statistical modelling presented here gives insight into
ow trophic group abundances are impacted by environmen-
al variables and oceanographic connectivity. The results show
ome clear trends that connectivity is an important driver for
erbivorous reef fish, alongside SST and chlorophyll a concen-
rations across the WIO. Including reef characteristics, such as
ave exposure, structural complexity, self-recruitment, fish-

ng pressure, and in-situ measurements of environmental data
ay help to expand our modelling study and further explain

ariation in species abundances in future. We aim to develop
he connectivity metric further to capture more fine-scale pat-
erns using higher resolution models or smaller boxes with less
verlap around fish sites. Since PLDs are predicted to decrease
ith climate change leading to a reduction in larvae dispersal
istances we could test for different PLDs and other larvae
haracteristics such as mortality and settlement competency
n future (Treml et al. 2015 , Gamoyo et al. 2019 , Álvarez-
oriega et al. 2020 ). The limitations of statistical connectiv-

ty modelling can be overcome to some extent with validation
rom other approaches such as genetic markers and develop-
ents in biophysical modelling (Mertens et al. 2018 , Vaz et

l. 2022 , Wilcox et al. 2023 ). Despite testing different num-
ers of smooth functions ( k ) and selecting this final number
f functions based on a stable model fit, AICc values, k -index
alues, and visual diagnostics plots, there is a potential excess
f non-linearity with using the smooth functions (Wood 2008 ,
arra and Wood 2011 , Wood et al. 2016 , Yates et al. 2018 ).

his could lead to an overestimation of the model fit to data
hen there are a limited number of observations (Wood et al.
016 , Yates et al. 2018 ). Small sample sizes can influence both
he statistical fitting and biological interpretation of GAMs
W ood et al. 2016 , W ood 2017 , Yates et al. 2018 ). It is impor-
ant to note that statistical limitations such as overfitting with
hese sorts of models are a potential bias and we are cautious
bout making strong ecological inferences given the low sam-
les sizes (Marra and Wood 2011 , Wood et al. 2016 , Yates
t al. 2018 ). However, since our main conclusions draw on
arge-scale patterns and environmental drivers of fish abun-
ance, these interpretations are not affected by sample size
Marra and Wood 2011 , Wood et al. 2016 , Yates et al. 2018 ,
amoilys et al. 2019 ). Limiting the number of smooth func-
ions might lead to clearer ecological relationships but could
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oversimplify complex dynamics (Yates et al. 2018 ). Further 
research and data is needed to make small-scale, ecological 
predictions. 

In summary, by using a proportional oceanographic con- 
nectivity metric and incorporating this into ecological mod- 
elling we show that connectivity plays a role in driving abun- 
dances of herbivorous trophic fish groups. Herbivorous fish 

are an extremely important trophic group for reef resilience 
because of their role in algae control on reefs (Fox and Bell- 
wood 2013 , Heenan and Williams 2013 , Brandl et al. 2019 ).
Therefore, ideally oceanographic connectivity should be con- 
sidered in reef management, such as MPA planning, to in- 
crease reef resilience, and our proportional oceanographic 
connectivity metric is one proven way to do this. This is espe- 
cially critical in the WIO, which is under high anthropogenic 
pressure and is predicted to undergo annual bleaching on most 
coral reefs by 2064 even under optimistic RCP4.5 scenarios 
(van Hooidonk 2020 , Obura et al. 2021 ). Consideration of 
connectivity in MPA design, for instance, to protect the most 
important source reefs, would help build reef resilience to 

these threats by aiding reef recovery through larvae dispersal.
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