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ARTICLE INFO ABSTRACT

Editor: L Angiolini Seymour (Marambio) Island, Antarctica has one of the most expanded onshore Cretaceous—Paleogene sedi-
mentary successions in the world. The deposition of the Lopez de Bertodano Formation (~70-65.6 Ma) covered a
Keywords: time of fluctuating sea temperatures, including cold snaps, and warming linked to Deccan Traps volcanism. Here,

Maastrichtian we study community dynamics of uppermost Cretaceous (Maastrichtian) Antarctic invertebrates using fossils

Ecological complexity from the Zinsmeister Collection, Paleontological Research Institution, USA, in order to assess ecological
Co-occur . . o e . .

Metacommunities complexity prior to the Cretaceous-Paleogene (K-Pg) mass extinction. Our data set consists of 7400 fossils from
Antarctica 85 genera across bivalves, gastropods, cephalopods, echinoderms, brachiopods, scaphopods, polychaetes and

Extinction patterns
Molluscs

octocorals, from 324 localities within six informal sub-units, KLBs 5-9. Due to positional uncertainty of the KLB
boundaries, we performed sensitivity analyses to ensure robust results. We found that the number of significantly
non-random taxonomic co-occurrences and complexity increased throughout this period. To investigate meta-
community structure that may arise from taxa interactions or environmental filtering, we used the Elements of
Metacommunity Structure framework, where we found that taxa replacement, rather than nestedness, increased
through time, also highlighting complexity. However, our sensitivity analyses found that our metacommunity
results could not be distinguished from sampling biases in the most conservative sensitivity test. Thus, whilst we
can be confident that ecological complexity increased throughout the Maastrichtian, the detailed community
mechanisms behind this increase cannot be firmly established; nonetheless, this result reinforces the presence of
a single, rather than two-fold, K-Pg extinction in the southern high latitudes.

1. Introduction

extinction of all non-avian dinosaurs on land (Brusatte et al., 2015a), in
the oceans, huge losses to planktonic foraminifera and other calcareous

Mass extinctions have profoundly influenced the history of life,
where entire branches have been trimmed from the tree of life (Green
et al., 2011). Preferential loss of certain clades, morphologies, trophic
levels and functional types reduce the number of possible life history
strategies in the immediate aftermath of mass extinctions (Hull, 2015),
which can enable entirely new ecological strategies and interactions to
evolve (Solé et al., 2002, 2010; Odling-Smee et al., 2013). In the case of
the Cretaceous-Paleogene (K-Pg) mass extinction approximately 66 Ma
(Bambach, 2006), some major ecological changes included the total

plankton (Bown, 2005; Gallala et al., 2009), and the final extinction of
ammonoid cephalopod molluscs (Flannery-Sutherland et al., 2024).
While marine bivalve molluscs suffered huge taxonomic losses (e.g.,
rudist bivalves disappeared entirely (Steuber et al., 2002)), functional
diversity loss in benthic faunas was minimal (Edie et al., 2018, 2025). In
the aftermath of this mass extinction, marine molluscs show increased
mobility, predation, and infaunal life habits (Aberhan and Kiessling,
2015), while on land, terrestrial birds exhibited a major radiation
(Brusatte et al., 2015b; Field et al., 2018), as did therian and placental
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mammals (O’Leary et al., 2013; Grossnickle and Newham, 2016). In the
high latitudes, where the marine mass extinction was equally as severe
in terms of taxonomic losses in key groups as in the lower latitudes
(Witts et al., 2016), most work has focused on the extinction horizon
itself (Witts et al., 2015, 2016), and the subsequent biotic recovery
(Crame et al., 2014; Whittle et al., 2019). To date, no quantitative work
has focused on the pre-extinction Maastrichtian Stage, an understanding
of which is necessary to truly contextualize the scale of the K-Pg
transition.

Studying broad, pre-extinction ecological dynamics requires consis-
tent stratigraphy with no significant depositional hiatuses, minimal time
averaging, and a well sampled fossil record. Seymour (Marambio) Island
is perfect for such ecological studies because it fulfils all of the criteria
above. It contains a continuous sequence (no major hiatuses) of almost
40 million years including an expanded record of the K-Pg mass-
extinction interval (Crame, 2019; Reguero, 2019). At ~65°S palae-
olatitude, it is the highest latitude onshore locality for this time period in
either hemisphere (Crame, 2019), allowing for the study of environ-
mental and biological processes in the polar regions. The island is
located in the James Ross Basin of the Antarctic Peninsula (Fig. 1), with
highly expanded rock exposures of Maastrichtian (Late Cretaceous,
approximately 71 Ma) to Late Eocene (approximately 33 Ma) age
(Rinaldi, 1992; Hathway, 2000; McArthur et al., 2000; Francis et al.,
2006; Olivero, 2012). This record means that it is a key locality for
investigating palaeoclimate, palaeoenvironments and biotic evolution
(Anderson et al., 2011; Olivero, 2012; Douglas et al., 2014; Barreda
et al.,, 2015) over a time period of almost 40 million years. Palae-
obiological and evolutionary insights from Seymour Island include the
development of cool temperate Palaeogene climates within the Wed-
dellian Biotic Province (Case, 1988) which were dominated by Notho-
fagus forests (Askin, 1988), the preferential dispersal of small marsupial
mammals over placental mammals between South America and
Australia (Case et al., 1988), the asynchronous effects of the Marine
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Mesozoic Revolution (Whittle et al., 2018), periodic returns of the
benthic community to Palaeozoic-like community structure with low
predation in the Eocene (Aronson et al., 1997), the origins of Southern
Ocean benthic fauna (Aronson and Blake, 2001; Crame et al., 2014), the
evolution of penguins (Jadwiszczak, 2006) and apex predation on the
Antarctic continent (Acosta Hospitaleche and Jones, 2024).

The nature of the K-Pg extinction in Antarctica has been debated,
with hypotheses suggesting it was either gradual (Zinsmeister et al.,
1989; Zinsmeister, 1998), multi-phased (Tobin et al., 2012; Tobin,
2017) or a single event (Springer, 1990; Marshall, 1995; Witts et al.,
2015, 2016). The gradual extinction hypothesis was attributed to
macrofossil first and last occurrence data from an “expanded” K-Pg in-
terval, prior to the precise placement of the K-Pg boundary in the Ant-
arctic sequence. During this expanded interval, spanning approximately
50 m of stratigraphy, last occurrences continually increased, while first
appearance dates of taxa remained continuous throughout the Maas-
trichtian (Zinsmeister et al., 1989). Zinsmeister argued that a single
catastrophic extinction should show a cluster of last appearances, which
would be followed by a cluster of first appearances (Zinsmeister et al.,
1989). Under the multi-phased extinction hypothesis, confidence in-
tervals placed on last appearance datums derived from existing fossil
range data from older publications and individual sedimentary section
lines, identified two distinct clusters of last appearances, one at the (now
defined) K-Pg boundary affecting nektonic molluscs, and a precursor
extinction approximately 40 m below the boundary, primarily affecting
the benthic component (Tobin et al., 2012; Tobin, 2017). This precursor
extinction was linked with oxygen isotope evidence for climate warm-
ing, linked temporally to the Late Maastrichtian Warming Event and
Deccan Trap volcanism (Tobin et al., 2012; Barnet et al., 2018; Hull
et al., 2020). Early assessments of the extinction pattern based solely on
the fossil record of ammonites however, suggested that their extinction
pattern was most likely sudden, rather than gradual (Springer, 1990;
Marshall, 1995). The single, catastrophic extinction hypothesis used
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Fig. 1. Simplified geological map of Seymour (Marambio) Island, with the Lopez de Bertodano Formation expanded into the informal cartographic mapping units
KLBs 2-10, modified from Crame et al. (2014); Montes et al. (2019b). Composite stratigraphy of the Molluscan Allomembers (KLBs 7-9), along with magneto-
stratigraphic dates, modified from Montes et al. (2019b). Palaeoclimatic interpretation is derived from Bowman et al. (2013) and Witts et al. (2016), rescaled to fit
the stratigraphic log, using the K-Pg boundary and glauconite-rich beds as tie-points. Blue dots on the map show sampling localities in this study. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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newer composite range data from multiple British Antarctic Survey
measured sections. Based on internally consistent and updated taxo-
nomic identifications, these studies identified a 61 % species level and
36 % generic level loss in benthic molluscs and loss of all nektonic
ammonites at the K-Pg boundary itself, after modelling range extensions
to counter for the Signor-Lipps effect (Witts et al., 2016; Whittle et al.,
2019). Further difficulties between drawing exclusive causal links be-
tween Deccan Traps-induced warming are because proxy evidence for
general climate warming commenced 2 million years prior to the hy-
pothesized precursor extinction in Antarctica, resulting in a mismatch in
timing (Bowman et al., 2013; Witts et al., 2016).

Beyond the use of presence/absence data, the spatio-temporal
ecological complexity of Cretaceous communities on Seymour Island
has the potential to shed some light on the nature of the end-Cretaceous
mass extinction in Antarctica, as complexity correlates to ecosystem
resilience (Pimm, 1984), with extinction patterns determining expected
changes in ecological complexity. Measures of complexity include spe-
cies richness, connectance and the frequency of interactions (Proulx
et al., 2005). Here, we define “complexity” to mean structured co-
occurrences of taxa, i.e., a measure of how often species significantly
aggregate or segregate across the different sites through space and time,
and we assess complexity at taxa level and at the metacommunity level.
We expect complexity to increase up-section till the K-Pg boundary
under a catastrophic extinction scenario, and complexity to decrease up-
section prior to the K-Pg boundary under a gradual extinction scenario.

1.1. The elements of metacommunity structure

We assess complexity as significantly non-random pairwise re-
lationships between taxa and at the metacommunity level, employing a
method known as Elements of Metacommunity Structure, currently best
studied in lake ecosystems (Cottenie and De Meester, 2003; Heino, 2005;
Allen et al., 2011; Logue et al., 2011; Podani and Schmera, 2011; Heino
et al., 2015a, 2015b, 2015¢; Datry et al., 2016), but which has also
recently been applied to the fossil record (Garcia-Giron et al., 2021;
Eden et al., 2022). In this study we define metacommunity as a set of
local communities that are potentially connected to each other by
dispersal, while a community is a group of species within a given site
(Leibold and Mikkelson, 2002). Community structure is the patterning
of co-occurrences across different sites, and may be driven by species
sorting (due to environmental differences), mass effects (due to high
dispersal pressure), patch dynamics (due to competition or coloniza-
tion), or neutral effects (due to random dispersal and stochastic events)
(Leibold et al., 2004; Leibold and Mikkelson, 2002; Presley et al., 2010).
The Elements of Metacommunity Structure (EMS) framework provides a
toolkit to identify distribution patterns and infer these underlying
organizational processes using a pattern-based approach, where char-
acteristics of an ordinated, site-by-taxa community composition matrix,
can reveal spatial patterns along inferred environmental gradients
(Leibold and Mikkelson, 2002; Presley et al., 2010; Dallas, 2014).
Reciprocal averaging is the best indirect ordination procedure to discern
sample variation in response to environmental gradients (Gauch et al.,
1977; Pielou, 1984). Three hierarchical properties are assessed in the
EMS framework: coherence, turnover, and boundary clumping (Leibold
and Mikkelson, 2002; Presley et al., 2010).

Coherence measures the degree to which a distributional pattern can
be collapsed into a single ordination axis, i.e., whether species’ distri-
butions respond to a common environmental gradient (Leibold and
Mikkelson, 2002). It does so by measuring the correlation between
embedded absences in ordinated incidence matrices (i.e., whether
certain species tend to avoid each other or preferentially occur
together), and then comparing the observed value to a null distribution
of embedded absences from 1000 simulated matrices (Leibold and
Mikkelson, 2002; Presley et al., 2010; Dallas, 2014). When embedded
absences are not significantly different from the null model, the struc-
ture is described as “random”, in that taxa are distributed at random
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with respect to the axis of ordination, which suggests that taxa are not
responding to a common environmental gradient (Leibold and Mikkel-
son, 2002; Presley et al., 2010). When embedded absences are signifi-
cantly larger than expected by chance, coherence is negative, and a
“checkerboard” pattern emerges, which indicates high numbers of
mutually exclusive taxa. The ecological interpretation behind a check-
erboard pattern is that of niche segregation and/or competitive exclu-
sion between taxa (Diamond, 1975; Leibold and Mikkelson, 2002;
Presley et al., 2010). When embedded absences are significantly lower
than the null distribution, coherence is significantly positive, which
indicates that species’ distributions are responding similarly to a com-
mon environmental gradient, the inference being that this common
response is due to similarities in evolutionary history or ecological
preferences (Leibold and Mikkelson, 2002; Presley et al., 2010).

For communities that have positive coherence, the second EMS
metric to be evaluated is turnover. Turnover occurs where the spatial
ranges of two species mismatch, and measures the amount of spatial
replacement of species between sites along an ordination axis (i.e,
environmental gradients) (Leibold and Mikkelson, 2002; Presley et al.,
2010). It is calculated by comparing replacements against a null distri-
bution, where the entire spatial range of each taxon is shifted at random
(Dallas, 2014; Leibold and Mikkelson, 2002; Presley et al., 2010). Prior
to this calculation, the taxon ranges are made artificially coherent by
filling in any embedded absences, as absences within the gradient are
stochastic (Presley et al., 2010). When turnover is significantly negative
(i.e., species are replaced less often than expected by chance), the spe-
cies ranges along the environmental gradient are “nested”, meaning that
species-poor sites contain subsets of those found at species rich sites
(Supplementary Fig. S1). This nested pattern infers species loss without
replacement (Leibold and Mikkelson, 2002; Presley et al., 2010), for
example due to habitat degradation, or along island biogeography sys-
tems where smaller islands hold subsets of larger islands. When turnover
is significantly positive (i.e., species are actively being replaced along
the gradient), the species’ ranges along the gradient are “non-nested”,
forming distinct communities over this gradient (Leibold and Mikkelson,
2002; Presley et al., 2010). The spatial turnover metric is depicted in
Supplementary Fig. S1. When the turnover observed does not differ
significantly from the null distribution, the organizational processes are
considered to be weaker, therefore the structures are described as
“quasi”-structures.

The final parameter, boundary clumping, is used to assess where on
the environmental gradient the species’ range limits lie (i.e. how often
multiple taxa have their range limits in the same study sites), and is
calculated using Morisita’s Index, MI (Morisita, 1962). When multiple
species’ ranges end at the same position, the boundary is described
“clumped” (MI > 1), whereas if the range ends are more evenly
distributed, the boundary is “evenly spaced” (MI < 1). When the range
boundaries are random and MI ~ 1, the boundary is described as
“random”.

The combination of these properties forms one of 14 idealized met-
acommunity structures, which are defined in Table 1 and two end-
members of these metacommunities are depicted in Supplementary
Fig. S1.

In order to understand how the underlying metacommunity structure
relates to different taxa, we analysed the frequency of pairwise associ-
ations between taxa using a combinatorics approach to see the extent to
which pairwise co-occurrences occur significantly more or less than
random (Veech, 2013). Significantly non-random co-occurrences indi-
cate shared ecological or evolutionary processes between the taxa pair
(Blanchet et al., 2020), i.e. not necessarily direct taxa interactions, but
also environmental (dis)associations (Blanchet et al., 2020).

1.2. Geological setting

Six geological units are present on Seymour Island; here we focus on
the Lopez de Bertodano Formation (LBF) (Maastrichtian, ~71-65.6 Ma)
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Table 1

A glossary of the most important terms in this manuscript. Table adapted from
(Leibold and Mikkelson, 2002; Presley et al., 2010; Heino et al., 2015a; Garcia-

Girén et al., 2021; Eden et al., 2022).

Concept Description and ecological interpretation

Community A group of taxa at a particular site (Leibold and
Mikkelson, 2002).

Metacommunity A set of local communities that are potentially
connected to each other by dispersal (Leibold and
Mikkelson, 2002).

Complexity Structured co-occurrences of taxa, i.e., a measure of

Elements of
metacommunity
structure

Reciprocal ordination

Environmental gradient

Coherence

Range turnover

Range boundary clumping

Random structure

Checkerboard structure

Nested clumped structure

Nested random structure

Nested hyper dispersed
structure

Clementsian structure

Gleasonian structure

how often taxa preferentially aggregate or segregate,
at the community and the metacommunity level.

A toolkit proposed by Leibold and Mikkelson (2002)
and expanded by Presley et al. (2010) to infer
metacommunity properties from ordinated site-by-
taxon incidence matrices, in order to infer biological
processes from spatial patterns. Can be assessed using
the “metacom” package (Dallas, 2014).

Ordering an incidence matrix so sites with the most
similar taxa are grouped together and taxa with the
most similar distributions are grouped together (
Leibold and Mikkelson, 2002)

The first axis of the ordination, which reveals a latent
gradient that structures the spatial distribution of taxa
(Leibold and Mikkelson, 2002; Presley et al., 2010).
A measure to which degree taxa distributions respond
to a common environmental gradient (a single axis).
Positive coherence indicates taxa respond to the same
gradient and negative coherence indicates that taxa
do not share this response.

The amount of spatial replacement of taxa between
sites along an ordination axis. Negative values
indicate taxa loss and positive values indicate taxa
replacement.

The degree to which taxa’s end limits cluster at the
same sites.

No metacommunity structure is detected when
coherence does not vary significantly from the null
expectation.

Negative coherence, indicate high numbers of
mutually exclusive pairs due to strong segregation.
Positive coherence; significant negative turnover;
positive boundary clumping. Taxa poor communities
are subsets of taxa rich communities, with groups of
taxa lost together due to shared range ends on the
gradient. When turnover is non-significant, the
community is more weakly structured and termed
“quasi-nested clumped”.

Positive coherence; significant negative turnover;
non-significant boundary clumping. Taxa poor
communities are subsets of richer communities with
random taxon loss as range boundaries are randomly
distributed on the gradient, i.e., weak environmental
filtering. When turnover is non-significant, the
community is more weakly structured and termed
“quasi-nested random”.

Positive coherence, significant negative turnover,
negative boundary clumping. Taxa poor communities
are subsets, with taxon loss regularly occurring along
the gradient. When turnover is non-significant, the
community is more weakly structured and termed
“quasi-nested hyper dispersed”.

Positive coherence, significant positive turnover,
positive boundary clumping. Taxa are organized into
cohesive groups with shared tolerances, with distinct
groups replacing each other sharply over the gradient
due to strong environmental filtering. Responses are
community-level rather than at taxon level. When
turnover is non-significant, the community is more
weakly structured and termed “quasi-Clementsian”.
Positive coherence, significant positive turnover, non-
significant boundary clumping. Taxa distributions are
individualistic with gradual replacements on the
environmental gradient due to niche sorting. When
turnover is non-significant, the community is more
weakly structured and termed “quasi-Gleasonian”.
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Table 1 (continued)

Concept Description and ecological interpretation

Evenly spaced structure Positive coherence, significant positive turnover,
negative boundary clumping. Taxa have non-
overlapping and regularly spaced niches along the
gradient, with regular replacements. When turnover
is non-significant, the community is more weakly

structured and termed “quasi-evenly spaced”.

(Rinaldi et al., 1978). The LBF crops out continuously over approxi-
mately 70 km? (Crame et al., 2004) on the southwest side of the island,
and is unconformably bounded by the Haslum Crag Formation (early
Maastrichtian Stage) at the base, and overlain by the Sobral Formation
(Danian —?Thanetian; Paleogene) (Pirrie et al., 1991; Olivero et al.,
2008). The LBF is 1100 m thick, comprised of relatively homogeneous
and unconsolidated clayey-silts and silty-clays, with intercalated thin
burrowed sandstone horizons, and layers of early diagenetic carbonate
concretions (Macellari, 1988; Bowman et al., 2012). Subdivision of the
LBF has been hampered by a high degree of lithological homogeneity at
outcrop scale (Macellari, 1988; Bowman et al., 2012). It was originally
divided into ten informal cartographic units based on “differences in
lithologic, faunal and physiographic characteristics” (Macellari, 1988),
and “the contacts were drawn at distinctive beds that are easy to trace
laterally on aerial photographs” (Macellari, 1984). Because of their
nearly uniform lithology, the mappable units were not considered
distinctive enough to warrant Member status (Macellari, 1984, 1988).
The units were termed KLBs (an acronym for “Cretaceous Lopez de
Bertodano™), with KLB 1 being the oldest, and KLB 10 the youngest
(Fig. 1) (Macellari, 1984, 1988). Recognizing these units in the field is,
however, challenging due to the aforementioned lithological homoge-
neity, but the palaeontological content of the LBF allows clustering into
two larger informal units: the “Rotularia Units” (KLBs 1-6) and
“Molluscan Units” (KLBs 7-10) (Macellari, 1988).

The Cretaceous-Paleogene boundary occurs at the top of KLB 9, near
the base of a prominent glauconite-rich bed, termed the “Lower Glau-
conite” (Elliot et al., 1994; Zinsmeister, 1998), defined as subunit 9g in
the most recent geological map (Montes et al., 2019b). A small iridium
(Ir) anomaly has been recorded at/just below this level, fallout from the
Chicxulub asteroid impact which link the boundary to others around the
globe (Elliot et al., 1994; Molina et al., 2006; Ferreira Da Silva et al.,
2023). Since the original description of the LBF, the basal unit (KLB 1)
has now been assigned to the Haslum Crag Formation (Olivero et al.,
2008). Subsequent mapping efforts retained the KLB boundaries
(Brecher and Tope, 1988). The most recent geological map of Seymour
Island (Montes et al., 2019b) continues to use the KLB subdivisions as
mappable units, and further divides the LBF into three members based
on lithostratigraphic features and palaeontological content (Montes
et al.,, 2019a): the Rotularias Allomember (lower, comprising of KLBs
2-6); the Molluscan Allomember (middle, comprising of KLBs 7-9); and
the Cenozoic Allomember (upper, comprising of KLB 10, but divided
into units 10-11 (Montes et al., 2019b)).

Integrated age models for the LBF have been compiled based on
strontium isotope chemostratigraphy (McArthur et al., 1998; Crame
et al., 2004), ammonite and dinoflagellate cyst biostratigraphy
(Bowman et al., 2012, 2013; Witts et al., 2015) and magnetostratigraphy
(Tobin et al., 2012). The magnetostratigraphic chrons C31R through
C29N on Seymour Island suggest an early Maastrichtian-Danian age for
the sequence (Tobin et al., 2012). The most recent chronostratigraphic
age models indicate that the base of the Molluscan Allomember (base of
KLB 7) is dated to ~70.0 Ma, and the K-Pg boundary (top of KLB 9) at
66.04 Ma (Montes et al., 2019a) (Fig. 1).

The LBF was deposited in a shallow marine (shelf) environment,
under variable water depths. The friable texture and lack of diagnostic
sedimentary structures make the interpretation of the depositional
environment difficult. Palaeoenvironmental interpretations of the basal
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LBF have differed, with shallow water, nearshore deposition originally
proposed based on mudstone facies and the presence of flaser bedding
(Macellari, 1988; Olivero et al., 2007, 2008). An alternative interpre-
tation of deeper water outer shelf conditions was also proposed, due to a
slight decrease in grain size up-section from the Haslum Crag Formation
(Crame et al., 2004). The middle to upper sections of the LBF represent
overall transgression (sea level rise) and mid-outer shelf environments
(Macellari, 1988; Olivero, 2012). In the uppermost 300 m of the LBF (the
Molluscan Allomember) and across the K-Pg boundary, a regressive
phase (sea level fall) has been suggested (Olivero, 2012). The occurrence
of glauconite-rich beds, especially at the top of KLB 8 and at the K-Pg
boundary, suggest that deposition on the shelf was interrupted by pe-
riods of slow, condensed and uniform sedimentation (Elliot et al., 1994;
Olivero et al., 2017). Proxy data from palynological, palaeobotanical
and marine macrofossil records suggest overall cool and humid condi-
tions (Askin, 1988; Bowman et al., 2012), with terrestrial and marine
temperatures ranging between ~4-15 °C, and at least three particularly
cold spells during the mid-late Maastrichtian, when sea ice may have
formed (Bowman et al., 2013). The last such cold snap is depicted in
Fig. 1. This was followed by climate warming that began ~2 million
years before, and ended just prior, to the K-Pg boundary (Bowman et al.,
2013), with marine temperatures increasing by as much as 7.8 + 3.3 °C
(Petersen et al., 2016).

Here we study benthic taxa from the most macrofossil-rich part of the
section, the Molluscan Allomember (KLBs 7-9), to assess meta-
community ecological complexity during the late Maastrichtian. We
quantify ecosystem structure in the run up to the K-Pg mass extinction
using metacommunity and co-occurrence analyses and contextualize the
true impact of this global evolutionary event.

2. Methods
2.1. Data collection

The data used in this study were collected from Seymour Island by
Zinsmeister and colleagues, over several field seasons in the 1980s
(Zinsmeister, 1982, 1985; Zinsmeister et al., 1989). Fossil molluscs,
comprising mostly of bivalves, gastropods, and ammonites, were
collected along six stratigraphic sections from around the island in 1982
and 1984 (Macellari, 1984, 1988). Hundreds more macrofossil localities
were later sampled along the K-Pg boundary (Zinsmeister et al., 1989),
which were projected onto a single vertical section, using a method
termed stratigraphic plane analysis (Zinsmeister, 2001). These field
campaigns yielded almost 22,000 fossil specimens of Cretaceous to
Eocene age, which have, since April 2009, been housed in the William J.
Zinsmeister Collection of the Paleontological Research Institution (PRI),
Ithaca, NY, USA (Dietl, 2010). Prior to PRI’s acquisition of Zinsmeister’s
specimens, one of the largest collections of Antarctic fossils in the world
was inaccessible to researchers outside of Purdue University or Ohio
State University (Dietl, 2010). Since PRI's acquisition of Zinsmeister’s
fossils, PRI Collections staff have digitally catalogued all the material
(searchable on www.pricollectionsdatabase.org), photographed many
of the specimens, publicly exhibited exceptional specimens at the
Museum of the Earth, and created 3D models of numerous taxa as part of
a virtual collection enabling the study of this collection.

Using the PRI Collections we collated abundance and updated
(where needed) the taxonomic identifications to align with newer
publications (Beu, 2009; Crame et al., 2014). The PRI collections retain
the genus and species level identifications that were originally assigned
to each specimen by Zinsmeister and colleagues. Subsequent work by
other authors, including those on more recently collected fossils (Crame
et al., 2004; Witts et al., 2016; Whittle et al., 2019) have updated the
taxonomic status of many molluscan taxa from Seymour Island (Beu,
2009; Crame et al., 2014). Conflicts between the Zinsmeister and British
Antarctic Survey (BAS) nomenclature are detailed in the taxonomic
appendix of Crame et al. (2014). We resolved these discrepancies in two
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ways: (i) we reassessed all uncertain genus names against specimens in
the PRI image database, deleted known errors and corrected updated
names, and (ii) coarsened our data to assess all ecological associations at
the Family level. This left us with a total of 48 benthic families for our
analyses.

Fossil specimens in the Cretaceous section of the Zinsmeister
Collection are organized by geographic locality (324 “stations” in PRI
terminology), the verbatim coordinates for which were derived by PRI
Collections staff, using stratigraphic plane analyses, as detailed in Stil-
well et al. (2004). PRI Collections staff additionally transcribed all sta-
tions from field maps onto Google Earth. In most cases the field marked
locality and formula derived locality plotted very close to each other,
with the formula derived coordinates plotting generally northwest of the
marked localities. Some localities could not be located on field maps and
were noted in the Collections database; excluding these uncertain sta-
tions left 270 sites for analyses. As the original fossil specimens were
collected to assess spatiotemporal patterns along informal cartographic
KLB units, we plotted all the coordinates (using PRI’s field map-located
reported latitude and longitude) onto the most recent geological map of
Seymour Island in QGIS (Montes et al., 2019b), and assigned a KLB unit
number to each station. To ensure consistency with the PRI Collections,
we chose to divide our analyses along KLB subdivisions. Stations that
contained all the benthic fauna characteristic of cold methane seeps
(‘Lucina’ scottii, ‘Thyasira’ townsendi, Solemya rossiana, Little et al., 2015)
were also excluded from our study. These data filters left us with a total
of 259 stations spanning KLBs 5-10, but we focus on KLBs 7-9
(Molluscan Allomember units — uppermost Maastrichtian) only for a
total of 204 stations, because KLBs 5, 6 and 10 did not have sufficient
localities to enable comparable analyses.

2.2. Sampling completeness

We performed all analyses in R (R Core Team, 2022) (see deposited
code; Khan et al. (2025a)). Data from the benthic members of the
Molluscan units came from 37 sites in KLB 7, with 29 families present,
30 sites in KLB 8, with 30 families present, and 137 sites in KLB 9, with
42 families present (Table 2). In order to assess whether the majority of
taxa present at each KLB have been collected, we analysed accumulation
curves at the family level for the Molluscan Allomembers as a whole, and
per KLB, using abundance data in the R package vegan (Oksanen et al.,
2022). Due to uneven sampling effort per KLB, we also calculated the
expected family richness of each KLB unit at 95 % coverage sampling
(Chao et al., 2014) using the R package iNEXT (Hsieh et al., 2024).
Accumulation and coverage-based curves are presented in Supplemen-
tary Fig. S2, and the expected richness values are present in Supple-
mentary Table 1.

2.3. Ecological analysis

For ecological analyses we used binary presence/absence data based
on the fossils found in each station (c.f. Klompmaker and Finnegan,
2018; Eden et al., 2022). Occurrence data by station can be found via the
UK Polar Data Centre (Khan et al., 2025b).

2.3.1. Ordination

Ordination methods summarize the multivariate nature of commu-
nity data along a reduced number of axes representing the main trends.
We applied two-axis NMDS on Jaccard dissimilarities to explore varia-
tion among the sites in KLBs 7, 8 and 9. We also performed reciprocal
averaging on the same data to visualize taxonomic similarity and to
evaluate whether any temporal structure was evident at the KLB level.

2.3.2. Pairwise co-occurrences

We use the cooccur package (Griffith et al., 2016) in R to assess the
percentage of non-random associations between taxa in sites in KLB 7,
KLB 8, and KLB 9. Taxa which only occur in one site were removed from
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Table 2
Families in each of the Molluscan Allomembers. Families that were found only in
one locality (singletons), are highlighted with asterisks.

Unit Group Families present
KLB Bivalves Chamidae*, Corbulidae, Cucullaeidae, Gryphaeidae,
7 Hiatellidae, Lahillidae*, Limidae*, Limopsidae*,
Nuculidae, Pholamyidae, Pinnidae, Thraciidae*, Veneridae
Corals Flabellidae*
Gastropods Amberleyidae, Aporrhaidae, Cassidae, Cerithiidae*,

Fasciolariidae, Gordenellidae*, Naticidae*, Perissityidae,
Pleurotomariidae, Taiomidae, Vanikoridae

Lobsters Nephropidae
Polychaetes Serpulidae
Scaphopods Dentaliidae
KLB Bivalves Corbulidae, Cucullaeidae, Entoliidae*, Gryphaeidae,
8 Hiatellidae, Lahillidae, Limidae*, Limopsidae*, Nuculidae,
Pinnidae*, Pulvinitidae*, Thraciidae*, Trigoniidae,
Veneridae
Corals Turbinoliidae*
Echinoderms Isselicrinidae*, Cidaridae
Gastropods Amberleyidae, Aporrhaidae, Cassidae, Cerithiidae*,
Fasciolariidae, Perissityidae, Pleurotomariidae, Taiomidae,
Vanikoridae
Lobsters Nephropidae
Polychaetes Serpulidae
Scaphopods Dentaliidae
KLB Bivalves Corbulidae, Cucullaeidae, Entoliidae, Gryphaeidae,
9 Hiatellidae, Lahillidae, Limidae, Malletiidae, Mytilidae*,

Nuculidae, Bakeveliidae, Periplomatidae*,
Pholadomyidae, Pinnidae, Pteriidae, Pulvinitidae,
Solemyidae*, Thraciidae*, Trigoniidae, unidentified*,
Veneridae

Corals Flabellidae, Fungiacyathidae

Echinoderms Isselicrinidae, Cidaridae*

Gastropods Acteonidae*, Amberleyidae, Aporrhaidae, Cassidae,
Cerithiidae, Fasciolariidae, Naticidae, Perissityidae,
Pleurotomariidae, Taiomidae, Turritellidae, unidentified*,
Vanikoridae

Lobsters Nephropidae

Octocorals Waiparaconidae*

Polychaetes Serpulidae

Scaphopods Dentaliidae

the analyses because they disproportionally impact the co-occurrence
analyses (Collins et al., 2011; Pitta et al., 2012). Exclusion of single-
tons left 20 families in KLB 7 (nine singletons), 20 families in KLB 8 (ten
singletons) and 34 families in KLB 9 (eight singletons) (Table 2). The
cooccur framework has a very low rate of Type I and Type II errors,
provided that the number of sites assessed is greater than 20 (Veech,
2013), so it is robust to differences in sampling for this number of sites
and above.

2.3.3. Metacommunity analyses

We analysed binary presence/absence data from the stations in KLBs
7-9. Here, each station is a community while all of the stations within a
particular KLB forms a metacommunity. On reciprocally ordinated data,
we calculated the observed coherence, turnover and boundary clumping
values for each KLB using the R package metacom (Leibold and Mik-
kelson, 2002; Presley et al., 2010; Dallas, 2014). We used simulations of
these parameters to determine whether the observed values differed
significantly from simulated mean values, normalizing them as Z-scores.
These Coherence, Turnover and Boundary Clumping values were used to
determine the inferred metacommunity structure of each KLB unit
(Dallas, 2014) (Table 1).

2.4. Sensitivity analysis

The Zinsmeister Collection, though expansive, has been challenging
to use due to uneven sampling effort and absence of data tied directly to
detailed measured sections (Crame et al., 2014). In this study, we have
chosen to quantify the impact of these challenges so the Collection may
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be better utilized. This work is particularly important, as museum col-
lections are a crucial resource of historic data that help us understand
patterns and processes of past evolutionary and ecological changes, that
would otherwise be unavailable (Nicholson, 1991). For example, it has
been demonstrated that “hidden” museum collections probably hold as
much as 23 times more data than are currently accessible through global
compendia such as the Paleobiology Database (PBDB) (Marshall et al.,
2018).

There are two potential sampling influences in our data, to which we
apply sensitivity analyses to understand their impact on our results. The
first deals with locality position uncertainty, and second is variation in
sampling intensity.

First, the stratigraphic plane analyses used by Zinsmeister allow for
assessment of synchronous spatial patterns (Zinsmeister et al., 1989;
Stilwell et al., 2004). However, there are two complications with this
method: (i) the subdivision into the cartographic KLB units is chal-
lenging in the field due to lithological homogeneity (Bowman et al.,
2012), leading to uncertainties in the positional boundaries of the KLBs,
and (ii) the projection plane method produced a number of stratigraphic
ranges for different taxa that contrast significantly with BAS data tied to
measured section lines (Crame et al., 2014).

In order to test how potential uncertainties in locality co-ordinates
impacted our results we performed sensitivity analyses as follows: for
each KLB unit in our study (KLBs 7, 8 and 9), we applied a set of
sensitivity analyses (Fig. 2) to adjust the positional boundaries of the
KLB units, and performed ecological analyses both on raw and treated
data. The boundary of KLB 9 and 10 (namely the K-Pg) was kept fixed
because it is now well defined (e.g., Montes et al., 2019a).

1) For KLBs 7 and 8, we shifted the boundaries to the west by approx-
imately 250 m, which incorporated some stratigraphically older
stations, and excluded some younger sections (Fig. 2a).

(a) Shift KLB 7 and 8 west (b) Shift KLB 7 and 8 east
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Fig. 2. (a-c) Sensitivity analyses applied to the KLB 7 and 8 units. (d) The K-Pg
boundary was held fixed, so KLB 9 could only be contracted in one direction.
Black symbols summarize the nature of the sensitivity test; these symbols are
used in the results figures, namely shifting west, shifting east, then contracting
the boundaries.
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2) We also shifted the boundaries of KLB 7 and 8 to the east by
approximately 250 m, which incorporated some stratigraphically
younger stations, while excluding older stations (Fig. 2b).

3) We contracted any given KLB by 250 m on each side (Fig. 2c). This
ensure that only the localities that definitely belonged in the KLB (as
opposed to the localities closer to the positional boundaries), were
included.

4) For KLB 9 we held the K-Pg boundary fixed, then moved the bottom
of KLB 9 boundary west as above. This allowed only for the
contraction of KLB 9, instead of also shifting the whole unit east or
west (Fig. 2d).

These sensitivity analyses were designed specifically to address the
concern of positional boundaries of KLB units due to homogeneous li-
thology at outcrop scale, and from reconciling field-marked localities
with coordinates derived from stratigraphic plane projections. Raw re-
sults, as well as treated results, are reported here.

We further minimised the stratigraphic range uncertainty between
BAS and Zinsmeister data by using only presence/absence data, assess-
ing our taxonomic co-occurrences at family level (instead of genus or
species level), and at a relatively coarse temporal resolution (sub-
divisions of the Molluscan units) instead of much finer temporal scales,
similar to previous palaeontological studies using these methods (e.g.
Garcia-Girén et al., 2021; Eden et al., 2022).

We considered dividing KLB 9 into sub-sections in order to further
test the hypothesized double extinction some 30-60 m below the K-Pg
boundary (Tobin, 2017). However, this was not possible as we would
have had to divide our spatial data explicitly according to which stations
fall above and beneath the hypothesized first extinction horizon. A
reassessment of the measured sections in the earliest data sources
(Macellari, 1984, 1988) revealed two problems: (i) only 14 stations fell
between the interval starting at 60 m below the K-Pg boundary, a
number too few for meaningful metacommunity or pairwise cooccur-
rence analyses (Veech, 2013), (ii) at the time of Macellari’s data
collection, the precise location of the K-Pg boundary was not yet fixed
(Zinsmeister, 1998), meaning that it is impossible to determine which
stations should be included in the first interval. Subsequently collected
Zinsmeister data (Zinsmeister et al., 1989), which were plotted by Tobin
(2017), are not presented spatially either, making comparisons with our
methods untenable. The only way to reassess spatial (therefore, largely
contemporaneous) ecosystem complexity in these crucial intervals is to
collect new data, with fossils sampled perpendicular to strike on mul-
tiple section lines laterally along the length of the K-Pg boundary, with
collections made both above and below the hypothesized pulsed
extinction interval levels.

Secondly, we tested the impact of sampling intensity on our results,
as there were many more sites in KLB 9 (137 stations), compared to KLBs
7 and 8 (37 and 30 stations respectively). Sites exhibited spatial clus-
tering (Fig. 1), so instead of random subsampling, we used a spatially
explicit subsampling approach. Using the R package tidysdm (Leonardi
et al., 2024), we spatially thinned our sites, with 10 replicates at each
level of thinning. Sites were removed within a given radius of each
station, so during the thinning process, the minimum distance between
any two sites would be (i) 30 m, (ii) 50 m, and (iii) 70 m apart (Sup-
plementary Fig. S3). We reassessed rarefaction curves for these thinned
draws (Supplementary Fig. S4) and performed ecological analyses on
both raw and thinned data.

Our methods account for Type II errors at the time of fossil collection.
If taxa were actually present in the field but not collected or recorded
(for whatever reason), we would have expected non-significant coher-
ence, as coherence is determined by an over-abundance of shared
embedded absences, which deviate significantly from null values
(Leibold and Mikkelson, 2002). In such instances, the follow-up metrics
of turnover and boundary clumping would be inappropriate to calculate.
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3. Results
3.1. Fossil data

Data from the benthic members of the Molluscan Allomembers came
from 37 sites in KLB 7, with 29 families present, 30 sites in KLB 8, with
32 families present, and 137 sites in KLB 9, with 43 families present.
Rarefaction analyses over 100 iterations (Supplementary Fig. S2) sug-
gest that the total number of benthic families present in the Molluscan
Units may be approximately 45 families, and at least 150 sampling
stations may be necessary to appropriately capture the full extent of this
richness. At 95 % coverage, 21 families were present in KLB 7, 21
families were present in KLB 8, and 25 families were present at KLB 9
(Supplementary Fig. S2 and Supplementary Table 1).

In KLB 7, the bivalve family Gryphaeidae was most common,
occurring in 13 out of 37 sites, followed by Cucullaeidae bivalves (11/37
sites) and Fasciolariidae gastropods (11/37 sites). In KLB 8, Aporrhaidae
gastropods were most common, occurring in 15 out of 30 sites, followed
by Amberleyidae gastropods (13/30) and Cucullaeidae bivalves (13/
30). In KLB 9, the most common families were the bivalves Gryphaeidae
(39/143) and Trigoniidae (39/143), followed by Fasciolariidae (34/
143) and Amberleyidae gastropods (34/143).

Occurrence matrices, ordinated by the taxonomic similarity of con-
stituent families, showed no clear temporal trends, as can be seen for the
mixture of KLBs throughout the reciprocally ordinated matrix (Fig. 3a)
and the NMDS ordination plot (Fig. 3b). Two KLB 9 sites fall outside the
plotted NMDS axis limits but were included in the analyses. NMDS
ordination yielded a stress of 0.069, indicating a good representation of
the pairwise distances in two dimensions (Fig. 3b).

3.2. Pairwise analyses

3.2.1. Raw data

After removing singletons, 20 families were analysed in KLB 7, 20
families in KLB 8, and 35 families in KLB 9 (Supplementary Table 1).
Significant non-random aggregations were seen among the sites in KLBs
7,8, and 9. In KLB 7, 8.2 % of 73 analysed pairs displayed significant
aggregations with each other (Fig. 4). Cucullaeidae bivalves were the
only group to have more than 1 positively associated pair: they prefer-
entially occurred with Veneridae bivalves and Fasciolariidae
gastropods.

In KLB 8, the percentage of non-random aggregations increased
slightly to 9.9 % among 91 analysed pairs (Fig. 4). Cucullaeidae, Hia-
tellidae, Trigoniidae bivalves and Amberleyidae, Cassidae, and Taio-
midae gastropods each had 2 other taxa they were positively associated
with.

In KLB 9, significant non-random associations were seen among 24.9
% of the 173 taxon pairs analysed (Fig. 4). Amberleyidae gastropods
preferentially occurred with 9 other families, Aporrhaidae gastropods
and Lahillidae bivalves had associations with 8 other families, and
Perissityidae gastropods with 7 other families. The bivalve families
Gryphaeidae and Hiatellidae occurred together less often than expected
by random chance, showing the only negative association (Fig. 4).

3.2.2. Sensitivity results

For each studied KLB (7, 8 and 9), we recalculated the pairwise co-
occurrence frequencies when the KLB windows were shifted to the
west, shifted to the east, and contracted (as per Section 2.4). The
increasing percentage of non-random associations through time remains
true regardless of analyses applied — the percentage of aggregations for
KLB 7 remains between 6.7 and 12.2 %, for KLB 8, between 4.7 and 13
%, and for KLB 9, the percentage of non-random associations remains
between 24.2 and 24.9 % when the KLB windows are modified (Fig. 5).

We also spatially thinned our data by 30 m, 50 m, and 70 m (as per
Section 2.4) (Fig. 5). These results show that the near tripling in non-
random aggregations in KLB 9, as compared to KLB 7 and 8, holds



T.M. Khan et al. Palaeogeography, Palaeoclimatology, Palaeoecology 683 (2026) 113495

(a) Reciprocally ordinated incidence data.
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Fig. 3. (a) Incidence data per locality, reciprocally ordinated before plotting. Rows are localities in the study, coloured by KLB. Note that the KLB colours have been
modified slightly from the geological map colours in Fig. 1, to aid in visual comparison. Localities are ordered by similarity of community composition. Columns are
families in the study. Grey cells indicate presence, white cells indicate absence. No clear temporal trends are apparent based on the similarity of communities, i.e.,
localities on the y-axis do not group together by KLB and are instead interspersed together. (b) NMDS Ordination plot based on Jaccard dissimilarities on presence-
absence data. Two KLB 9 sites fall outside the plotted axis limits and are not shown. Communities within the KLB units are largely the same, and no distinct clusters
due to time are apparent.

true even at highest level of data pruning. metacommunity (Fig. 6, Table 3), which is indicative of taxa-poor sites
being subsets of larger taxa-pools (Table 1, Supplementary Fig. S1). In
KLB 8, the metacommunity structure resembles that of a quasi-

3.3. Metacommunity results Clementsian one (quasi due to the non-significant turnover) (Fig. 6a,
Table 3). Communities in KLB 9 resembled a Clementsian meta-
All our metacommunity results showed significant positive coher- community structure (Fig. 6a, Table 3), which indicate that taxa are

ence (Table 3). Communities in KLB 7 resembled a nested clumped



T.M. Khan et al.

66.04 Ma G 8, Poq , Mbgy,
- Gag o0y, e 4,09, ’halghdae

24.9%

N
0 sty "oy iz
. Ss/,
9 . 9 A) B/[/a ” be"/ey- /O'.ge
. vay, Ty, .~ dae
o iy, ” Ve y Mg
(<] 'Sl
Och Cucy,, ~ag
Gastr et Sy a g
8 3ty 0 b, Pl
Gastr Lo N, on e
q £, 7iss, Yae
Strg, asg;, Wjq.
IO/a,/. £5)
BIVG/V '4,00”73' it
1Q;
/7@,./- e
d Vayy,
Gas” 0/78 //ae y s,
3, % 7
8 2(y0 Str, UI‘Q[ ) //Q'a
Cast, 2 Wil
7 Gasg, K CI(‘)/ar/'/
0o, El
R P .
Va, Toy ©
i, Ve " y/dae
Q| Sr,’d
. Q
B/ Va/l,e N 90/7/,4 da € -
U e
S/l/ U Ve cy, Uo?
e "//aze///.d [ |

Fig. 4. The percentage of non-random aggregations between families in sites
increases upsection. Positive associations are coloured in by the KLB colour
number, as demonstrated in the scale bar. Negative associations are plotted in
orange. Note that, to aid in visual comparison, the shades of green have been
modified slightly from the accepted geological map colours in Fig. 1. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

organized into distinct groups with high connectivity within them, and
that groups of taxa change along the inferred gradient together due to
strong environmental filtering (Table 1, Fig. S1).

When we applied our sensitivity analyses, we found that the informal
cartographic unit KLB 7 had a nested clumped metacommunity structure
when considering raw data, and when the width of the KLB was nar-
rowed (Fig. 6a, Table 3). When the KLB window was shifted to the west
or shifted to the east, i.e., when stratigraphically younger and older
samples were incorporated, the metacommunity resembled a quasi
Clementsian structure. For KLB 8, the metacommunities resembled weak
quasi structures regardless of the sensitivity analyses (Fig. 6a, Table 3).
Raw data, and shifting KLB 8 to the east and west, resembled quasi
Clementsian structures. Contracting the KLB 8 window produced quasi
nested clumped metacommunities. For KLB 9, strong Clementsian met-
acommunity structures were detected regardless of how the boundaries
were defined (Fig. 6a, Table 3).

When the Molluscan units were spatially thinned (Fig. 6b), nested
clumped metacommunities remained apparent in KLB 7, while the
metacommunity structure in KLB 8 bridged the metacommunity
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Co-occurence results for raw, treated and spatially thinned data
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Fig. 5. Boxplots of the percentage of significant non-random associations in
KLB 7 (blues), KLB 8 (greens) and KLB 9 (oranges/pinks). Jittered points show
the results underlying the boxplots, and horizontal lines show the median. The
first boxplot for each unit (“all stations™) shows the results when positional
boundaries are changed: circles are the raw data; left pointing arrows show the
KLB west shift treatment; right pointing arrows show the KLB east shift treat-
ment; squares show the contract KLB treatment. All other boxplots show results
when KLBs are spatially thinned, and stars show the results from each
random draw.

structure between quasi nested clumped and quasi Clementsian,
depending on random draws. Clementsian metacommunity structures
were observed when KLB 9 was thinned by 30 m, with all ten random
draws plotting in the non-nested space (Supplementary Fig. S6). With a
thinning level of 50 m all draws resembled Clementsian meta-
communities. When KLB 9 was thinned by 70 m, 4 random draws sug-
gested Clementsian structures, while 6 draws suggested nested clumped
structures (Fig. 6b).

4. Discussion
4.1. Spatiotemporal data advances

The thickness of the LBF, relatively uniform lithology, and evidence
for deposition during changing sea levels and variable climate condi-
tions, make Seymour Island a uniquely valuable site to study spatio-
temporal ecosystem structure changes in the latest Cretaceous. A
challenge for palaeoecological studies is the synthesis of historical fossil
collections that were sampled opportunistically rather than systemati-
cally, with inconsistent sampling effort and absence of data tied accu-
rately to measured sections. On Seymour Island one key difficulty with
comparative analyses between fossil datasets is the cartographic posi-
tions of the KLB boundaries, which have proved challenging to identify
in the field due to lithological homogeneity (Bowman et al., 2012). This
uncertainty, together with subsequent taxonomic changes (Beu, 2009;
Crame et al., 2014; Witts et al., 2015, 2016) and some stratigraphic
ambiguity in the location of sampling stations (Crame et al., 2014) had
previously hindered utility of the Zinsmeister Collection.
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Table 3
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Results from the Elements of Metacommunity Structure analyses. Note that negative Z-scores for coherence mean fewer embedded absences were observed than
expected through chance, i.e., the coherence is positive. The significance of turnover is determined through its p-value; significant results (p < 0.05) are highlighted in

bold.
KLB data Coherence Turnover Boundary Clumping Inferred Meta-
treatment (along a latent environmental gradient) (along a latent environmental gradient) (along a latent environmental gradient) community
i ; L . structure
Z- Interpretation Z-score Interpretation P Morisita’s Interpretation
score value Index
KLB 7 raw —4.49:  Taxa respond synchronously —2.03: Taxa loss without 0.04 2.5 Multiple taxa have ranges Nested clumped
to the environmental Taxa’s ranges replacement that end in the same
gradient are nested positions
KLB 7 west -7.26 Taxa respond synchronously 0.64: Active replacement  0.52 3.5 Multiple taxa have ranges Quasi-Clementsian
shift to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 7 east —7.98 Taxa respond synchronously 0.37: Active replacement  0.71 3.3 Multiple taxa have ranges Quasi-Clementsian
shift to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 7 —2.49:  Taxa respond synchronously —2.60 Taxa loss without 0.009 2.4 Multiple taxa have ranges Nested clumped
contracted to the environmental Taxa’s ranges replacement that end in the same
gradient are nested positions
KLB 8 raw —6.47:  Taxa respond synchronously 0.14: Active replacement  0.89 3.4 Multiple taxa have ranges Quasi-Clementsian
to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 8 west —-5.70 Taxa respond synchronously 0.32 Active replacement  0.75 2.6 Multiple taxa have ranges Quasi-Clementsian
shift to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 8 east —9.98 Taxa respond synchronously 0.27 Active replacement  0.78 1.9 Multiple taxa have ranges Quasi-Clementsian
shift to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 8 -5.16 Taxa respond synchronously -1.15 Taxa loss without 0.25 3.2 Multiple taxa have ranges Quasi- Nested
contracted to the environmental Taxa’s ranges replacement that end in the same clumped
gradient are non- positions
nested
KLB 9 raw —8.46 Taxa respond synchronously 2.99 Active replacement  0.003 2.7 Multiple taxa have ranges Clementsian
to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested
KLB 9 —8.09 Taxa respond synchronously 2.83 Active replacement  0.004 3.1 Multiple taxa have ranges Clementsian
contracted to the environmental Taxa’s ranges of taxa that end in the same
gradient are non- positions
nested

In this study we developed a novel approach to dealing with the
spatial uncertainty, namely sensitivity analyses around the KLB
boundaries, and so are now able to test whether these positional un-
certainties affect ecological results, as well as testing the impact of dif-
ferential sampling intensity through our spatial thinning analyses. All
sensitivity analyses demonstrated that ecological analyses of taxonomic
pairs are robust to variations in subsets of data (c.f. Veech, 2013)
(Fig. 5), consistently showing a near tripling of non-random associations
between taxa pairs up-section. Any possible Type II errors in the un-
derlying data did not influence our metacommunity results, as all our
results showed significant positive coherence, however, our analyses at
the metacommunity level are more sensitive to subsampling. When data
are strongly thinned by 70 m in KLB 9, notably reducing the spatial
aggregations of stations and the number of stations (from 137 to 59,
Supplementary Fig. S3), this reduction results in turnover metrics that
are more negative, placing metacommunities in the nested, rather than
non-nested space. The resulting nested clumped metacommunity
structure, rather than a Clementsian one, make taxa-poor sites appear as
subsets of taxa-rich sites — a likely sampling artifact. This change in
metacommunity structure contrasts with no significant change between
KLB 7 and KLB 8 (Fig. 6), where the strongest thinning (70 m) removed
only 6 stations in KLB 7 and 1 station in KLB 8. These results suggest that
we should not be drawing strong conclusions from our metacommunity
analyses in terms of differences between the KLB units but can do so for
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our co-occurrence analyses. These sensitivity analyses highlight the
importance of even sampling effort (wherever possible), both spatially
as well as stratigraphically, in order to limit influence of sampling bia-
ses. Despite these caveats, our sensitivity analyses allow us to fully uti-
lize spatial data from the PRI Zinsmeister collection to study ecological
complexity.

4.2. Ecological complexity

Sites within our study, when ordinated by similarities in community
composition, display no temporal trends (Fig. 3a), suggesting no notable
taxonomic turnover over the ~4 million years covered by our analyses.
Instead, there is only an increase in standing richness at the family level
in KLB 9 (Table 2, Supplementary Fig. S1, Supplementary Table 1).
Traditional methods of ordination, such as NMDS (Fig. 3b) shows sub-
stantial overlap among the KLB 7, 8, and 9 sites, suggesting broadly
similar communities over the ~4 million years. However, this approach
fails to capture the internal metacommunity structures that exist within
this data, and so that ecological complexity, i.e., the tendency for taxa to
preferentially aggregate or segregate due to biotic interactions or envi-
ronmental filtering, has increased through time. Our co-occurrence an-
alyses show a dramatic increase in the percentage of non-random
pairwise co-occurrences in KLB 9. These patterns are consistent even
when spatially subsampling the data (Fig. 5). The increase in the non-
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(b) The impact of spatially explicit subsampling
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Fig. 6. (a) Metacommunity results across the LBF Molluscan units. Raw data is noted with circles, treated data are marked with the relevant symbols. Circles are the
raw data; left pointing arrows show the KLB west shift treatment; right pointing arrows show the KLB east shift treatment; squares show the contract KLB treatment.
Quasi structures (with non-significant turnover) are outlined with dotted rings, while significant structures do not have rings. The size of the symbol is proportional to
Morisita’s Index, which reflects the degree of boundary clumping. (b) Metacommunity results when the raw data are spatially thinned by 30 m, 50 m and 70 m. The

raw results are highlighted with solid black outlines.

random associations of the gastropods Amberleyidae, Aporrhaidae and
Perissityidae and Lahillidae bivalves between KLBs 7 and 8 relative to
KLB 9 shows that these families are increasingly found together, possibly
reflecting shared habitat preferences and that they may play a stronger
role in defining community composition in KLB 9. Further evidence of
increased ecological complexity in KLB 9 comes from the only negative
association detected between deep infaunal Hiatellidae and epifaunal
Gryphaeidae bivalves. This negative association may reflect differing
responses to events like sediment disturbance consistent with Thayer’s
‘biological bulldozer’ scenario (Thayer, 1979) and highlighting more
nuanced, indirect community interactions. Importantly, differential
levels of sampling, as evidenced by rarefaction curves, show that this
near three-fold increase in non-random associations in KLB 9 (Fig. 5), is
not a result of more extensive sampling in this unit, but rather a true
ecological pattern.

At the metacommunity level, we note a shift in taxonomic turnover
from nestedness in KLB 7 to replacement in KLB 9 (Fig. 6), which also
corresponds to an increase in complexity, as replacement is a conse-
quence of environmental sorting or biotic interactions, whereas nest-
edness reflect subsets (Baselga, 2010). However, our metacommunity
results are not as strong as our pairwise patterns. While the raw data
record the increase in taxa replacement from KLB 7 to KLB 9, these re-
sults are not robust to strong spatial thinning, so it is not possible to
conclude whether the change to a Clementsian structure from a nested
clumped metacommunity structure is a true signal, or one brought on
through clustered sampling sites. Although KLB 7 and 8 are well sampled
in terms of taxonomic richness (Supplementary Fig. S2, S4, and Sup-
plementary Table 1), the limited number of sites may prevent us from
confidently resolving their metacommunity structures. Note though, the
significant increase in co-occurrences (Figs. 4 and 5) is consistent with
an increase in metacommunity complexity, suggesting we may be
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picking up on a subtle signal, while not being able to draw any firm
conclusions.

4.3. Pattern of K-Pg extinction in Antarctica

Our complexity results can be used to investigate the competing
hypotheses about the nature of the K-Pg extinction in Antarctica, as
complexity correlates to ecosystem resilience (Pimm, 1984). If the
extinction was gradual, induced by global climatic changes or longer-
term changes in ocean chemistry during the time interval represented
by the uppermost ~50 m of KLB 9 (Zinsmeister et al., 1989; Zinsmeister,
1998), then both the percentage of non-random associations, as well as
turnover, should decrease due to species loss (Wright et al., 1998). With
localities not tied to section lines (see Methods), we can assess the pat-
terns only at the whole KLB level. Our sensitivity tests show that even
with spatial thinning, non-random associations in KLB 9 are consistently
higher than in KLB 7 and KLB 8. The possible increase in meta-
community complexity (as inferred through increasing turnover), with
an almost tripling of non-random associations, is not consistent with a
drawn-out or gradual extinction through KLB 9.

Considering a multi-phased extinction, with a precursor extinction
coincident with the late Maastrichtian climate warming associated with
Deccan Trap volcanism (Tobin et al., 2012; Schoene et al., 2019; Sprain
et al., 2019; Hull et al., 2020), would presumably place at least part of
the terminal KLB 9 unit in a post-extinction phase with significant
negative turnover (Wright et al., 1998). These post-extinction commu-
nities would likely also show an increase in generalists with a decrease
in specialists (Erwin, 1998), which is contrary to the increase in signif-
icant non-random pairwise co-occurrences, which indicate an increase
in specialization. As such, a precursor extinction seems unlikely,
although due to sampling constraints we cannot test this directly (see
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Methods 2.4).
5. Conclusions

Our work capitalizes on the exceptional and expanded outcrop of
onshore Cretaceous-Paleogene sedimentary successions found in Sey-
mour Island, Antarctic Peninsula, to study ecological patterns leading up
to the Cretaceous-Paleogene (K-Pg) mass extinction. We found no clear
temporal trends in taxonomic turnover across KLBs 7-9, suggesting
ecological rather than evolutionary drivers of community structure. We
discovered a notable increase in ecological complexity, reflected in both
significantly non-random co-occurrences among benthic taxa, and the
transition from nested clumped to more specialized Clementsian meta-
community structures. Although sensitivity tests suggest changes in
metacommunity structures may be influenced by uneven sampling in-
tensity, our finding of increasing specialization and complexity does not
support gradual declines in biodiversity prior to the K-Pg event, instead
supporting a single, catastrophic mass extinction in Antarctica. Moving
forward, resolving uncertainties in stratigraphic positions, improving
sample coverage, and incorporating higher taxonomic resolution, i.e., at
species level, would allow finer-scale ecological signals to be detected.
Integrating measures of functional morphological diversity, along with
additional palaeoenvironmental data, would help clarify the ecological
roles and niche structures of these communities. Finally, applying the
same ecological complexity framework to other K-Pg boundary sections
worldwide could test whether the rise in community complexity docu-
mented at Seymour Island also occurred in other marine ecosystems, or
whether it reflects ecological dynamics specific to the Antarctic region.
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